The Number of 959 Microbial-Related Targets from Both TTD and OMIM

Total Page:16

File Type:pdf, Size:1020Kb

The Number of 959 Microbial-Related Targets from Both TTD and OMIM The number of 959 microbial-related targets from both TTD and OMIM EGFR FGFR1 PDF CA2 CA4 LCK PDGFRA SRC SCD CA6 CA12 CA14 MAOB ABCB1 PIK3CG PDGFRB ACACB DPEP1 DHFR TOP1 D2R FASN ATP4A NMDAR1 CD20 PNLIP TSPO SCN5A TOP2 CYP2C9 FCERG PCAT BCR-ABI LTF NAC PDE4 CA NMDAR NAV PTGR HRA LTR GPCRB HER2 ALPPL2 5HT3R IMD68 ILVBL TLR4 IMD67 NLRC4 NOD2 MYD88 NAIP TLR2 NOD1 CF CASP1 ATG16L1 LAD TLR5 IL22 TLR9 LCN2 CFTR NLRP3 NFKB1 CAMP IMD51 IL17A IRAK4 TLR1 HIES1 HPS2 FPR1 HSD11B1 CASP4 PGLYRP1 STK4 IL17RA HECTD3 IBD1 EDAID1 CGDX SCN3 IBD10 LAD3 CFDD MVP1 C8A RAB1 IFNG ITGB2 SCARB1 MMP12 IRF8 IKBKB HIF1A IKBKG PGLYRP3 PGLYRP4 CASP12 XLA IMD50 IMD41 CVID1 IMD13 IMD23 IMD71 IMD64 CTNNB1 MMP9 LBP ELANE CXCR1 CD14 MET TNFRSF1A AHR DEFA5 ASNA1 NR1H3 FADD SCN10A IRAK3 HTRA2 IFNLR1 IRGM NEIL1 NEIL3 REG3G DOCK8 PFITS HMD CELIAC1 GSD1B ICAS SCNX SCIDX1 IMD47 HIGM2 HIGM3 SCN4 CVID3 IMD31C TIIAC IMD40 RFMN CVID13 MIRAGE HIES3 HIES4 SCN8 IMD66 IMD70 LPRS1 DNMT1 CX3CR1 TREM1 CFD SLC2A2 IL1B CBL PRKCE TF GARS1 DUSP1 SEPHS1 DJ1 RUVBL1 RIPK1 RIPK2 TRADD PADI4 IL27RA IL23A LGALS8 IL17F GFM2 ALPK1 MEFV NEIL2 DPH3 CEACAM3 NLRP6 PLEKHF1 ACOD1 INAVA DAR KIDAD VP C2D CGD4 CGD1 MKS1 PKU CDG2C CDG2F IMD61 IMD33 HIGM1 HIGM5 CRIE C5D CFHD EDAID2 IBD13 AGM6 LPRS5 AGM2 C1QD C3D CGD3 LEPD SCN5 IMD12 IMD15B IMD17 IMD19 IMD24 IMD36 SCN6 IMD55 PRAAS2 IMD57 IMD58 IMD72 T1D NAD CELIAC13 STAT3 CD44 IFNAR1 ART4 BMP5 CEACAM5 CLCN1 COL1A2 MLH1 S100A8 S100A9 IL10 DRD4 NCF4 SMO ATF3 NEDD8 COCH MTRNR1 ENG PDYN NR3C1 GFPT1 HOXB8 LYZ LAMA2 MPG MUC5AC IL12B NOS2 LEP AKT1 SPP1 PTAFR CD36 PTGER1 PTGER3 TYK2 PRKCD SLC6A4 MMP3 CD8A LEU2 MAP3K8 UGP2 UMOD CDH1 OTX1 EIF5A SCNN1A NR1H2 GBP1 DEFA6 CHUK SHH MUC5B SLC12A2 MSH3 SIM2 CD47 MAP2K2 SEMA3B PTCH1 CCR5 INPP5D KIN GSC2 GPR31 RAC2 NRP2 ADAM10 MRPL12 ATP8B1 PARK2 GP2 AP3B1 MBD4 TNFSF10 GPHN RNASEH1 SYT7 ACTR2 ATG5 SIRT2 CALCOCO2 MALT1 TBCE PGLS FOXP3 TLR7 TLR8 CYBB G6PD MVP LONP1 EIF5B SESN1 GRPEL1 DICER1 PRDX5 DCD GFM1 NAT8 PYCARD IFNL2 IFNL3 IFNL1 BPIFA1 ERAL1 MMAA MMAB PLVAP SESN2 PADI1 MARCHF4 LHX6 NEU1 MMP28 LACTB TIFA CARD8 MSH2 NDUFA13 NLRP12 MMACHC ITLN1 RNF167 PAH TET2 RAB32 TMEM189 G6PC3 MTRF1L MSRB2 BAHD1 PLD6 ERO1LB CLPX CST9 AGMAT ACE ADRB2 COMT BCL2 LEF1 VNN1 HDLCQ8 SPDA1 BPES DFNA1 SLE EDSCL1 EDSPD1 CMT2D AGM1 LSS MYHRS IGER DM1 PKD1 EPP1 DGS DGCR VCFS WHIMS WHS SCN1 IMD27A BESC1 CANDF2 CHS DFNB3 HMN5A SLEB1 TMAU CDG1B EV1 FBS CGD2 UFS1 CVID2 HRDS VICIS SIOD HIES2 KCS1 SGD1 MANSA MPOD NPHS1 SDS1 GSSD VKCFD1 XPA XLP2 MCLDS XMEN IMD74 BTHS IGHD3 THMD2 SPENCDI IMD73A CML C7D IMD25 FCAS2 IMD10 LPFS1 SCN2 CFID CGL4 CVID4 CVID5 CVID6 AGM3 AGM4 IMD31B PSORS14 C4BD C4AD WAS2 ARCI9 IMD18 IMD22 IMD37 TTD3 CANDF9 IMD44 RUSAT2 SGD2 NPHS14 IBD29 LPFS3 IMD69 IMD73B KILQS OIEDS2 CANDF1 IGAD1 PTOS1 CELIAC8 CELIAC10 APLDC3 ARCI7 ZWINTAS HIGM4 RFC1 AOAH ADK ADORA2A ADH5 GGTA1P ACY1 APP CD19 SERPINA1 IFNGR1 ARRB1 ARRB2 ACLY ATP6V0C LST1 BPI CEACAM1 CD80 CTSG CDC42 HSPD1 CGB COL6A1 CD46 ITGAM GJB2 CRYAA CRYAB CST1 CTPS1 CYP2C19 BCR ALOX5 SLC6A3 DAG1 RAG1 RAG2 RAD51 HAS1 PPARG CHI3L1 CHI3L2 RAD51AP1 DARS1 ART3 SMAD3 UBE1C HAO1 CNR2 WASL MRM2 GALE MTCO1 MTCO2 MTCO3 GDI1 SMS EDNRA FDPS FN1 ITGA5 ITGB1 FPR2 TSTA3 SLC6A1 GATA2 GCG GLP1 GCK SLC2A1 GLUL GLULL1 GPX1 GYS1 GLO1 CSF2 CXCL2 GNAI1 GNAO1 HP ACSM3 IMPDH1 IMPDHL1 FCGR3A IGLL1 CXCR2 FCER1G ITPA IRF1 IRF2 IL4 IL4R KRT16 LALBA LPO LAMA1 MIF YBX1 MBL2 MC1R MUC1 MUC7 NGF CD177 SNCA SLC6A2 CEACAM6 NFKB2 VAV1 TAP1 ALPI PGM3 SERPINB2 PLAUR PIGR POLG PRNP PRDX1 MAP2K1 RNASE1 POLR2B PI3 SLC5A1 SOX2 CD3G CD247 TXN CD1B CD1D TIMP3 GTF2E1 GTF2F1 TFRC TGFB1 TPP2 TPM1 TNFRSF1B NTRK1 UBB DPAGT1 PLAU OPRM1 CHIT1 EMX2 LRP2 SYK APOBEC1 PDCD1 PMS1 PMS2 SLC11A1 SLC1A2 XRCC2 RAD52 GBP2 ECE1 PCSK4 MASP1 IK IL15 STAT1 TFF3 MEF2A KCNJ2 LY9 TMBIM6 SCNN1B SCNN1G MR1 GCKR NCOR1 GFI1 IL18 GSS TJP1 CLPP IL1RL1 PTK2B MAP1LC3A TOP3A FCN1 MAP2K6 DDX1 GUCA2B SLC10A2 MAP2K4 HSD17B8 FCN2 ART1 HAS2 UBE2I PTEN SH3GL1 GNPDA1 METAP2 CX3CL1 TRAF3 CRY1 OGG1 GPR18 RAC1 TBX1 DEFB1 TRAPPC10 DIAPH1 COX10 HTRA1 DEFB4A ARVCF MAP2K3 TRAF6 GATM OPTN CISH MAP3K5 PTPNS1 TRDMT1 LGALS4 ACOT7 SLC22A18 NAALADL1 MYO15A SLC37A4 TNFRSF14 DDT DNMT3A DNMT3B RAD51D PDE1C SERF1A TLR3 ENSA ATP7A SLC27A5 NDUFA8 NAE1 CSDA DPH2 ASS1 NFS1 SMPD2 IFRD1 BCL10 DPH1 GABBR1 TOP3B MOCS1 QARS1 APOL1 COX7C SLC23A1 SLC23A2 FFAR2 NDUFB7 SUCLA2 SUCLG2 SLC5A6 ADAMTS13 DNAJB2 POLR2J RPL24 CXCL14 ARPC1B HACL1 ZRANB2 PLPBP GAB1 SIRT1 SIRT3 SIRT4 SIRT5 ZNF423 DNAJB1 AIM2 FCGR2B MRRF NIT1 HSPB3 WARS2 RUVBL2 PTGDR2 MARCO PCSK7 TBX21 MUTYH AIFM1 RAB9 BTK CFP WAS TAZ GK TAB3 BCOR SH2D1A BCORL1 GDPD2 LAMP2 PIGA PIGAP1 MTND1 MC1DM3 TAB2 ANKH PTGES TOR1A ADCY10 AICDA JPH2 NARF CD274 TLR6 MPHOSPH1 MPHOSPH6 MPHOSPH9 DNAJC2 MPHOSPH10 MAT2B NEU2 RAB11A RAB31 SPTLC2 JAM1 HEBP2 UNC13B SPON2 STIM1 GDE1 IL32 MRTFA SLC44A4 QPRT CLEC7A TLR10 TXNRD2 NLRP1 FXN COQ8A TFB1M TFB2M MTHFR REXO2 CARD9 CLINT1 LIPH STBD1 DISP1 PASK SARS1 KCNQ1 MSMO1 SLC25A21 ARSA ATM TICAM1 OSTM1 BEST1 PADI2 NFKBIZ SLC37A1 ACP33 PGLYRP2 UNC93B1 IL27 ECSIT MFN1 NCF1 GTPBP3 IL33 NMNAT1 FBXO3 HCAR2 TPSD1 SLC25A22 SLC25A18 MIR155 BIC HS3ST5 ERCC6 PGBD3 IL31 PLEKHM2 QTRT1 CLYBL PKLR PRDM9 SLC47A1 SLC47A2 ALDH5A1 TIMD4 ST6GALNAC2 TRMU PCGF1 METAP1D MOGAT2 LCMT1 SLC15A3 MIR27B FCGR3B PGPEP1 SLC25A31 POLN DNAJC24 DPH5 NARFL TRMT2A PIEZO1 THNSL1 DNAJB5 POLDIP2 NCR3 FARS2 POGLUT2 UBIAD1 NAALAD2 OTUD7B NHEDC2 KLRK1 IYD RRAGA FECH GBP7 METTL3 URM1 PUS10 NDUFAF3 FILIP1L UROC1 SLC39A8 RAB34 YARS2 TRMT5 SLC25A26 NLRC5 XPNPEP3 HFE PYGL ANAPC10 CCDC39 HMGCL DNAJC5B CGAS RNASE9 OLFM4 BPIFB2 BPIFC BPIFB6 RHBDF2 RASGEF1B CHAC1 MALSU1 SLFN12 SLFN12L IL17RE IFNE DEFB114 GMPPB SLC15A4 HRNR SLC39A11 LYG2 DAPK2 CERCAM MORC2 PIPOX GSDMD GUF1 TMEM59 HECW2 PRAG1 YBEY PCGF3 WFDC2 SFTA3 ATP5PD NECAB2 ASPG METTL15 CPQ ABCF3 TENT5B.
Recommended publications
  • Autophagy: from Basic Science to Clinical Application
    nature publishing group REVIEW See COMMENTARY page XX Autophagy: from basic science to clinical application J Va n L i m b e r g e n 1 , 2 , 3 , C S t e v e n s 4 , E R N i m m o 1 , D C W i l s o n 2 , 3 a n d J S a t s a n g i 1 Autophagy is a cellular pathway involved in protein and organelle degradation, which is likely to represent an innate adaptation to starvation. In times of nutrient deficiency, the cell can self-digest and recycle some nonessential components through nonselective autophagy, thus sustaining minimal growth requirements until a food source becomes available. Over recent years, autophagy has been implicated in an increasing number of clinical scenarios, notably infectious diseases, cancer, neurodegenerative diseases, and autoimmunity. The recent identification of the importance of autophagy genes in the genetic susceptibility to Crohn ’ s disease suggests that a selective autophagic response may play a crucial role in the pathogenesis of common complex immune-mediated diseases. In this review, we discuss the autophagic mechanisms, their molecular regulation, and summarize their clinical relevance. This progress has led to great interest in the therapeutic potential of manipulation of both selective and nonselective autophagy in established disease. INTRODUCTION The ability to adapt to environmental change is essential for sur- Autophagy encompasses several distinct processes involving vival. This is true for the organism as a whole and for individual the delivery of portions of the cytoplasm to the lysosome for cells alike.
    [Show full text]
  • Expression Gene Network Analyses Reveal Molecular Mechanisms And
    www.nature.com/scientificreports OPEN Diferential expression and co- expression gene network analyses reveal molecular mechanisms and candidate biomarkers involved in breast muscle myopathies in chicken Eva Pampouille1,2, Christelle Hennequet-Antier1, Christophe Praud1, Amélie Juanchich1, Aurélien Brionne1, Estelle Godet1, Thierry Bordeau1, Fréderic Fagnoul2, Elisabeth Le Bihan-Duval1 & Cécile Berri1* The broiler industry is facing an increasing prevalence of breast myopathies, such as white striping (WS) and wooden breast (WB), and the precise aetiology of these occurrences remains poorly understood. To progress our understanding of the structural changes and molecular pathways involved in these myopathies, a transcriptomic analysis was performed using an 8 × 60 K Agilent chicken microarray and histological study. The study used pectoralis major muscles from three groups: slow-growing animals (n = 8), fast-growing animals visually free from defects (n = 8), or severely afected by both WS and WB (n = 8). In addition, a weighted correlation network analysis was performed to investigate the relationship between modules of co-expressed genes and histological traits. Functional analysis suggested that selection for fast growing and breast meat yield has progressively led to conditions favouring metabolic shifts towards alternative catabolic pathways to produce energy, leading to an adaptive response to oxidative stress and the frst signs of infammatory, regeneration and fbrosis processes. All these processes are intensifed in muscles afected by severe myopathies, in which new mechanisms related to cellular defences and remodelling seem also activated. Furthermore, our study opens new perspectives for myopathy diagnosis by highlighting fne histological phenotypes and genes whose expression was strongly correlated with defects. Te poultry industry relies on the production of fast-growing chickens, which are slaughtered at high weights and intended for cutting and processing.
    [Show full text]
  • Deficiency in Class III PI3-Kinase Confers Postnatal Lethality with IBD
    ARTICLE DOI: 10.1038/s41467-018-05105-8 OPEN Deficiency in class III PI3-kinase confers postnatal lethality with IBD-like features in zebrafish Shaoyang Zhao1,2,3, Jianhong Xia2,3, Xiuhua Wu2,3, Leilei Zhang2,3, Pengtao Wang2,3, Haiyun Wang2,3, Heying Li2, Xiaoshan Wang 2, Yan Chen 2, Jean Agnetti2, Yinxiong Li 2, Duanqing Pei2,3 & Xiaodong Shu2,3 The class III PI3-kinase (PIK3C3) is an enzyme responsible for the generation of phospha- tidylinositol 3-phosphate (PI3P), a critical component of vesicular membrane. Here, we report 1234567890():,; that PIK3C3 deficiency in zebrafish results in intestinal injury and inflammation. In pik3c3 mutants, gut tube forms but fails to be maintained. Gene expression analysis reveals that barrier-function-related inflammatory bowel disease (IBD) susceptibility genes (e-cadherin, hnf4a, ttc7a) are suppressed, while inflammatory response genes are stimulated in the mutants. Histological analysis shows neutrophil infiltration into mutant intestinal epithelium and the clearance of gut microbiota. Yet, gut microorganisms appear dispensable as mutants cultured under germ-free condition have similar intestinal defects. Mechanistically, we show that PIK3C3 deficiency suppresses the formation of PI3P and disrupts the polarized dis- tribution of cell-junction proteins in intestinal epithelial cells. These results not only reveal a role of PIK3C3 in gut homeostasis, but also provide a zebrafish IBD model. 1 School of Life Sciences, University of Science and Technology of China, 230027 Hefei, Anhui, China. 2 CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China.
    [Show full text]
  • Xxviiith Belgian Week of Gastroenterology 2016 All Abstracts Belgian Association for the Study of the Liver (BASL)
    XXVIIIth Belgian Week of Gastroenterology 2016 All Abstracts Belgian Association for the Study of the Liver (BASL) A01 Light-to-moderate alcohol intake increases the risk of hepatocellular carcinoma in patients with HCV-related compensated cirrhosis: a prospective study H. VANDENBULCKE (1), C. MORENO (2), I. COLLE (3), J. KNEBEL (4), S. FRANCQUE (5), T. SERSTÉ (6), C. GEORGE (7), C. DE GALOCSY (8), W. LALEMAN (9), J. DELWAIDE (10), H. ORLENT (11), L. LASSER (12), E. TRÉPO (2), H. VAN VLIERBERGHE (3), P. MICHIELSEN (5), M. VAN GOSSUM (6), M. DE VOS (1), A. MAROT (13), C. DOERIG (13), M. ADLER (2), J. HENRION (1), P. DELTENRE (13) / [1] Hôpital de Jolimont, Haine-Saint-Paul, Belgium, Departement of Gastroenterology and Hepatology, [2] Erasme Hospital, Brussels, Belgium, Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, [3] Ghent University, Ghent, Belgium, Departement of Gastroenterology and Hepatology, [4] Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland, Division of Radiology, [5] Antwerp University Hospital, Edegem, Belgium, Departement of Gastroenterology and Hepatology, [6] CHU Saint-Pierre, Brussels, Belgium, Departement of Gastroenterology and Hepatology, [7] AZ Groeninge, Kortrijk, Belgium, Departement of Gastroenterology and Hepatology, [8] Hôp. Iris Sud Bracops, Bruxelles, Belgium, Departement of Gastroenterology and Hepatology, [9] KU, Leuven, Belgium, Departement of Gastroenterology and Hepatology, [10] CHU Liege, Liège, Belgium, Departement of Gastroenterology and Hepatology, [11] AZ St. Jan Brugge AV, Brugge, Belgium, Departement of Gastroenterology and Hepatology, [12] CHU Brugmann, , Belgium, Departement of Gastroenterology and Hepatology, [13] Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland, Division of Gastroenterology and Hepatology Introduction: Whether light-to-moderate alcohol intake increases the risk of complications in patients with HCV-related cirrhosis remains unclear.
    [Show full text]
  • Ifng-Induced Irgm1 Promotes Tumorigenesis of Melanoma Via Dual Regulation of Apoptosis and Bif-1-Dependent Autophagy
    Oncogene (2015) 34, 5363–5371 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE IFNg-induced Irgm1 promotes tumorigenesis of melanoma via dual regulation of apoptosis and Bif-1-dependent autophagy H Dong1,2,5, L Tian1,5,RLi3,CPei1,YFu1, X Dong1, F Xia1, C Wang1,WLi1, X Guo1,CGu1,BLi1, A Liu4, H Ren1, C Wang2 and H Xu1 Interferon gamma (IFNg) has been known as the regulator for both tumor immune surveillance and tumorgenesis. However, mechanisms underlying the resistance of tumor cell to IFNg have yet been fully understood. In the current study, we showed that immunity-related GTPase family member 1 (mouse: Irgm1; human: IRGM) is essential for IFNg-mediated regulation of tumor cell growth in melanoma. IRGM/Irgm1 was highly expressed in human and mouse melanoma. IFNg and starvation synergistically induced Irgm1 expression in melanoma B16 cells. In vivo, injection of Irgm1-siRNA-treated cells significantly reduced the number of tumor nodules and prolonged the mice survival. In vitro, knockdown endogenous or IFNg-induced Irgm1 significantly decreases the proliferation and increases apoptosis of B16 cells. In addition, suppressing Irgm1 decreased the IFNg/starvation-induced autophagy, while overexpressing Irgm1 significantly increased autophagy and rescued starvation-challenged cells. Moreover, IFNg and starvation-induced the co-localization of Irgm1 with Bax-interacting factor 1 (Bif-1). Knockdown of Bif-1 decreased Irgm1-mediated tumor cell autophagy. Taken together, these data reveal an Irgm1-dependent mechanism that promotes the tumorigenesis of melanoma via dual regulation of apoptosis and Bif-1-dependent autophagy.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • Interplay Between Cellular and Molecular Mechanisms Underlying Inflammatory Bowel Diseases Development—A Focus on Ulcerative Colitis
    cells Review Interplay between Cellular and Molecular Mechanisms Underlying Inflammatory Bowel Diseases Development—A Focus on Ulcerative Colitis Iuliana Samoilă 1 , Sorina Dinescu 1,2,* and Marieta Costache 1,2 1 Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; [email protected] (I.S.); [email protected] (M.C.) 2 Research Institute of the University of Bucharest, 050663 Bucharest, Romania * Correspondence: [email protected] Received: 16 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Inflammatory bowel diseases (IBD) are defined by the continuous inflammation of the gastrointestinal tract. During inflammation, the number of pathogens in the intestinal epithelium increases, leading to inflammasome assembly. Inflammasome activation is meant to protect the intestinal epithelial barrier from further damage by maintaining homeostasis. Although its purpose is to protect the cells, excessive nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome assembly is responsible for the synthesis of a high number of pro-inflammatory cytokines. The activation of two crucial pathways, autophagy process, and unfolded protein response, is initiated for restoring homeostasis. Aberrant expression of miRNAs and lncRNAs also interfere with the pathogenic mechanisms of IBD, as these non-coding transcripts play key roles in regulation of biological processes, such as inflammation and immunity. This review thoroughly describes the cellular and molecular mechanism that trigger and perpetuate inflammation in ulcerative colitis (UC) patients. Keywords: inflammasome; NLRP3; autophagy; miRNAs in IBD; inflammatory bowel diseases 1. Introduction Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the gastrointestinal tract, with alternating phases of clinical relapse and remission [1].
    [Show full text]
  • ATP8B1 Gene Atpase Phospholipid Transporting 8B1
    ATP8B1 gene ATPase phospholipid transporting 8B1 Normal Function The ATP8B1 gene (also known as FIC1) provides instructions for making a protein that is found throughout the body. It is thought to control the distribution of certain fat molecules known as aminophospholipids on the inner surface of liver cell membranes. Based on this role, the ATP8B1 protein is sometimes known as an aminophospholipid translocase. In particular, this protein performs its function in the membranes of liver cells that transport fat-digesting acids called bile acids into bile, and it likely plays a role in maintaining an appropriate balance of bile acids. This process, known as bile acid homeostasis, is critical for the normal secretion of bile and the proper functioning of liver cells. Health Conditions Related to Genetic Changes Benign recurrent intrahepatic cholestasis Mutations in the ATP8B1 gene can cause benign recurrent intrahepatic cholestasis type 1 (BRIC1). People with BRIC1 have occasional episodes of impaired bile secretion that lead to severe itching (pruritus), and yellowing of the skin and whites of the eyes ( jaundice). Most ATP8B1 gene mutations that cause BRIC1 change single protein building blocks (amino acids) in the ATP8B1 protein. These mutations likely alter the structure or function of the ATP8B1 protein only moderately. Through unknown mechanisms, mutations in the ATP8B1 gene result in the buildup of bile acids in liver cells, which leads to the signs and symptoms of BRIC1. It is unclear what causes the episodes to begin or end. On occasion, people with BRIC1 have been later diagnosed with a more severe condition called progressive familial intrahepatic cholestasis ( described below) when their symptoms worsened.
    [Show full text]
  • Research Article Identification of ATP8B1 As a Tumor Suppressor Gene for Colorectal Cancer and Its Involvement in Phospholipid Homeostasis
    Hindawi BioMed Research International Volume 2020, Article ID 2015648, 16 pages https://doi.org/10.1155/2020/2015648 Research Article Identification of ATP8B1 as a Tumor Suppressor Gene for Colorectal Cancer and Its Involvement in Phospholipid Homeostasis Li Deng,1,2 Geng-Ming Niu,1 Jun Ren,1 and Chong-Wei Ke 1 1Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China 2Department of General Surgery, The Shanghai Public Health Clinical Center, Fudan University, Shanghai, China Correspondence should be addressed to Chong-Wei Ke; [email protected] Received 5 May 2020; Revised 16 July 2020; Accepted 17 August 2020; Published 29 September 2020 Academic Editor: Luis Loura Copyright © 2020 Li Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Homeostasis of membrane phospholipids plays an important role in cell oncogenesis and cancer progression. The flippase ATPase class I type 8b member 1 (ATP8B1), one of the P4-ATPases, translocates specific phospholipids from the exoplasmic to the cytoplasmic leaflet of membranes. ATP8B1 is critical for maintaining the epithelium membrane stability and polarity. However, the prognostic values of ATP8B1 in colorectal cancer (CRC) patients remain unclear. We analyzed transcriptomics, genomics, and clinical data of CRC samples from The Cancer Genome Atlas (TCGA). ATP8B1 was the only potential biomarker of phospholipid transporters in CRC. Its prognostic value was also validated with the data from the Gene Expression Omnibus (GEO). Compared to the normal group, the expression of ATP8B1 was downregulated in the tumor group and the CRC cell lines, which declined with disease progression.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Autophagy, Unfolded Protein Response, and Neuropilin-1 Cross-Talk in SARS-Cov-2 Infection: What Can Be Learned from Other Coronaviruses
    International Journal of Molecular Sciences Review Autophagy, Unfolded Protein Response, and Neuropilin-1 Cross-Talk in SARS-CoV-2 Infection: What Can Be Learned from Other Coronaviruses Morvarid Siri 1 , Sanaz Dastghaib 2 , Mozhdeh Zamani 1 , Nasim Rahmani-Kukia 3 , Kiarash Roustai Geraylow 4 , Shima Fakher 3, Fatemeh Keshvarzi 3, Parvaneh Mehrbod 5 , Mazaher Ahmadi 6 , Pooneh Mokarram 1,3,* , Kevin M. Coombs 7 and Saeid Ghavami 1,8,9,* 1 Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; [email protected] (M.S.); [email protected] (M.Z.) 2 Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran; [email protected] 3 Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; [email protected] (N.R.-K.); [email protected] (S.F.); [email protected] (F.K.) 4 Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799422, Iran; [email protected] 5 Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; [email protected] 6 Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; [email protected] 7 Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady Citation: Siri, M.; Dastghaib, S.; College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; [email protected] Zamani, M.; Rahmani-Kukia, N.; 8 Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College Geraylow, K.R.; Fakher, S.; Keshvarzi, of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada F.; Mehrbod, P.; Ahmadi, M.; 9 Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland Mokarram, P.; et al.
    [Show full text]