March 9, 2010 London Aquaria Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
FAMILY Gasteropelecidae Bleeker, 1859 - Freshwater Hatchetfishes [=Gasteropelecini, Carnegiellidi, Thoracocharacini] Notes: Gasteropelecini Bleeker, 1859:XXXII [Ref
FAMILY Gasteropelecidae Bleeker, 1859 - freshwater hatchetfishes [=Gasteropelecini, Carnegiellidi, Thoracocharacini] Notes: Gasteropelecini Bleeker, 1859:XXXII [ref. 371[ (stirps) Gasteropelecus [family name sometimes seen as Gastropelecidae] Carnegiellidi Fowler, 1958b:9 [ref. 1470] (tribe) Carnegiella Thoracocharacini Weitzman, 1960:220 [ref. 9611] (tribe) Thoracocharax GENUS Carnegiella Eigenmann, 1909 - freshwater hatchefishes [=Carnegiella Eigenmann [C. H.], 1909:13] Notes: [ref. 1222]. Fem. Gasteropelecus strigatus Günther, 1864. Type by original designation (also monotypic). •Valid as Carnegiella Eigenmann, 1909 – (Weitzman 1960:225 [ref. 9611], Géry 1977:247 [ref. 1597], Vari 1983:5 [ref. 5419], Weitzman & Palmer in Reis et al. 2003:101 [ref. 27061], Mirande 2009:6 [ref. 30267] in Gasteropelecidae, Mirande 2010:466 [ref. 31006] in Gasteropeledidae, Oliveira et al. 2011:13 [ref. 31685] in Gasteropelecidae). Current status: Valid as Carnegiella Eigenmann, 1909. Gasteropelecidae. Species Carnegiella marthae Myers, 1927 - blackwing hatchetfish [=Carnegiella marthae Myers [G. S.], 1927:119-120] Notes: [Bulletin of the Museum of Comparative Zoology v. 68 (no. 3); ref. 3096] Caño de Quiribana, near Caicara, Venezuela. Current status: Valid as Carnegiella marthae Myers, 1927. Gasteropelecidae. Distribution: Negro and upper Orinoco River basins: Brazil and Venezuela. Habitat: freshwater. Species Carnegiella myersi Fernández-Yépez, 1950 - dwarf hatchetfish [=Carnegiella myersi Fernández-Yépez [A.], 1950:175, Figs. 3, 3a-d] Notes: [Stanford Ichthyological Bulletin v. 3 (no. 4); ref. 12321] Creek near Yurimaguas, Peru. Current status: Valid as Carnegiella myersi Fernández-Yépez, 1950. Gasteropelecidae. Distribution: Amazon River basin, Peru. Habitat: freshwater. Species Carnegiella schereri Fernández-Yépez, 1950 - dwarf hatchetfish [=Carnegiella schereri Fernández-Yépez [A.], 1950:178, Figs. 5, 5a-d] Notes: [Stanford Ichthyological Bulletin v. 3 (no. 4); ref. -
Cytogenetic Analysis in Thoracocharax Stellatus (Kner, 1858) (Characiformes, Gasteropelecidae) from Paraguay River Basin, Mato Grosso, Brazil
COMPARATIVE A peer-reviewed open-access journal CompCytogen 6(3): 323–333Cytogenetic (2012) analysis in Thoracocharax stellatus (Kner, 1858)... 323 doi: 10.3897/CompCytogen.v6i3.3637 RESEARCH ARTICLE Cytogenetics www.pensoft.net/journals/compcytogen International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Cytogenetic analysis in Thoracocharax stellatus (Kner, 1858) (Characiformes, Gasteropelecidae) from Paraguay River Basin, Mato Grosso, Brazil Edson Lourenço da Silva1, Rafael Splendore de Borba1, Liano Centofante2, Carlos Suetoshi Miyazawa3, Patrícia Pasquali Parise-Maltempi1 1 Instituto de Biociências, UNESP Univ Estadual Paulista, Campus de Rio Claro, Departamento de Biologia, Laboratório de Citogenética. Av. 24A, 1515. CEP: 13506-900. Rio Claro, SP, Brazil 2 Instituto de Biociên- cias, UFMT Univ Federal de Mato Grosso, Departamento de Biologia e Zoologia. Laboratório de Citogenética Animal. Av. Fernando Corrêa da Costa s/n, CCBS-II, CEP: 78060-900. Cuiabá, MT, Brazil 3 Universidade Federal do ABC, Centro de Ciências Naturais e Humanas (CCNH). Rua Santa Adélia, 166. Bairro Bangu, CEP 09.210-170. Santo André, SP, Brazil Corresponding author: Patrícia Pasquali Parise-Maltempi ([email protected]) Academic editor: G. Furgala-Selezniow | Received 6 July 2012 | Accepted 11 September 2012 | Published 26 September 2012 Citation: Silva EL, Borba RS, Centofante L, Miyazawa CS, Parise-Maltempi PP (2012) Cytogenetic analysis in Thoracocharax stellatus (Kner, 1858) (Characiformes, Gasteropelecidae) from Paraguay River Basin, Mato Grosso, Brazil. Comparative Cytogenetics 6(3): 323–333. doi: 10.3897/CompCytogen.v6i3.3637 Abstract Thoracocharax stellatus (Characiformes, Gasteropelecidae) is a small Neotropical species of fish, widely dis- tributed in several rivers of South America. Evidence for karyotype heteromorphysm in populations from different geographical regions has been reported for this species. -
Phylogenetic Relationships Within the Speciose Family Characidae
Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. -
Comparative Cytogenetics of Carnegiella Marthae and Carnegiella Strigata (Characiformes, Gasteropelecidae) and Description of a ZZ/ZW Sex Chromosome System
Genetics and Molecular Biology, 31, 1 (suppl), 231-234 (2008) Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Short Communication Comparative cytogenetics of Carnegiella marthae and Carnegiella strigata (Characiformes, Gasteropelecidae) and description of a ZZ/ZW sex chromosome system Maria Leandra Terencio1, Carlos Henrique Schneider1, Maria Claudia Gross1, Adailton Moreira da Silva2, Eliana Feldberg1 and Jorge Ivan Rebelo Porto1 1Coordenação de Pesquisa em Biologia Aquática, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil. 2Centro de Estudos Superiores de Parintins, Universidade Estadual do Amazonas, Parintins, AM, Brazil. Abstract Comparative cytogenetic analyses of hatchetfishes Carnegiella marthae and Carnegiella strigata (Gasteropelecidae) from the Rio Negro basin were performed using conventional Giemsa staining, silver (Ag) -stain- ing and C-banding. The diploid chromosome numbers of both species equaled 2n = 50 but their karyotypes were dis- tinct. We found evidence for sex chromosomes in C. marthae since karyotype of males presented 20M+12SM+4 ST + 14 A and ZZ ST chromosomes while the females presented 20M+12SM+4ST+14AandZWSTchromo- somes of distinct size. Conversely, C. strigata presented 4M+4SM+2ST+40Achromosomes without sex chro- mosome heteromorphism. Karyotypes of both species had two NOR-bearing SM chromosomes of distinct size indicating the presence of multiple NOR phenotypes. The sex chromosome pair had specific C-banding pattern al- lowing identification of both Z and W. This heteromorphic system has previously been described for the gaste- ropelecids. Key words: fish cytogenetics, karyotype differentiation, NOR phenotypes, heteromorphic sex chromosome system, cytotaxonomy. Received: August 22, 2006; Accepted: April 18, 2007. The family Gasteropelecidae (Characiformes) is a strigata) has been the subject of cytogenetic studies. -
The Origins and Evolution of Sleep Alex C
© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb159533. doi:10.1242/jeb.159533 REVIEW The origins and evolution of sleep Alex C. Keene1,2,* and Erik R. Duboue1,3,* ABSTRACT times vary widely, ranging from less than 5 h to 10 h or more (Webb Sleep is nearly ubiquitous throughout the animal kingdom, yet little is and Agnew, 1970; Kronholm et al., 2006). Despite a widespread known about how ecological factors or perturbations to the appreciation for the diversity in sleep duration between and within environment shape the duration and timing of sleep. In diverse species, surprisingly little is known about the relationship between ’ animal taxa, poor sleep negatively impacts development, cognitive sleep and an animal s ecological and evolutionary history. abilities and longevity. In addition to mammals, sleep has been Large differences in sleep duration and timing among humans characterized in genetic model organisms, ranging from the suggests that existing genetic variation among individuals potently nematode worm to zebrafish, and, more recently, in emergent affects sleep (Hartmann, 1973; Kronholm et al., 2006; He et al., models with simplified nervous systems such as Aplysia and 2009). While many laboratory studies investigating the molecular jellyfish. In addition, evolutionary models ranging from fruit flies to mechanisms of sleep regulation have relied on highly inbred model cavefish have leveraged natural genetic variation to investigate the systems including mice, zebrafish and fruit flies, the study of sleep relationship between ecology and sleep. Here, we describe the in outbred populations has revealed that geographical location, contributions of classical and emergent genetic model systems to evolutionary history and naturally occurring genetic variation investigate mechanisms underlying sleep regulation. -
Lepidocephalichthys Sp. (Pisces: Cobitidae)
International Journal of Fisheries and Aquatic Studies 2017; 5(2): 699-711 E-ISSN: 2347-5129 P-ISSN: 2394-0506 Lepidocephalichthys Sp. (Pisces: Cobitidae) - A (ICV-Poland) Impact Value: 5.62 (GIF) Impact Factor: 0.549 taxonomic appraisal, with special reference to IJFAS 2017; 5(2): 699-711 © 2017 IJFAS Lepidocephalichthys annandalei from Doon Valley, www.fisheriesjournal.com Received: 20-01-2017 Dehradun, Uttarakhand Accepted: 21-02-2017 Deepali Rana Deepali Rana and S K Gupta Department of Zoology, Uttaranchal College of Abstract Biomedical Sciences and The present communication deals with the taxonomic analysis and sexual dimorphic characters of Hospital, Sewla Khurd, Lepidocephalichthys guntea and Lepidocephalichthys annandalei. Teratological manifestation in L. Dehradun, Uttarakhand, India guntea, synonymies with reference to L. annandalei, anomalies regarding the number of barbels, mental lobes vs. barbels and variability with reference to origin of dorsal fin are the highlights discussed. Status S K Gupta of Lepidocephalus caudofurcatus (Tilak and Husain, 1977 a) is discussed in the light of the details Department of Zoology, D.B.S. studied for the present material identified as L. annandalei. The latter is established as a valid species and (PG), College, Dehradun, found synonymous to the former. While discussing the distributional aspects, L. annandalei appeared of Uttarakhand, India zoogeographical significance and a new addition to the fish fauna of Suswa River in Eastern Doon. Keywords: Lepidocephalichthys sp., systematics, -
FAMILY Balitoridae Swainson, 1839
FAMILY Balitoridae Swainson, 1839 - hillstream and river loaches [=Balitorinae, Homalopterini, Sinohomalopterini, Homalopteroidini] GENUS Balitora Gray, 1830 - stone loaches [=Sinohomaloptera] Species Balitora annamitica Kottelat, 1988 - annamitica stone loach Species Balitora brucei Gray, 1830 - Gray's stone loach [=anisura, maculata] Species Balitora burmanica Hora, 1932 - Burmese stone loach [=melanosoma] Species Balitora chipkali Kumar et al., 2016 - Kali stone loach Species Balitora eddsi Conway & Mayden, 2010 - Gerwa River stone loach Species Balitora elongata Chen & Li, in Li & Chen, 1985 - elongate stone loach Species Balitora haithanhi Nguyen, 2005 - Gam River stone loach Species Balitora jalpalli Raghavan et al., 2013 - Silent Valley stone loach Species Balitora kwangsiensis (Fang, 1930) - Kwangsi stone loach [=heteroura, hoffmanni, nigrocorpa, songamensis] Species Balitora lancangjiangensis (Zheng, 1980) - Lancangjiang stone loach Species Balitora laticauda Bhoite et al., 2012 - Krishna stone loach Species Balitora longibarbata (Chen, in Zheng et al., 1982) - Yiliang Xian stone loach Species Balitora ludongensis Liu & Chen, in Liu et al., 2012 - Qilong River stone loach Species Balitora meridionalis Kottelat, 1988 - Chan River stone loach Species Balitora mysorensis Hora, 1941 - slender stone loach Species Balitora nantingensis Chen et al., 2005 - Nanting River stone loach Species Balitora nujiangensis Zhang & Zheng, in Zheng & Zhang, 1983 - Nu-Jiang stone loach Species Balitora tchangi Zheng, in Zheng et al., 1982 - Tchang -
Intra- Specific Morphometric and Genetic Comparisons in Hillstream Loach, Nemacheilus Montana (Mcclelland 1838) from Western Himalaya, India
ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Issue 8, August 2016 Intra- Specific Morphometric and Genetic Comparisons in Hillstream Loach, Nemacheilus montana (McClelland 1838) from Western Himalaya, India Ajay Pandey1, Rajendra Prasad Thapliyal2, Wazir Singh Lakra3 Ph.D Student, Department of Zoology & Biotechnology, HNB Garhwal University, Srinagar Garhwal, 246174 Uttarakhand, India1 Biochemist, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India2 Director, National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India3 ABSTRACT: Intra- specific variation between the Nemacheilus montana, a hill stream fish species was investigated with morphometric and mitochondrial cytochrome b sequence data. An analysis was conducted to compare specimens from two lesser Himalayan hill stream tributaries of River Ganga: Khanda and Saung in the Western Himalayan region of India. The results of principal component analysis on sixteen morphometric variables and fourteen derived variables per individual were found to be considerably different for the two stream samples. The meristic characters also varied significantly. The cyto-b sequence analysis showed no congruence with the morphometeric data suggesting phenotypic plasticity in the two populations. KEYWORDS: Morphology, meristic, loaches, inter-population, cytochrome b I. INTRODUCTION Nemacheilus montana McClelland (1838) earlier described as Nemacheilus montanus belongs to family Balitoridae. The fishes of this family have a preference for water with strong current, and many species only occur in torrential mountain streams, therefore they are known as hill stream loaches. A few species of this group of fishes are also occasionally trade as aquarium fish [1]. -
Redalyc.Parasitic Fauna of Eight Species of Ornamental Freshwater
Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Tavares-Dias, Marcos; Gonzaga Lemos, Jefferson Raphael; Laterça Martins, Maurício Parasitic fauna of eight species of ornamental freshwater fish species from the middle Negro River in the Brazilian Amazon Region Revista Brasileira de Parasitologia Veterinária, vol. 19, núm. 2, abril-junio, 2010, pp. 103- 107 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841476007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi:10.4322/rbpv.01902007 Full Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 19, n. 2, p. 103-107, abr.-jun. 2010 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Parasitic fauna of eight species of ornamental freshwater fish species from the middle Negro River in the Brazilian Amazon Region Fauna parasitária de oito espécies de peixes ornamentais de água doce do médio Rio Negro na Amazônia brasileira Marcos Tavares-Dias1*; Jefferson Raphael Gonzaga Lemos2; Maurício Laterça Martins3 1Laboratório de Aquicultura e Pesca, Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA-Amapá 2Programa de Pós-graduação em Diversidade Biológica, Instituto de Ciências Biológicas, Universidade -
Recycled Fish Sculpture (.PDF)
Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun. -
Predator-Driven Macroevolution in Flyingfishes Inferred from Behavioural Studies 59
Predator-driven macroevolution in flyingfishes inferred from behavioural studies 59 Predator-driven macroevolution in flyingfishes inferred from behavioural studies: historical controversies and a hypothesis U. Kutschera Abstract Flyingfishes (Exocoetidae) are unique oceanic animals that use their tail and their large, wing-like pectoral fins to launch themselves out of the water and glide through the air. Independent observations document that flyingfishes use their gliding ability to escape from aquatic predators such as dolphins (marine mammals). The fossil record of flyingfishes is very poor. Nevertheless, the evolution of gliding among flyingfishes and their allies (Beloniformes) was analysed and reconstructed by the ethologist Konrad Lorenz (1903 – 1989) and other zoologists. In this article I review the comparative method in evolutionary biology, describe historical controversies concerning the biology and systematics of flyingfishes and present a hypothesis on the phylogenetic development of gliding among these marine vertebrates. This integrative model is based on behavioural studies and has been corroborated by molecular data (evolutionary trees derived from DNA sequences). Introduction Since the publication of Darwin´s classical book (1872, 1st ed. 1859), evolutionary biology has relied primarily upon comparative studies of extant organisms (animals, plants), supplemented whenever possible by information obtained from the fossil record. This interaction between neontological and palaeontological research has greatly enriched our knowledge of the evolutionary history (phylogeny) of a variety of macro- organisms, notably hard-shelled marine invertebrates (molluscs etc.) and vertebrates, for which thousands of well-preserved fossils have been described. Such comparative studies have become considerably more significant with the development of molecular methods for reconstructing DNA-sequence-based phylogenies and with the increased rigour with which the comparative method has been applied.