Nationwide Desert Highway Assessment: a Case Study in China

Total Page:16

File Type:pdf, Size:1020Kb

Nationwide Desert Highway Assessment: a Case Study in China Int. J. Environ. Res. Public Health 2011, 8, 2734-2746; doi:10.3390/ijerph8072734 OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Article Nationwide Desert Highway Assessment: A Case Study in China Xuesong Mao *, Fuchun Wang and Binggang Wang Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China; E-Mails: [email protected] (F.W.); [email protected] (B.W.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-29-82334869; Fax: +86-29-82334869. Received: 20 May 2011; in revised form: 13 June 2011 / Accepted: 26 June 2011 / Published: 30 June 2011 Abstract: The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert’s comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection. Int. J. Environ. Res. Public Health 2011, 8 2735 Keywords: highway engineering; desert assessment; index system; environmental protection 1. Introduction There are about 7,900 kilometers of desert highways in China, mainly distributed in the Xinjiang Ugur Autonomous Region, Ningxia Hui Autonomous Region, Neimengu Autonomous Region and Gansu Province and some other areas. The differences between desert highways and general highways are due to the effects of the arid climate, the wind sand and the temperature on highway construction engineering. Another difference is the shortage of suitable filling materials such as soils and stones for highway construction in desert regions, which makes it more difficult to construct a desert highway. A highway exists in the natural environment as a structure. The elements of the natural environment affect the highway construction engineering. At another hand, the construction affects the natural environment and puts the ecological environment at a disadvantage. Especially in desert regions the highways can always be blocked by the encroachment of sand dunes [Figure 1(a)], and the highway traffic can cause severe wind erosion of grassland soils [Figure 1(b)]. To satisfy the variety and hierarchy of the highway construction and discover the spatio-temporal distribution of the desert natural environment and its effects on highway construction, a desert highway assessment should be carried out, which will effectively pave the way for route planning, design, construction, maintenance and subsequent management of desert highways, and help formulate standards. Figure 1. Interactive effects between highway engineering and the natural environment. (a) highway blocked by dune encroachment (b) Severe wind erosion of grassland soil due to traffic Desert highway assessment studies have been going on for many years. The earliest desert assessment can be dated back to Lamprey’s research in central western Sudan, when he introduced the desert encroachment theory [1], which laid the groundwork for providing a process for measuring the desertification problem. A provisional methodology for assessment and mapping of desertification was formulated [2,3] and is now used for local and regional assessment and mapping [4,5]. Most of the studies assess the desert based on the desert topography, vegetation coverage and wind erosion. The desert is divided into two kinds (fixed and mobile) or three kinds (fixed, part fixed or mobile), according to the extent of the activity of the sand dunes. China began a nationwide desertification assessment in the mid-1980s. Historically, China had focused on sandy desertification, which is caused by wind erosion [6]. This classification method was based on geo-morphological changes caused by Int. J. Environ. Res. Public Health 2011, 8 2736 blowing sand (such as sand dunes and sand mound formations, sand cover, and surface coarseness), the percentage of change in relation to the total area, and the annual rate of increase of desertified land. These classifications had been broadly used in sandy desertification assessment [7]. Based on hundreds of expert questionnaires, sandy desertification intensities were classified as slight, medium, severe, or extremely severe [8]. The main assessment indicators were bare sand ratio, vegetation coverage ratio, and soil texture, and the importance of each indicator was calculated by the Delphi weighted method. However a desert highway assessment that comprehensively describes the natural highway distribution or single local highway distribution has not been reported until now at home or abroad. With the increase in highway construction, especially as a result of the Western Development Plan of China, highway construction in the desert regions had accelerated considerably and the highway mileage has increased yearly. Li Bin had put forward the idea of desert highway assessment in China. He designed the indicators as the moisture coefficient and aimed to determine the differences of the highway subgrade protective level in desert regions [9]. However, he only put forward the theory and the natural region division map for desert highway assessment was not drawn out. His studies were rough and could not be applied to actual highway construction. This paper borrows the idea of desert assessment method. Based on the general principle and method for the regional division, the principles, method and index system for the desert highway assessment are put forward by combining the desert highway construction and the azonal differentiation law. The method of combining both one dominant indicator and four auxiliary indicators is applied to divide the desert highway region distribution in China for the first time. 2.Principle and Method for Desert Highway Assessment 2.1. Principles of Desert Highway Assessment (1) Service principle: Desert highway assessment will serve the highway engineer in China. The objective of the assessment is clear, namely to provide the basic science data for balancing the highway construction and the protection of the natural environmental, to further promote the sustainable development of desert regions [10]. (2) Practicability principle: The desert highway assessment process can comprehensively reflect the natural characteristics. It studies the effect of natural environment factors on the highway construction from the viewpoint of a real highway engineer. At the same time it synthesizes the differences between desert highways and general highways with respect to the route design, subgrade, pavement, and protection works. (3) Dialectical principle: All the factors, such as the sand physiognomy, sand strength, temperature annual difference, and the vegetation will affect the desert highway construction. They are related and correlative. The desert highway assessment divides the nationwide desert highway regions in China according to their similarity and the differences between natural factors. The regional divisions should not conflict with each other. (4) Absolute consistency: Every natural unit forms along history little by little. The desert highway assessment should discuss the reason and process of the desert region and pave the way for regional division. Only under the absolute consistency principle, can the correlative consistency of the divided or united desert unit be guaranteed during the highway region division. Int. J. Environ. Res. Public Health 2011, 8 2737 (5) Relative consistency: The relative consistency requires that the internal consistency should be maintained for the desert highway division. Different region unit levels are different in their consistency. (6) Combination of comprehensive and dominant factors: Any desert region is combined with several natural geological factors. The desert highway assessment should pay attention to analyze their modes of interaction, to process these factors and to recognize the real discipline of the regional differences. At the same time, the dominant factor should be distinguished among all other factors. This principle is balanced between the comprehensive and dominant factor. (7) Similar characteristics
Recommended publications
  • Sun Eclipse Tour and Silk Road Highlights
    Sun Eclipse Tour and Silk Road Highlights - Total Solar Eclipse of August 1st 2008 - Observe the sun eclipse in one of the world's three best viewing locations: Balikun - Travel along the Tianshan (Heavenly) Mountain Route of the Silk Road - Visit the major towns of Hami, Turpan and Urumqi - Stay overnight in a Kazak yurt and camp in the Kumutage (Kumtag) Desert - Explore ancient and non-touristy Uygur villages - Visit the Urumqi History Museum with mummies on display - Taste the local specialties of Xinjiang Province - Have a great adventure in this fascinating region with its deserts alpine lakes, snow mountains and glaciers China Sun Eclipse Tour 2008 TOTAL SOLAR ECLIPSE TOUR & SILK ROAD HIGHLIGHTS A total eclipse of the sun will be visible from within a narrow corridor that traverses half the earth on Friday, 1st August 2008, beginning in Canada and extending across northern Greenland, the Arctic, central Russia, Mongolia, and China. Do not miss out on this unforgettable travel experience! The viewing location will be far from the hustle and bustle of the big cities at one of the world's three best locations this year. This tour will lead you through Xinjiang Province - the ªWild Westº of China - and along the Northern Silk Road Route. Travel date: 29th July 2008 - 6th August 2008 . Destinations: Urumqi, Tianchi Lake, Balikun, Hami, Shanshan, Turpan . Duration: 9 days . Starting in: Beijing . Ending in: Beijing . Group size: min. 2 pax, max. 10 pax QUICK INTRODUCTION XINJIANG PROVINCE Lying in northwestern China, the Xinjiang Uygur Autonomous Region, also called Xin for short, was referred to as the Western Region in ancient times.
    [Show full text]
  • Wind Can Keep Mountains from Growing 28 March 2011
    Wind can keep mountains from growing 28 March 2011 basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau," is in the April/May issue of GSA Today. Kapp's co-authors are Jon D. Pelletier and Joellen Russell of the UA; Alexander Rohrmann, formerly of the UA and now at the University of Potsdam in Germany; Richard Heermance of California State University, Northridge; and Lin Ding of the Chinese Academy of Sciences, Beijing. The American Chemical Society Petroleum Research Fund and a UA Faculty Small Grant funded the research. The geoscientists figured out wind's rock-sculpting Researchers sit atop a wind-formed ridge called a abilities by studying gigantic wind-formed ridges of yardang located in the Qaidam Basin of Central Asia. The yardangs in that area can be as much as 40 meters rock called yardangs. (about 130 feet) tall and about a football field (100 meters) apart. Credit: Paul Kapp, University of Arizona. Kapp first learned about yardangs when reviewing a scientific paper about Central Asia's Qaidam Basin. To see the geology for himself, he booted up Google Earth -- and was wowed by what he saw. Wind is a much more powerful force in the evolution of mountains than previously thought, "I'd never seen anything like that before," he said. "I according to a new report from a University of didn't even know what a yardang was." Arizona-led research team. Huge fields of yardangs that can be seen from Bedrock in Central Asia that would have formed space look like corduroy.
    [Show full text]
  • High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section
    Earth and Planetary Science Letters 258 (2007) 293–306 www.elsevier.com/locate/epsl High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau ⁎ Xiaomin Fang a,b, , Weilin Zhang a, Qingquan Meng b, Junping Gao b, Xiaoming Wang c, John King d, Chunhui Song b, Shuang Dai b, Yunfa Miao b a Center for Basin Resource and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P. O. Box 2871, Beilin North Str. 18, Beijing 100085, China b Key Laboratory of Western China's Environmental Systems, Ministry of Education of China & College of Resources and Environment, Lanzhou University, Gansu 730000, China c Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA d Graduate School of Oceanography, University of Rhode Island, URI Bay Campus Box 52, South Ferry Road, Narragansett, RI 02882-1197, USA Received 31 December 2006; received in revised form 23 March 2007; accepted 23 March 2007 Available online 31 March 2007 Editor: R.D. van der Hilst Abstract The closed inland Qaidam Basin in the NE Tibetan Plateau contains possibly the world's thickest (∼12,000 m) continuous sequence of Cenozoic fluviolacustrine sedimentary rocks. This sequence contains considerable information on the history of Tibetan uplift and associated climatic change. However, work within Qaidam Basin has been held back by a paucity of precise time constraints on this sequence. Here we report on a detailed paleomagnetic study of the well exposed 4570 m Huaitoutala section along the Keluke anticline in the northeastern Qaidam Basin, where three distinct faunas were recovered and identified from the middle Miocene through Pliocene.
    [Show full text]
  • CCSC09新絲綢經典之旅9日遊 2020 the Silk Road 9 Days No Shopping Tour 純玩系列
    CCSC09新絲綢經典之旅9日遊 2020 The Silk Road 9 days no shopping tour 純玩系列 西安入烏魯木齊出Arrive Xian&Urumqi Departure 免費接機時間pick up service:12:00/15:00/18:00//免費送機時間drop off service: 08:00/16:00 12 自費專案 月份 (大小同價) Optional tour(compulsory 2 Date W/O BED & breakfas children will be the same) 4、6、10月 $749 $649 $749 $230 $100/間/晚 $380 $100 $30/人 7-9月 $899 $799 $899 $370 $140/間/晚 $380 $100 $30/人 自費專案(需保證參加):USD 380/人,嘉峪關城樓含區間車+長城第一墩+天山天池含區間車+蘇公塔+火焰山+維吾爾古村含區間車+西域歌舞秀晚宴。Optional tour(compulsory, children will be the same): USD380/PAX,the Gate Tower at Jiayu Pass(including the battery cart)+ the first Frusta of the Great Wall+ the Tianchi Lake on the Mountain Tianshan(including shuttle)+ the Flaming Mountains + the Uighur family visit.團費不含西安-嘉峪關機票(請訂12點前抵達嘉峪關的航班):USD150/人。The airfare from Xian to Jiayuguan: USD150/PAX.行程特色:★古都西安名勝盡覽:大雁塔、明代古城牆、秦始皇兵馬俑、華清池★河西走廊精華景點:嘉峪關、莫高窟、鳴沙山月芽泉★感受西域民俗風情, 吐魯番火焰山、交河故城、坎兒井★安一程內陸航班一程高速動車,節省十多小時車程★國家5A級景區“天山天池”---西王母瑤池聖地★品嘗各地特色美食陝西小吃、汽鍋雞、雪山駝掌、 新疆羊肉串、大盤雞。Itinerary Specialty: ★Xian ancient City Wall, the Terra Cotta Warriors and Horses Museum,Jiayuguan, Mingsha Mountain, Crescent Moon Lake, Mogao Grottoes, Tianshantianchi, Special local style meal, Desert Style Meal, The chicken of boiler. 無任何推薦自費!No other optional tours! 2020抵達西安日期(逢週一) Arrive Xian Date(On Monday): 04月:27 05月:11、25 06月:8、22 07月:13 08月:10 09月:7、14、21 10月: 12、26 11 不開班月: 12 不開班月: D1 抵達西安 Arrive Xian D5 敦煌/柳園/吐魯番 DunHuang/Liuyuan/Turpan(B/L/D) 恭候貴賓到來,接機送回酒店休息。(免費接機時間1200/1500/1800三趟)Pick up and transfer to the 已含柳園-吐魯番動車二等座,including the 2nd class bullet train tickets from Liuyuan to Urumqi.
    [Show full text]
  • Development of Bacterial Communities in Biological Soil Crusts Along
    1 Development of bacterial communities in biological soil crusts along 2 a revegetation chronosequence in the Tengger Desert, northwest 3 China 4 5 Author names and affiliations: 6 Lichao Liu1, Yubing Liu1, 2 *, Peng Zhang1, Guang Song1, Rong Hui1, Zengru Wang1, Jin Wang1, 2 7 1Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese 8 Academy of Sciences, Lanzhou, 730000, China 9 2Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute 10 of Eco–Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 11 12 * Corresponding author: Yubing Liu 13 Address: Donggang West Road 320, Lanzhou 730000, P. R. China. 14 Tel: +86 0931 4967202. 15 E-mail address: [email protected] 16 17 Abstract. Knowledge of structure and function of microbial communities in different 18 successional stages of biological soil crusts (BSCs) is still scarce for desert areas. In this study, 19 Illumina MiSeq sequencing was used to assess the composition changes of bacterial communities 20 in different ages of BSCs in the revegetation of Shapotou in the Tengger Desert. The most dominant 21 phyla of bacterial communities shifted with the changed types of BSCs in the successional stages, 22 from Firmicutes in mobile sand and physical crusts to Actinobacteria and Proteobacteria in BSCs, 23 and the most dominant genera shifted from Bacillus, Enterococcus and Lactococcus to 24 RB41_norank and JG34-KF-361_norank. Alpha diversity and quantitative real-time PCR analysis 25 indicated that bacteria richness and abundance reached their highest levels after 15 years of BSC 26 development.
    [Show full text]
  • DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Notes
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Notes on Sedimentary Basins in China Report of the American Sedimentary Basins Delegation to the People's Republic of China A. W. Bally 1 , I-Ming Chou2, R. Clayton3, H. P. Eugster4, S. Kidwell5, L. D. Meckel6, R. T. Ryder7, A. B. Watts8, A. A. Wilson9 1. Rice University, Houston 2. U. S. Geological Survey, Reston 3. California Institute of Technology, Pasadena 4. Johns Hopkins University, Baltimore 5. University of Chicago 6. L. D. Meckel Company, Houston 7. U. S. Geological Survey, Reston 8. Lament Doherty Geological Observatory, Columbia University, New York 9. National Academy of Sciences, Washington Open-File Report 86-327 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editiorial standards. 1986 NOTICE The views expressed in this report are those of the members of the Sedimentary Basins Delegation and are in no way the official views of the Committee on Scholarly Communication with the People's Republic of China or its sponsoring organizations the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council. The visit consisting of a bilateral workshop and field trip was part of the exchange program between the two countries and was supported by the National Academy of Sciences in the United States and the China Association for Science and Technology in China, with the Chinese Petroleum Society bearing special responsibilities as host. U.S. funding was provided by the National Science Foundation. The Committee on Scholarly Communication with the People's Republic of China was founded in 1966 by the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council.
    [Show full text]
  • SCIENCE CHINA Underestimated 14C-Based Chronology of Late Pleistocene High Lake-Level Events Over the Tibetan Plateau and Adjace
    SCIENCE CHINA Earth Sciences • RESEARCH PAPER • doi: 10.1007/s11430-014-4993-2 Underestimated 14C-based chronology of late Pleistocene high lake-level events over the Tibetan Plateau and adjacent areas: Evidence from the Qaidam Basin and Tengger Desert LONG Hao1,2* & SHEN Ji1† 1 State Key Laboratory of Lake Sciences and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China Received April 23, 2014; accepted September 25, 2014 The palaeolake evolution across the Tibetan Plateau and adjacent areas has been extensively studied, but the timing of late Pleistocene lake highstands remains controversial. Robust dating of lacustrine deposits is of importance in resolving this issue. This paper presents 14C or optically stimulated luminescence (OSL) age estimates from two sets of late Quaternary lacustrine sequences in the Qaidam Basin and Tengger Desert (northeastern Tibetan Plateau). The updated dating results show: (1) the radiocarbon dating technique apparently underestimated the age of the strata of >30 ka BP in Qaidam Basin; (2) although OSL and 14C dating agreed with each other for Holocene age samples in the Tengger Desert area, there was a significant offset in dating results of sediments older than ~30 ka BP, largely resulting from radiocarbon dating underestimation; (3) both cases imply that most of the published radiocarbon ages (e.g., older than ~30 ka BP) should be treated with caution and perhaps its geological implication should be revaluated; and (4) the high lake events on the Tibetan Plateau and adjacent areas, tradition- ally assigned to MIS 3a based on 14C dating, are likely older than ~80 ka based on OSL chronology.
    [Show full text]
  • Characteristic Analysis of Sandstorms in Taklamakan Desert
    ITM Web of Conferences 12, 04022 (2017) DOI: 10.1051/ itmconf/20171204022 ITA 2017 Characteristic Analysis of Sandstorms in Taklamakan Desert Teng-Ling LUO1,2,a, Wei-Ming ZHANG1,b, Qun-Bo HUANG1,2,c, Yi YU1,2, De XING1,2,d, and Xiang XING1,2,d 1Academy of Ocean Science and Engineering, National University of Defense Technology, Changsha, China 2College of Computer, National University of Defense Technology, Changsha, China [email protected] Abstract: Firstly, the annual variation of sandstorm and strong sandstorm weather process in China from 2000 to 2012 is analyzed according to the"Sand-Dust Weather Yearbook" (2012). Secondly, based on the ERA-Interim Reanalysis from ECMWF and MISR data from the Terra satellite, we investigate the correlation between different dust weather process and land meteorological elements. Finally, the temporal and spatial distribution features of the aerosol optical depth (AOD) in the Taklamakan Desert is studied. And we compare the Taklamakan Desert AOD with nationwide AOD. The results show that: (1) the frequency of sandstorm and strong sandstorm has shown a downward trend and the occurrence of sandstorm decreases more in recent years. (2) In the Taklamakan Desert, the number of sandstorm is positively correlated with the surface temperature, meanwhile, negatively related to the surface relative humidity. (3) In all seasons, the average of AOD in Taklamakan Desert is higher than that of the whole country, and there are obvious differences among the four seasons. 1 Introduction climate model to predict the abnormal climate and sandstorm 8. Sandstorm is a weather phenomenon that strong wind Since the occurrence of sandstorm is directly affected blows dust on the ground, making the air turbid and by the surface meteorological elements, it is essential to causing the level of visibility less than 1km 1.
    [Show full text]
  • Yardangs in the Qaidam Basin, Northwestern China: Distribution
    Aeolian Research 20 (2016) 89–99 Contents lists available at ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Yardangs in the Qaidam Basin, northwestern China: Distribution and morphology ⇑ Jiyan Li a, , Zhibao Dong b, Guangqiang Qian b, Zhengcai Zhang b, Wanyin Luo b, Junfeng Lu b, Meng Wang b a Taiyuan Normal University, Jinzhong, Shanxi 030619, China b Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, No. 320, West Donggang Road, Lanzhou, Gansu 730000, China article info abstract Article history: The northwestern Qaidam Basin exposes one of the largest and highest elevation yardang fields on Earth. Received 17 April 2015 The aim of the present study was to describe the distribution and morphology of these yardangs, and ana- Revised 31 October 2015 lyze the factors responsible for the distribution pattern of these aeolian landforms. The yardang fields are Accepted 2 November 2015 bounded by piedmont alluvial–diluvial fans from the mountain ranges surrounding the basin, except in Available online 6 January 2016 the south, where they are bounded by dune fields, dry salt flats, lakes, and rivers. This distribution pattern can be attributed to regional tectogenesis and its corresponding environmental impacts. The morphology Keywords: of the yardangs varies considerably in response to the diverse factors that control their formation and Yardangs evolution. Long-ridge yardangs are mainly located in the northernmost part of the yardang field, and Aeolian erosion landforms Dune fields the long ridges are gradually dissected into smaller ridges in the downwind direction. Further downwind, Aeolian geomorphology the convergence of northerly and northwesterly winds and the effects of temporary runoff cause the Qaidam Basin ridges to gradually transition into mesa yardangs.
    [Show full text]
  • 01. Antarctica (√) 02. Arabia
    01. Antarctica (√) 02. Arabia: https://en.wikipedia.org/wiki/Arabian_Desert A corridor of sandy terrain known as the Ad-Dahna desert connects the largeAn-Nafud desert (65,000 km2) in the north of Saudi Arabia to the Rub' Al-Khali in the south-east. • The Tuwaiq escarpment is a region of 800 km arc of limestone cliffs, plateaux, and canyons.[citation needed] • Brackish salt flats: the quicksands of Umm al Samim. √ • The Wahiba Sands of Oman: an isolated sand sea bordering the east coast [4] [5] • The Rub' Al-Khali[6] desert is a sedimentary basin elongated on a south-west to north-east axis across the Arabian Shelf. At an altitude of 1,000 m, the rock landscapes yield the place to the Rub' al-Khali, vast wide of sand of the Arabian desert, whose extreme southern point crosses the centre of Yemen. The sand overlies gravel or Gypsum Plains and the dunes reach maximum heights of up to 250 m. The sands are predominantly silicates, composed of 80 to 90% of quartz and the remainder feldspar, whose iron oxide-coated grains color the sands in orange, purple, and red. 03. Australia: https://en.wikipedia.org/wiki/Deserts_of_Australia Great Victoria Western Australia, South Australia 348,750 km2 134,650 sq mi 1 4.5% Desert Great Sandy Desert Western Australia 267,250 km2 103,190 sq mi 2 3.5% Tanami Desert Western Australia, Northern Territory 184,500 km2 71,200 sq mi 3 2.4% Northern Territory, Queensland, South Simpson Desert 176,500 km2 68,100 sq mi 4 2.3% Australia Gibson Desert Western Australia 156,000 km2 60,000 sq mi 5 2.0% Little Sandy Desert Western Australia 111,500 km2 43,100 sq mi 6 1.5% South Australia, Queensland, New South Strzelecki Desert 80,250 km2 30,980 sq mi 7 1.0% Wales South Australia, Queensland, New South Sturt Stony Desert 29,750 km2 11,490 sq mi 8 0.3% Wales Tirari Desert South Australia 15,250 km2 5,890 sq mi 9 0.2% Pedirka Desert South Australia 1,250 km2 480 sq mi 10 0.016% 04.
    [Show full text]
  • Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform
    water Article Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform Jiahao Chen 1,2 , Tingting Kang 1,2, Shuai Yang 1,2, Jingyi Bu 1,2 , Kexin Cao 1,2 and Yanchun Gao 1,* 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (J.C.); [email protected] (T.K.); [email protected] (S.Y.); [email protected] (J.B.); [email protected] (K.C.) 2 College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-010-6488-8991 Received: 6 July 2020; Accepted: 6 October 2020; Published: 11 October 2020 Abstract: The Tarim River Basin (TRB), located in an arid region, is facing the challenge of increasing water pressure and uncertain impacts of climate change. Many water body identification methods have achieved good results in different application scenarios, but only a few for arid areas. An arid region water detection rule (ARWDR) was proposed by combining vegetation index and water index. Taking computing advantages of the Google Earth Engine (GEE) cloud platform, 56,284 Landsat 5/7/8 optical images in the TRB were used to detect open-surface water bodies and generated a 30-m annual water frequency map from 1992 to 2019. The interannual changes and trends of the water body area were analyzed and the impacts of climatic and anthropogenic drivers on open-surface water body area dynamics were examined.
    [Show full text]
  • From the Western Qaidam Basin, China: Implications for Glacial-Period Dust Export from Central Asia
    230Th/234U and 36C1 dating of evaporite deposits from the western Qaidam Basin, China: Implications for glacial-period dust export from Central Asia FRED M. PHILLIPS J- Geoscience Department, New Mexico Tech, Socorro, New Mexico 87801 MAREK G. ZREDA TEH LUNG KU SHANGDE LUO j-^ DepartmentDepartment ofof GeologicalGeological Sciences,Sciences, UniversityUniversity ofof SouthernSouthern California,California, LosLos Angeles,Angeles, CaliforniaCalifornia !90089 QI HUANG Salt Lakesces Institute, Académica Sínica, Xining, Qinghai, People's Republic of China DAVID ELMORE* PETER W. KUBIK* J> Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York 14627 PANKAJ SHARMA* 1 ABSTRACT this change of regime was enhanced transport and Nees, 1986). Arid climates reduce vege- of dust. The association of thick loess depos- tational cover, thereby allowing increased The western Qaidam Basin contains numer- its in the mid-latitudes with maxima in global wind erosion and dust input to the atmo- ous hydrologically closed lakes and playas. We ice volume has been recognized for many sphere. Therefore, as long as an adequate have measured uranium, thorium, and chlo- years (von Richthofen, 1882). The scale of supply of dust size particles remains in the rine radioisotopes in sediments from drill cores the dust transport that accompanied the gla- source region, increasingly arid climates will at two of these, Gasikule Lake and Dalangtan cial maxima, however, has only recently result in increased dust flux to the oceans." dry playa, in order to date cycles of high and been documented. Polar ice, from both the Although this mechanism for enhanced low lake level. The sediment chronologies from Greenland (Hammer and others, 1985) and dust mobilization is plausible, two consider- the two sub-basins are generally concordant, the Antarctic (De Angelis and others, 1987; ations warrant further consideration.
    [Show full text]