molecules Review Bioactive Nutrients and Nutrigenomics in Age-Related Diseases Tania Rescigno 1, Luigina Micolucci 2,3, Mario F. Tecce 1 and Anna Capasso 1,* 1 Department of Pharmacy, University of Salerno, Fisciano 84084, Italy;
[email protected] (T.R.);
[email protected] (M.F.T.) 2 Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60120, Italy;
[email protected] 3 Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60120, Italy * Correspondence:
[email protected]; Tel.: +39-089-989744 Academic Editor: Philippe Bulet Received: 18 November 2016; Accepted: 3 January 2017; Published: 8 January 2017 Abstract: The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition.