Mechanical Problem Codes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commercial Kitchen Ventilation Testing Requirements
COMMERCIAL KITCHEN VENTILATION TESTING REQUIREMENTS CALL FIRE MARSHAL/FIRE SUB CODE OFFICIAL AT 908-454-6121 EXT 360 TO SCHEDULE ACCEPTANCE TESTING IMC 506.3.2.5 GREASE DUCT TEST Prior to the use or concealment of any portion of grease duct system, a leakage test shall be performed in the presence of the Fire Inspector. Ducts shall be considered to be concealed where installed in shafts or covered by coatings or wraps that prevent the ductwork from being visually inspected on ALL sides. The permit holder shall be responsible to provide the necessary equipment and perform the grease duct leakage test. A light test or approved equivalent test method shall be performed to determine that all welded and brazed joints are liquid tight. A light test shall be performed by passing a lamp having a power rating of not less than 100 watts (or 1500 lumens for energy efficient bulb types) through the entire section of duct work to be tested. The lamp shall be open so as to emit light equally in all directions perpendicular to the duct walls. At test shall be performed for the entire duct system, including the hood-to-duct connection. The ductwork shall be permitted to be testing in sections, provided that every joint is tested. IMC 507.16 PERFORMANCE TEST A performance test shall be conducted upon completion and before final approval of installation of a ventilation system serving commercial cooking appliances. The test shall verify the rate of exhaust airflow required by Section 507.13, makeup airflow required by Section 508, and proper operation as specified in this chapter the permit holder shall furnish the necessary test equipment and devices required to perform the tests. -
Model Ipic Series 4G Grease Duct
INSTALLATION AND WALMART MAINTENANCE APPLICATION INSTRUCTIONS 637N MODEL IPIC 7N71 SERIES 4G GREASE DUCT IT IS OF THE UTMOST IMPORTANCE THAT THIS DUCT BE INSTALLED ONLY IN ACCORDANCE WITH THESE INSTRUCTIONS. IMPORTANT: DO NOT INSTALL GREASE DUCT WITHOUT FIRST READING THESE INSTRUCTIONS VERY CAREFULLY. COMBUSTIBLE MATERIAL: Material made of or surfaced with wood, compressed paper, plant fibers, plastic or other material that will ignite and burn, whether flame proofed or not, or whether plastered or unplastered. Metal-Fab’s series 4G Grease Duct System has been fully tested, listed and classified by Underwriters Laboratories, Inc. and Underwriters Laboratories of Canada. Metal-Fab’s Series 4G Grease Duct Systems have been evaluated and accepted by BOCA, SBCCI, and ICBO as an alternative to a two hour fire rated shaft enclosure when installed in accordance with these installation instructions. Grease Duct installed in accordance with these Installation Instructions meet the requirements of NFPA96. These instructions contain complete information on details concerning dimensions, installation, clearance to combustibles, use of noncombustible enclosures, and Firestops. For any additional information, refer to the parts catalog. METAL-FAB INC., • P.O. BOX 1138, WICHITA, KANSAS 67201 • (316) 943-2351 GENERAL INFORMATION LISTINGS: Metal-Fab IPIC Series 4G Grease Duct Systems (6” thru 36” diameter) are classified by Underwriters Laboratories, Inc. (UL File No. R15388) in accordance with SBCCI acceptance criteria for Grease Duct Enclosure Systems (January 1, 1998). The IPIC Series 4G Grease Ducts for use in Grease Duct Assembly No. G-1 is Classified as an alternate to 3 hr. fire resistive rated shaft enclosure system with a minimum zero clearance to combustibles. -
How to Perform Mold Inspections
~ 1 ~ HOW TO PERFORM MOLD INSPECTIONS Mold inspection is a specialized type of inspection that goes beyond the scope of a general home inspection. The purpose of this publication is to provide accurate and useful information for performing mold inspections of residential buildings. This book covers the science, properties and causes of mold, as well as the potential hazards it presents to structures and to occupants’ health. Inspectors will learn how to inspect and test for mold both before and after remediation. This text is designed to augment the student’s knowledge in preparation for InterNACHI’s online Mold Inspection Course and Exam (www.nachi.org). This manual also provides a practical reference guide for use on-site at inspections. Authors: Benjamin Gromicko, Director of InterNACHI Online Education, and Executive Producer, NACHI.TV Nick Gromicko, Founder, International Association of Certified Home Inspectors, and Founder, International Association of Certified Indoor Air Consultants Edited by: Kate Tarasenko / Crimea River To order online, visit: www.nachi.org www.IAC2.org www.InspectorOutlet.com Copyright © 2009-2010 International Association of Certified Indoor Air Consultants, Inc. (IAC2) www.IAC2.org All rights reserved. ~ 2 ~ Mold Inspection: Table of Contents Overview…....................................................................................... 3 Section 1: Types of Mold Inspections.............................................. 5 Section 2: IAC2 Mold Inspection Standards…………………………… 9 Section 3: What is Mold? ………………………………………………… -
Significant Changes to the March 2017 International Mechanical Code
Significant Changes to the March 2017 International Mechanical Code State of Connecticut Department of Administrative Services Division of Construction Services Office of Education and Data Management Office of Education and Data Management Spring 2017 Career Development Series Significant Changes to the International Mechanical Code Presented by John Tye Office of the State Building Inspector, DAS “2012” International Mechanical Code Update The following presentation contains “significant” code changes which took place in the International Mechanical Code from 2003 through 2012. Office of Education 2 and Data Management Office of Education and Data Management 1 Significant Changes to the March 2017 International Mechanical Code IMC update 2012 Many code changes have taken place in the IMC since 2003. This seminar will only be able to identify a small number of these changes. Confusion still exists between proper code use such as the IRC versus the IMC for fuel gas installations. The IMC does not address gas or gas related equipment. Office of Education 3 and Data Management IMC update (continued) The IRC uses both its Chapter 24(based on the IFGC) and the 2012 NFPA 54 document for gas piping and equipment installations. The Ct. supplement to the IRC includes the NFPA 54 document. Section 101.4.1 (Add) As I stated in the previous slide the IMC references the International Fuel Gas Code (IFGC) (member of the ICC family of codes). The State of Connecticut did not adopt the IFCG and instead references the NFPA 54 document, currently the 2012 edition for gas piping and equipment installations. Office of Education 4 and Data Management Office of Education and Data Management 2 Significant Changes to the March 2017 International Mechanical Code IMC update (continued) Any reference to the IFGC in either the IMC or IRC shall be considered a reference to NFPA 54, NFPA 2, and NFPA 58. -
Duct Fire Protection Products
23 07 00/THE Duct Fire Protection Products BuyLine 8880 Thermal Ceramics, a global manufacturer of high temperature insulation prod- ucts, has provided engineered solutions for heat containment problems for over 75 years, and was the first to develop flexible fire resistive duct enclosures, mar- keted under the brandname of FireMaster®, for commercial kitchen grease and air ventilation ducts. Unlike imitation wraps in today’s market, Thermal Ceramics has the widest range of duct enclosure products that are performance-tested beyond minimum laboratory listings or code requirements. This assures fire con- tainment, from the typical to the most complex duct designs, without theorizing. Thermal Ceramics innovative duct products are high temperature (2000°F) fire rated solutions that do not age, become brittle, or shrink during in-service opera- tions, like lower temperature mineral wool wraps. The duct products in the FireMaster line are resistant to mold growth in test conditions of 75-95% relative humidity (ASTM D6329). With zero flame and smoke ratings on the blanket, and only a 5 flame spread and 10 smoke rating on the foil encapsulation, Thermal Ceramics duct products do not add toxic emissions to fire conditions. With a vast number of field installations worldwide and over 20 years of successful fire con- tainment in real-world fires, the duct products in the FireMaster line have proven their worth. Typical Applications • Commercial Kitchen Grease Ducts • Air Ventilation Ducts • Chemical Exhaust Ducts • Stair Pressurization Ducts • Hazardous Exhaust Ducts • Trash and linen chutes Duct Fire Protection Products 2000°F Rigid Flexible External 2 Hr Internal 2000°F Commercial Kitchen Shaft Alternative Installation ASTM E119 & Grease Duct Fire Grease Duct Method E814 Performance Containment Air Ventilation Duct Systems Installation Experience Complies with • Wynn Hotel, Las Vegas, NV - Grease duct • Baylor University Bio-Science College, Waco, Texas - Chemical exhaust duct • M.D. -
Code-Compliant Solution for Combustible Plenums
Expect More More time savings, lower installation costs More cost savings, more billable square footage More building space, More solutions for code more design flexibility compliant protection of both air and grease ducts FyreWrap®Duct Insulation delivers more to every member of your project team. FyreWrap® Elite™1.5 Duct Insulation is ideal ■ Complies with NFPA 96, ICC and for the insulation of duct systems in hotels, IAPMO Codes. schools, restaurants, high rise condos, ■ Made in USA. medical facilities, research labs, and sports A FyreWrap product specification in arenas and stadiums. This flexible, light- several formats is available at weight duct wrap www.arcat.com; search using keywords provides a single Unifrax, FyreWrap fire protection or www.unifrax.com. solution for both For more information air distribution and grease duct systems. on FyreWrap Elite 1.5 FyreWrap Elite 1.5 Duct Insulation offers: or other products, ■ Space-saving shaft alternative for air certifications, code distribution and grease duct systems. compliance, installa- ■ 2 hour fire-rated duct protection; zero tion instructions or drawings, contact clearance to combustibles. Unifrax Corporate headquarters USA ■ Solutions for building design and complex at 716-278-3800. job configurations. ■ Thin, lightweight flexible blanket for faster, easier installation. www.unifrax.com ■ Offers both fire and insulation performance. PLENUM FIRE PROTECTION Steiner tunnel windows and cover Code-compliant Solution for Combustible Plenums Fire protection wrap systems can provide -
Grease Duct Enclosures Fire and Smoke Dampers in Grease Ducts
506.3.11 CHANGE TYPE: Modification CHANGE SUMMARY: The code specifically prohibits the installation of Grease Duct Enclosures fire and smoke dampers in grease ducts. 2015 CODE: 506.3.11 Grease Duct Enclosures. A commercial kitchen grease duct serving a Type I hood that penetrates a ceiling, wall, floor or any concealed spaces shall be enclosed from the point of penetration to the outlet terminal. In-line exhaust fans not located outdoors shall be enclosed as required for grease ducts. A duct shall penetrate exterior walls only at locations where unprotected openings are permitted by the International Building Code. The duct enclosure shall serve a single grease duct and shall not contain other ducts, piping or wiring systems. Duct enclosures shall be either a shaft enclosure in accordance with Section 506.3.11.1, a field-ap- plied enclosure assembly in accordance with 506.3.11.2 or a factory-built enclosure assembly in accordance with Section 506.3.11.3. Duct enclosures shall have a fire-resistance rating of not less than that of the assembly pen- etrated and not less than 1 hour. Fire dampers and smoke dampers shall not be installed in grease ducts. Duct enclosures shall be as prescribed by Section 506.3.11.1, 506.3.11.2 or 506.3.11.3. 506.3.11.4 Duct enclosure not required. This excerpt is taken from Exception: A duct enclosure shall not be required for a grease duct Significant Changes to the that penetrates only a non-fire-resistance-rated roof/ceiling assembly. International Plumbing/ CHANGE SIGNIFICANCE: It has long been understood that fire and smoke dampers are not compatible with grease ducts, and the duct en- Mechanical/ closure requirements clearly account for the lack of such dampers where Fuel Gas the ducts penetrate walls, floors and ceilings. -
Kitchen Hood Test Data Form
CITY OF HENDERSON Department of Building & Fire Safety KITCHEN HOOD TEST DATA Date Permit No. Street Address * * * * * * * * * * * * * * General Contractor Phone Sub-Contractor Phone Address License # HOOD LOCATION PLAN SHEET NO. TESTING EQUIPMENT TYPE TYPE OF HOOD: Type I LIST ALL EQUIPMENT UNDER HOOD: ACTUAL HOOD SIZE: ft x ft = sq. ft. (Hood Width) (Hood Length) (Hood Area) REQUIRED QUANTITY OF AIR: (See UMC 2003 for appropriate formula) Ft x ft x = CFM (Hood Width) (Hood Length) (Formula) (Hood Exhaust) ACTUAL QUANTITY OF AIR AS MEASURED: CFM (Actual Volume) ACTUAL TOTAL FILTER AREA: sq. ft. (Filter Area) ACTUAL FILTER AIR FLOW RATE PER SQ. FT. OF FILTER AREA: CFM - sq. ft. = FPM (Actual Volume) (Filter Area) (Each Filter) LISTED FILTER AIRFLOW RATE: = FPM per filter (As Shown on Filter) ACTUAL DUCT SIZE: Rectangular Duct Ft x ft = sq. ft. (Front Width) (Side Length) (Duct Size) Round Duct .79 x ft = sq. ft. (Duct Diameter) (Duct Size) ACTUAL GREASE DUCT AIR VELOCITY: CFM - sq. ft. = FPM (Actual Volume) (Duct Size) (Duct Velocity) REQUIRED DUCT SYSTEM AIR VELOCITY FOR SHOP MADE HOODS: 1500 FPM (minimum) 2500 FPM (maximum) MANUFACTURERS STATED VELOCITY FOR LISTED HOODS: (Minimum) (Maximum) MAKEUP AIR SOURCE AND SIZE: (Size of source in total CFM) THE EXHAUST AND MAKEUP AIR SYSTEMS SHALL BE CONNECTED BY AN ELECTRICAL INTERLOCK SWITCH. 2000 Southern Nevada Uniform Mechanical Code Amendments - 509.11 ( Performance Test) Upon completion and before final approval of the installation of ventilation system serving commercial food heat-processing equipment, a performance test, shall be performed to verify the rate of airflow and proper operation as specified in this chapter. -
System Controls Engineering Guide
SECTION G Engineering Guide System Controls System Controls Engineering Guide Introduction to VAV Terminal Units The control of air temperature in a space requires that the loads in the space are offset by some means. Space loads can consist of exterior loads and/or interior loads. Interior loads can consist of people, mechanical equipment, lighting, com puters, etc. In an 'air' conditioning system compensating for the loads is achieved by introducing air into the space at a given temperature and quantity. Since space loads are always fluctuating the compensation to offset the loads must also be changing in a corresponding manner. Varying the air temperature or varying the air volume or a combination of both in a controlled manner will offset the space load as required. The variable air volume terminal unit or VAV box allows us to vary the air volume into a room and in certain cases also lets us vary the air temperature into a room. YSTEM CONTROLS YSTEM S The VAV terminal unit may be pressure dependent or pressure independent. This is a function of the control package. ENGINEERING GUIDE - Pressure Dependent A device is said to be pressure dependent when the flow rate passing through it varies as the system inlet pressure fluctuates. The flow rate is dependent only on the inlet pressure and the damper position of the terminal unit. The pressure dependent terminal unit consists of a damper and a damper actuator controlled directly by a room thermostat. The damper is modulated in response to room temperature only. Since the air volume varies with inlet pressure, the room may experience temperature swings until the thermostat repositions the damper. -
Analysis of Cooling Load Calculations for Underfloor Air Distribution Systems
The 13th Asia Pacific Conference on the Built Environment: Next Gen Technology to Make Green Building Sustainable , 19-20 Nov 2015 (Thu-Fri), Hong Kong. Analysis of cooling load calculations for underfloor air distribution systems Dr. Sam C. M. Hui * and Miss ZHOU Yichun Department of Mechanical Engineering, The University of Hong Kong Pokfulam Road, Hong Kong * E-mail: [email protected] Abstract Underfloor air distribution (UFAD) systems use an underfloor supply plenum located between the structural floor slab and a raised floor system to supply conditioned air through floor diffusers or terminal units directly into the building’s occupied zone. If designed properly, they have the potential to enhance energy efficiency, indoor air quality and building life cycle performance. However, the application of UFAD system is still obstructed by the information gap in some fundamental issues, such as cooling load calculation. All the cooling load calculation methods for UFAD systems nowadays have limitations and drawbacks and most building designers are not familiar with them. This research aims to investigate the cooling loads calculation methods for UFAD systems. Fundamental principles of UFAD with different configurations are studied to analyse the effects on cooling load components. Critical evaluation is made on the key factors and issues affecting the cooling load and how they differ from the overhead air distribution systems. It is found that thermal stratification, management of solar and lighting loads, architectural design and thermal properties of structural floor slab will influence the cooling load and must be evaluated carefully. It is hoped that the findings could improve the understanding of UFAD systems and provide practical information for performing the cooling load calculations and optimising the system performance. -
Underfloor Air Distribution
University of Delaware Karen Schulte Center for the Arts Mechanical Option Underfloor Air Distribution: An underfloor air distribution system utilizes a plenum space between the structural slab and the underside of a raised floor to distribute the conditioned air to the room. An underfloor air distribution system creates a stratified condition where the natural buoyancy of air removes heat and contaminates from the occupied zone. Diffusers located in the elevated floor slab distribute air to the room from the plenum. Since the diffusers are located in the floor, the supply air temperatures must be warmer then the conventional overhead air distribution systems because of the immediate proximity of the supply air to the occupied zone. For cooling the supply air temperature should range from 63°F- 68°F, this temperature range will prevent overcooling the occupants of the space. The potential benefits that occur as a result of the implementation of underfloor air distribution include increased thermal comfort, better indoor air quality, reduced outdoor airflow, reduced floor to floor heights, and reduced supply fan horsepower. The increase in thermal comfort arises from the fact that the supply air temperature is higher then conventional overhead distribution systems and the floor diffusers induce local circulation and mixing in the occupied zone to a relatively uniform temperature. The improvements in indoor air quality result from natural flow of air in the underfloor system as compared to the overhead air distribution system. In the overhead system the contaminants in the air that collect at the ceiling level, due to the natural buoyancy of air, are forced back into the breathing zone by the induced mixing of ceiling diffusers to create a uniform environment. -
A Laboratory Method for Measuring the Heat Distribution Of
A LABORATORY METHOD FOR MEASURING THE HEAT DISTRIBUTION OF LUMINAIRES AND ITS APPLICATION FOR BUILDING HEATING AND COOLING ENERGY SAVING BY Hankun Li Submitted to the graduate degree program in Architectural Engineering and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. ________________________________ Chairperson Dr. Hongyi Cai ________________________________ Dr. Brian A. Rock ________________________________ Dr. Xianglin Li Date Defended: The Thesis Committee for Hankun Li certifies that this is the approved version of the following thesis: A LABORATORY METHOD FOR MEASURING THE HEAT DISTRIBUTION OF LUMINAIRES AND ITS APPLICATION FOR BUILDING HEATING AND COOLING ENERGY SAVING ________________________________ Chairperson Dr. Hongyi Cai Date approved: << ii ABSTRACT This study was aimed to explore the energy saving potential of a new system architecture of solid-state lighting fixtures that was designed to help utilize the heat generated by LEDs for spacing heating in heating season and re-heating in cooling season. The new system architecture, which deploys an innovation of integrative light and heat arrangement in low profile, helps harvest the LED heat and direct most of the heat to the room space while minimizing heat leakage to the ceiling cavity. A well-designed laboratory experiment was carried out in a newly developed Calorimeter chamber that was used to find out heat distribution of luminaires in the conditioned room cavity and ceiling plenum, followed by an estimation of potential energy savings via computer simulation in Energy Plus. A typical primary elementary school classroom was used in this computer simulation equipped with LED fixtures with different heat distribution patterns.