Marine Biologist Magazine, in Which We Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Marine Biologist Magazine, in Which We Implementation Issue 14 April 2020 ISSN 2052-5273 Special edition: The UN Decade on Ecosystem Restoration The Marine The magazine of the Biologistmarine biological community Coral restoration in a warming world Mangroves: the roots of the sea A sea turtle haven in central Oceania | Climate emergency: are we heading for a disastrous future? Tropical laboratories in the Atlantic Ocean | Environmental change and evolution of organisms Editorial Welcome to the latest edition of The mechanisms must be put in place for Marine Biologist magazine, in which we implementation. As the decade celebrate the UN Decade on Ecosys- unfolds, we will bring you updates on tem Restoration (2021–2030). This ecosystem restoration efforts. year promises much for nature as the The vision for the UN Decade on UN's Gabriel Grimsditch explains in Ecosystem Restoration includes the The Marine Biological Association The Laboratory, Citadel Hill, his introduction to this special edition phrase: ‘the relationship between Plymouth, PL1 2PB, UK on page 15. The first set of targets humans and nature is restored’. Here, I Editor Guy Baker under Sustainable Development Goal think our own imagination has a major [email protected] 14 (the ocean SDG) will be due, and role. We imagine our world into reality, +44 (0)1752 426239 2020 also marks the announcement of but, as Rob Hopkins argues in his book Executive Editor Matt Frost the UN Decade on Ocean Science for From What Is to What If, many aspects [email protected] Sustainable Development. of our developed, industrialized society +44 (0)1752 426343 Marine ecosystems are by their actively erode our imagination, leaving Editorial Board Guy Baker, Gerald Boalch, Kelvin Boot, Matt Frost, Paul Rose. nature less accessible than those on us with impoverished or dystopian Membership Alex Street land, and with much of the ocean visions of what the future holds. [email protected] being global high seas, it is harder to Initiatives such as the UN decade and +44 (0)1752 426347 manage activities than it is for the the Commonwealth Blue Charter can www.mba.ac.uk/membership terrestrial environment, which at least shift our collective ideas of what can ISSN: 2052-5273 falls under national jurisdiction. Direct be, enabling us to envision futures that We welcome submissions of original and restoration interventions are therefore are more equitable, and that work with relevant material, letters and responses to published articles. For guidance, please see limited to coastal and shallow water the grain of nature. Such shifts can be the magazine website or contact the Editor. ecosystems, and in this edition we look powerful drivers for change. Hopkins www.mba.ac.uk/marine-biologist at mangroves, coral reefs, oyster beds, quotes Susan Griffin: ‘let us begin to Views expressed in The Marine Biologist are those seagrass beds, and estuaries through the imagine the world we would like to of the authors and do not necessarily represent lens of ecosystem restoration. The inhabit’. I would love to hear what those of the Marine Biological Association. restoration of remote, open-ocean and your future marine world looks like. Copyright © the Marine Biological polar ecosystems is a task that we must As always, I invite you to send me Association 2020. tackle collectively by agreeing radical your views and comments on the The Marine Biologist is published by reductions in unsustainable use of magazine or on marine life in general. the Marine Biological Association, Registered Charity No. 1155893. resources and emissions of greenhouse If we receive The Association permits single copying of individual gases (see page 10). enough letters articles for private study or research, irrespective The UN can mobilize resources to and emails we of where the copying is done. Multiple copying enhance commitments and actions at can publish of individual articles for teaching purposes is also all scales to restore ecosystems. If we them here—so permitted without specific permission. For copying or reproduction for any other purpose, written are to protect and restore nature by do put pen to permission must be sought from the Association. 2030, clear, communicable, paper and start Access to the magazine is available online; please measurable, and science-based global a conversation! see the Association’s website for further details. targets will be needed and workable We welcome your articles, letters and reviews, and we can advertise events. Please contact us for details or see the magazine website at www.mba.ac.uk/marine-biologist Front cover: Deploying ceramic shapes bearing settled coral as one of many types of www.mba.ac.uk intervention to restore coral reefs. Great Barrier Reef. © Australian Institute of Marine Science / Andrea Severati SECORE. @thembauk Back cover: Trindade Island and Martin Vaz Archipelago © Lucas Nunes. 02 The Marine Biologist | April 2020 Contents Issue 14, April 2020 02 Editorial 04 In brief Research digests 06 Tropical laboratories in the Atlantic Ocean Lucas Nunes and Sergio Floeter 08 How does environmental change influence the development and evolution of organisms? Atsuko Sato 10 Climate emergency: are we heading for a disastrous future? Chris Reid Policy 14 Meeting international obligations and the World Congress of Marine Stations Matt Frost 06 Special Edition: The UN Decade on Ecosystem Restoration 15 Introduction Gabriel Grimsditch 16 The roots of the sea Alfredo Quarto and Ibrahima Thiam 19 Seeking global sweet spots for marine farming Kellyanne Batchelor 21 Restoring native oysters to European seas Alice Lown and Tom Cameron 23 Restoring meadows, marsh and reef Ben Green 24 Tongareva atoll: a sea turtle haven in central Oceania 16 Michael White, Ru Taime, and Marangi Taime 26 Coral restoration in a warming world Ian McLeod and Maxine Newlands Sharing marine science 30 The restorative properties of National Marine Parks Lydia Tivenan 31 Sharing understanding of algae Clare Marshall 32 Come to Essex, bring wellies Michelle Taylor 34 Image from the archive 35 Interview with Dr Gerald Boalch 24 36 And the winners are... MBA student bursary or placement awardee reports Top: Surveying the benthic community of Brazil's oceanic islands. © Sergio Floeter. 37 Reviews Middle: Mangroves and rice growing together, Rufiji delta, Tanzania. © Dominic Wodehouse. Bottom: Masked boobies on Tongareva atoll, South Pacific. Image © Michael White. April 2020 | The Marine Biologist 03 In brief Metal-Organic Framework material is a potent pollutant extractor Researchers in Spain have developed a new material that can soak up pollution from water. The substance can remove microplastics, dyes and other pollutants from water, and could find applications in detecting and monitoring pollution. It is a type of metal- organic framework (MOF), an organic- inorganic hybrid crystalline material with a porous, cage-like structure and an enormous surface area (in the case of some MOFs more than 7,000 square metres per gram). Its magnetic properties allow it to be extracted from water along with adsorbed contaminants. It is chemically stable and easy to clean and reuse. A team of chemists led by Gemma Turnes at Mallorca’s University of the Balearic Islands (UIB) synthesized the substance, and published their results in the journal ACS Applied Materials & Interfaces. Those hoping for a magic clean-up of our seas may be in for a bit of a wait: Dr Turnes said ‘These are preliminary results and the material has not been tested on real Pillar coral (Dendrogyra cylindrus), a species highly susceptible to stony coral tissue loss samples yet. We are most focused on its disease (SCTLD). Image © Keith Hiscock. use as an adsorbent for solid-phase extraction to be applied to monitoring of (Haploblepharus edwardsii)—a species of devastating disease, with infected coral pollutants’. catshark native to cooler waters off South colonies seen across four of six islands. Ocean acidification affects shark Africa—to more acidic water over a period SCTLD causes rapid and extensive tissue of eight weeks caused an average of 25 per damage and loss, and the International denticles cent denticle damage compared to 9 per Coral Reef Initiative reported that ‘SCTLD Increasing ocean acidification could be cent found in the normal seawater control affects over 20 of the 45 species of having corrosive impacts on the denticles of group over the same period. Caribbean reef-building coral species’. shark scales. Shark skin is covered in tiny Shark denticles have a hard coating of In Turks and Caicos, a local NGO has tooth-like scales called dermal denticles calcium phosphate (bio-apatite), and the been given government go-ahead to begin which create minute vortices, reducing laboratory study found that concentrations coral treatment through the administration hydrodynamic drag and enabling sharks to of calcium phosphate were significantly of antibiotics, a process which in itself can swim faster and more quietly, contributing to reduced after exposure to acidic water. This be problematic, but which has been used in their efficiency as predators. denticle damage was found to alter the Florida to minimize the spread of the A recent publication in Scientific Reports swimming behaviour and in turn, the disease within infected colonies. Mote found that exposing puffadder shysharks foraging activity of the sharks. The extent of Marine Laboratory has started its new the impacts of denticle corrosion on shark Florida Keys Coral Disease Response & physiology and behaviour is considered to Restoration Initiative,
Recommended publications
  • Reproduction in Plants Which But, She Has Never Seen the Seeds We Shall Learn in This Chapter
    Reproduction in 12 Plants o produce its kind is a reproduction, new plants are obtained characteristic of all living from seeds. Torganisms. You have already learnt this in Class VI. The production of new individuals from their parents is known as reproduction. But, how do Paheli thought that new plants reproduce? There are different plants always grow from seeds. modes of reproduction in plants which But, she has never seen the seeds we shall learn in this chapter. of sugarcane, potato and rose. She wants to know how these plants 12.1 MODES OF REPRODUCTION reproduce. In Class VI you learnt about different parts of a flowering plant. Try to list the various parts of a plant and write the Asexual reproduction functions of each. Most plants have In asexual reproduction new plants are roots, stems and leaves. These are called obtained without production of seeds. the vegetative parts of a plant. After a certain period of growth, most plants Vegetative propagation bear flowers. You may have seen the It is a type of asexual reproduction in mango trees flowering in spring. It is which new plants are produced from these flowers that give rise to juicy roots, stems, leaves and buds. Since mango fruit we enjoy in summer. We eat reproduction is through the vegetative the fruits and usually discard the seeds. parts of the plant, it is known as Seeds germinate and form new plants. vegetative propagation. So, what is the function of flowers in plants? Flowers perform the function of Activity 12.1 reproduction in plants. Flowers are the Cut a branch of rose or champa with a reproductive parts.
    [Show full text]
  • Feeding-Dependent Tentacle Development in the Sea Anemone Nematostella Vectensis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.985168; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Feeding-dependent tentacle development in the sea anemone Nematostella vectensis Aissam Ikmi1,2*, Petrus J. Steenbergen1, Marie Anzo1, Mason R. McMullen2,3, Anniek Stokkermans1, Lacey R. Ellington2, and Matthew C. Gibson2,4 Affiliations: 1Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 2Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. 3Department of Pharmacy, The University of Kansas Health System, Kansas City, Kansas 66160, USA. 4Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA. *Corresponding author. Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.985168; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Summary In cnidarians, axial patterning is not restricted to embryonic development but continues throughout a prolonged life history filled with unpredictable environmental changes. How this developmental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. To address these questions, we utilize the tentacles of the sea anemone Nematostella vectensis as a novel paradigm for developmental patterning across distinct life history stages.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Introduction to Marine Biology
    Short Communication Volume 10:S1, 2021 Molecular Biology ISSN: 2168-9547 Open Access Introduction to Marine Biology Subhashree Sahoo* Trident College, Bhubaneswar, Odisha 751024, India Abstract Introduction to marine biology is a 3-praise lesson credited finished the Florida Solutions Communal University. It includes a smallest of 45 interaction times that comprise together addresses and applied actions. This lesson canister usually is alienated in four units. Marine biology is a newer science than earthly ecology as initial experts were incomplete in their education of water creatures through absence of skill toward detect and example them. The Greek theorist Aristotle was unique of the 1st to project an organization system for alive organisms, which he named “the ladder of life” and in which he designated 500 classes, numerous of which were maritime. He also deliberates fish gills and cuttlefish. The Roman biologist Pliny the Leader available a 37-volume effort named Natural History, which limited numerous maritime classes. Slight effort on usual past remained showed throughout the central days, and it wasn’t pending the nighttime 18th period and initial 19th period that attention in the maritime setting was rehabilitated, powered through examinations now complete conceivable through healthier vessels and better steering methods. Keywords: Molecular, Biology, Marine. Introduction has an optimum variety of apiece ecological issue that touches it. Outdoor of this best, regions of pressure exist, anywhere the creature may nosedive toward replicate. Most maritime creatures are ectotherms, powerless toward Fish source the highest measurement of the universe protein expended switch their interior text infection, so fast or loosing warmth after their outside through persons.
    [Show full text]
  • Feeding-Dependent Tentacle Development in the Sea Anemone Nematostella Vectensis ✉ Aissam Ikmi 1,2 , Petrus J
    ARTICLE https://doi.org/10.1038/s41467-020-18133-0 OPEN Feeding-dependent tentacle development in the sea anemone Nematostella vectensis ✉ Aissam Ikmi 1,2 , Petrus J. Steenbergen1, Marie Anzo 1, Mason R. McMullen2,3, Anniek Stokkermans1, Lacey R. Ellington2 & Matthew C. Gibson2,4 In cnidarians, axial patterning is not restricted to embryogenesis but continues throughout a prolonged life history filled with unpredictable environmental changes. How this develop- 1234567890():,; mental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. Here we utilize the tentacles of the sea anemone Nematostella vectensis as an experimental paradigm for developmental patterning across distinct life history stages. By analyzing over 1000 growing polyps, we find that tentacle progression is stereotyped and occurs in a feeding-dependent manner. Using a combination of genetic, cellular and molecular approaches, we demonstrate that the crosstalk between Target of Rapamycin (TOR) and Fibroblast growth factor receptor b (Fgfrb) signaling in ring muscles defines tentacle primordia in fed polyps. Interestingly, Fgfrb-dependent polarized growth is observed in polyp but not embryonic tentacle primordia. These findings show an unexpected plasticity of tentacle development, and link post-embryonic body patterning with food availability. 1 Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 2 Stowers Institute for Medical Research, Kansas City, MO 64110,
    [Show full text]
  • Lerner's Concept of Developmental Homeostasis and the Problem of Heterozygosity Level in Natural Populations
    Heredity 55 (1985) 341—353 The Genetical Society of Great Britain Received 20 March 1985 Lerner's concept of developmental homeostasis and the problem of heterozygosity level in natural populations G. Livshits and E. Kobyliansky Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel. In recent years adherents of the neutral mutation hypothesis have conducted a variety of statistical tests concerning the applicability of their theory to data of biochemical genetic polymorphism in natural populations. From the other side, the involvement of natural selection as a main evolutionary force responsible for the observed levels of polymorphism and heterozygosity have also been proposed in numerous field studies and theoretical considerations. However, none of these hypotheses completely and satisfactorily explains the collected data. We believe that one of the main causes of the discrepancy in theories is that the variability at each locus is considered independently in both of the above- mentioned approaches. Yet, it was suggested long ago, and now there is an increasing amount of evidence indicating cooperation between different loci which can influence the variability at each of them. Thus we think that the use of models considering the genome as a suit of independent genes is a priori expected to decrease the efficacy of the approximation. In the present review we attempt to draw attention to findings of interdependence of the variability of different characters and its possible limiting action on the growth of genetic diversity in natural populations. We do not try to give a universal explanation for the processes acting in populations and determining levels of heterozygosity.
    [Show full text]
  • Visual Fields in Hornbills: Precision-Grasping and Sunshades
    Ibis (2004), 146, 18–26 Blackwell Publishing Ltd. Visual fields in hornbills: precision-grasping and sunshades GRAHAM R. MARTIN1* & HENDRI C. COETZEE2 1School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 2Ground Hornbill Research and Conservation Project, Private Bag X1644, Warmbaths, 0480, Republic of South Africa Retinal visual fields were determined in Southern Ground Hornbills Bucorvus leadbeateri and Southern Yellow-billed Hornbills Tockus leucomelas (Coraciiformes, Bucerotidae) using an ophthalmoscopic reflex technique. In both species the binocular field is relatively long and narrow with a maximum width of 30° occurring 40° above the bill. The bill tip projects into the lower half of the binocular field. This frontal visual field topography exhibits a number of key features that are also found in other terrestrial birds. This supports the hypothesis that avian visual fields are of three principal types that are correlated with the degree to which vision is employed when taking food items, rather than with phylogeny. However, unlike other species studied to date, in both hornbill species the bill intrudes into the binocular field. This intrusion of the bill restricts the width of the binocular field but allows the birds to view their own bill tips. It is suggested that this is associated with the precision-grasping feeding technique of hornbills. This involves forceps-like grasping and manipulation of items in the tips of the large decurved bill. The two hornbill species differ in the extent of the blind area perpendicularly above the head. Interspecific comparison shows that eye size and the width of the blind area above the head are significantly cor- related.
    [Show full text]
  • African Gray Hornbill Class: Aves
    Tockus nasutus nasutus African Gray Hornbill Class: Aves. Order: Coraciiformes. Family: Bucerotidae. Other names: Gray hornbill, hornbill Physical Description: Male—dun-colored with a central light stripe from hind neck to rump; head, throat, neck more or less gray with a broad white stripe over eye to nape; wing feathers and coverts (feathers covering the bases of the quills of the wings and tail) edged with whitish; outer tail feathers tipped white; underside creamy white; bill black with a splash of cream at base of upper mandible. Female—smaller, bill is colored red at tip, and greater part of the upper mandible is yellow. Hornbills are about 18 inches, males being larger than females. The wingspan of the gray hornbill is 7.5- 10 inches and weighs 5-9oz. Diet in the Wild: bird eggs and nestlings, insects, rodents, lizards, frogs, supplemented with small fruit and seeds especially during the dry season. Diet at the Zoo: Apples, papayas, grapes, hard-boiled eggs, mealworms, softbill diet, pinkie mice Habitat & Range: Sub-Saharan and Eastern Africa into Arabia, living in open woodlands and tree hollows Life Span: Up to 25 years Perils in the wild: Birds of prey, some carnivores, man, habitat destruction Physical Adaptations: Hornbills have huge, two-tiered beaks that cause the birds to appear top-heavy. The bill is long forming dexterous forceps. The cutting edges are serrated for breaking up food. The casque surmounting the bill is a narrow ridge that may reinforce the upper mandible. In spite of its heavy appearance, the structure is a light skin of keratin overlying a bony support.
    [Show full text]
  • THE Fungus FILES 31 REPRODUCTION & DEVELOPMENT
    Reproduction and Development SPORES AND SO MUCH MORE! At any given time, the air we breathe is filled with the spores of many different types of fungi. They form a large proportion of the “flecks” that are seen when direct sunlight shines into a room. They are also remarkably small; 1800 spores could fit lined up on a piece of thread 1 cm long. Fungi typically release extremely high numbers of spores at a time as most of them will not germinate due to landing on unfavourable habitats, being eaten by invertebrates, or simply crowded out by intense competition. A mid-sized gilled mushroom will release up to 20 billion spores over 4-6 days at a rate of 100 million spores per hour. One specimen of the common bracket fungus (Ganoderma applanatum) can produce 350 000 spores per second which means 30 billion spores a day and 4500 billion in one season. Giant puffballs can release a number of spores that number into the trillions. Spores are dispersed via wind, rain, water currents, insects, birds and animals and by people on clothing. Spores contain little or no food so it is essential they land on a viable food source. They can also remain dormant for up to 20 years waiting for an opportune moment to germinate. WHAT ABOUT LIGHT? Though fungi do not need light for food production, fruiting bodies generally grow toward a source of light. Light levels can affect the release of spores; some fungi release spores in the absence of light whereas others (such as the spore throwing Pilobolus) release during the presence of light.
    [Show full text]
  • Kingfishers to Mousebirds
    3.8 Kingshers to mousebirds - Atlas of Birds uncorrected proofs Copyrighted Material Kingfishers to Mousebirds he orders featured on this spread include many of the planet’s most P Size of orders Trogoniformes: trogons R Teye-catching bird families. Some, such as kingfishers and rollers, Number of species in order Trogons make up a single family, the Trogonidae, are known for their dazzling plumage. Others, such as toucans and Percentage of total bird species which numbers seven genera, including the spectacular quetzals (Pharomachrus spp.) of hornbills, sport preposterously big bills. Though smaller species Coraciiformes South and Central America. Their weak feet are in some groups may superficially resemble songbirds, all have a 403 species unique among animals in having a heterodactyl number of key anatomical differences from the Passeriformes, and 4.1% toe arrangement: first and second toes facing none can sing. backwards; third and fourth toes forwards. They are colourful but retiring birds that These orders also share many features of their breeding behaviour, inhabit tropical forests worldwide – with the with the majority of families and species nesting in holes, and many greatest diversity in the Neotropics – and use performing flamboyant courtship displays. The exception to this rule Piciformes their short, broad bill to feed on insects and are the Coliiformes of Sub-Saharan Africa, which are neither colourful 403 species fruit, generally gleaned from the branches in 4.1% a brief fluttering flight. Trogons are typically nor cavity nesters – they build a simple cup-shaped nest in foliage – and have located by their soft, insistent call, given ) an evolutionary history that sets them apart from other near-passerines.
    [Show full text]
  • 1 Basic Biological Principles.Pdf
    Basic Biological Principles Biology = The study of Life Characteristics of Life Complex Organization Metabolism (Energy Flow) Homeostasis Reproduction and Heredity Growth and Development Response to Stimuli Sample Question A virus consists of a single strand of DNA enclosed in a protein capsule. Is a virus considered a living organism? A. Yes; since the virus contains protein, it is a living organism. B. Yes; since the virus contains DNA, it is a living organism. C. No; living organisms must have two characteristics of life, and the T4 bacteriophage only has one. D. No; viruses are not considered to be living organisms. Answer: D All living organisms must have an organized structure, obtain and use energy and materials, maintain homeostasis, grow, reproduce and pass on genetic information, and respond to stimuli and evolve/adapt to their environment. Although viruses contain DNA and pass their DNA on to their offspring, they cannot do this unassisted, nor do they meet all the other criteria for living organisms. Thus, viruses are not considered to be living organisms. Complex Organization Everything in the world is made up of matter and all matter is made up of atoms Elements = consist of only one kind of atom Compounds = two or more elements combined Living organisms are composed of many different organic (carbon-based) and inorganic compounds Cells = composed of many different compounds, basic building blocks of life Sample Question What is the single most abundant compound in living organisms? A. fat B. carbon C. sugar D. water Answer: D Water is the single most abundant compound in all living organisms.
    [Show full text]