Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Exploring the human genome with functional maps Curtis Huttenhower1,2,†, Erin M. Haley3,†, Matthew A. Hibbs4, Vanessa Dumeaux5, Daniel R. Barrett1, Hilary A. Coller3,‡, Olga G. Troyanskaya1,2,‡,* 1 Department of Computer Science, Princeton University, Princeton, NJ, 08540 2 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544 3 Department of Molecular Biology, Princeton University, Princeton, NJ, 08544 4 Jackson Laboratory, Bar Harbor, ME, 04609 5 Institute of Community Medicine, Tromsø University, Tromsø, Norway * To whom correspondence should be addressed:
[email protected], phone 609-258-7014, fax 609-258-7599 † These authors contributed equally to this work. ‡ Co-principle investigators. Running title: Exploring the human genome with functional maps Manuscript type: Resource Keywords: human data integration, functional interaction network, computational predictions, disease and process associations 1 Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract biological truths: the size of the human genome, the complexity of human tissue types and regulatory Human genomic data of many types are readily mechanisms, and the sheer amount of available data all available, but the complexity and scale of human contribute to the analytical complexity of understanding molecular biology make it difficult to integrate this body human functional genomics. of data, understand it from a systems level, and apply it In order to take advantage of large collections of to the study of specific pathways or genetic disorders. genomic data, they must be integrated, summarized, An investigator could best explore a particular protein, and presented in a biologically informative manner.