Structures of Pi4kiiiβ Complexes Show Simultaneous Recruitment of Rab11 and Its Effectors John E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantitative Live Cell Imaging Reveals Influenza Virus Manipulation Of
ARTICLE https://doi.org/10.1038/s41467-019-13838-3 OPEN Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association Amar R. Bhagwat 1, Valerie Le Sage1, Eric Nturibi1, Katarzyna Kulej2, Jennifer Jones 1, Min Guo3, Eui Tae Kim 2, Benjamin A. Garcia4,5, Matthew D. Weitzman2,5,6, Hari Shroff3 & Seema S. Lakdawala 1,7* fl 1234567890():,; Assembly of infectious in uenza A viruses (IAV) is a complex process involving transport from the nucleus to the plasma membrane. Rab11A-containing recycling endosomes have been identified as a platform for intracellular transport of viral RNA (vRNA). Here, using high spatiotemporal resolution light-sheet microscopy (~1.4 volumes/second, 330 nm isotropic resolution), we quantify Rab11A and vRNA movement in live cells during IAV infection and report that IAV infection decreases speed and increases arrest of Rab11A. Unexpectedly, infection with respiratory syncytial virus alters Rab11A motion in a manner opposite to IAV, suggesting that Rab11A is a common host component that is differentially manipulated by respiratory RNA viruses. Using two-color imaging we demonstrate co-transport of Rab11A and IAV vRNA in infected cells and provide direct evidence that vRNA-associated Rab11A have altered transport. The mechanism of altered Rab11A movement is likely related to a decrease in dynein motors bound to Rab11A vesicles during IAV infection. 1 Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219, USA. 2 The Children’s Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA 19104, USA. 3 Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD 20892, USA. -
Single Continuous Lumen Formation in the Zebrafish Gut Is Mediated by Smoothened-Dependent Tissue Remodeling Ashley L
© 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 1110-1119 doi:10.1242/dev.100313 RESEARCH ARTICLE Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling Ashley L. Alvers1, Sean Ryan1, Paul J. Scherz2,*, Jan Huisken3 and Michel Bagnat1,‡ ABSTRACT De novo lumen formation is integral to the development of tubes The formation of a single lumen during tubulogenesis is crucial for that form from an unpolarized epithelium and has been extensively the development and function of many organs. Although 3D cell studied in vitro in 3D cysts. To initiate lumen formation, apical culture models have identified molecular mechanisms controlling membrane proteins such as Podocalyxin accumulate in Rab11 and lumen formation in vitro, their function during vertebrate Rab8a-positive vesicles. These vesicles are then delivered to the organogenesis is poorly understood. Using light sheet microscopy plasma membrane where, together with the exocyst and the Par3 and genetic approaches we have investigated single lumen formation complex, they fuse to generate an apical surface (Bryant et al., in the zebrafish gut. Here we show that during gut development 2010). Although these studies highlight the importance of apical multiple lumens open and enlarge to generate a distinct intermediate, membrane trafficking in lumen formation, such in vitro systems which consists of two adjacent unfused lumens separated by cannot fully recapitulate the complexity of a three-dimensional basolateral contacts. We observed that these lumens arise organ. For example, in most 3D cyst models the lumen typically independently from each other along the length of the gut and do not forms between two differentiated epithelial cells by recycling of share a continuous apical surface. -
Rab11-FIP1A Regulates Early Trafficking Into the Recycling
Experimental Cell Research ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Experimental Cell Research journal homepage: www.elsevier.com/locate/yexcr Research Article Rab11-FIP1A regulates early trafficking into the recycling endosomes Jenny C. Schafer a,c, Rebecca E. McRae a,b,c, Elizabeth H. Manning a,c, Lynne A. Lapierre a,c, James R. Goldenring a,b,c,d,n a Departments of Surgery, Nashville, TN, USA b Cell & Developmental Biology, Nashville, TN, USA c Epithelial Biology Center, Nashville, TN, USA d Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA article info abstract Article history: The Rab11 family of small GTPases, along with the Rab11-family interacting proteins (Rab11-FIPs), are Received 29 August 2015 critical regulators of intracellular vesicle trafficking and recycling. We have identified a point mutation of Received in revised form Threonine-197 site to an Alanine in Rab11-FIP1A, which causes a dramatic dominant negative phenotype 19 December 2015 when expressed in HeLa cells. The normally perinuclear distribution of GFP-Rab11-FIP1A was condensed Accepted 10 January 2016 into a membranous cisternum with almost no GFP-Rab11-FIP1A(T197A) remaining outside of this central locus. Also, this condensed GFP-FIP1A(T197A) altered the distribution of proteins in the Rab11a recycling Keywords: pathway including endogenous Rab11a, Rab11-FIP1C, and transferrin receptor (CD71). Furthermore, this Rab11-FIP1 condensed GFP-FIP1A(T197A)-containing structure exhibited little movement in live HeLa cells. Ex- Rab11-FIP2 pression of GFP-FIP1A(T197A) caused a strong blockade of transferrin recycling. Treatment of cells ex- Rab11-FIP5 pressing GFP-FIP1A(T197A) with nocodazole did not disperse the Rab11a-containing recycling system. -
How Host Cells Defend Against Influenza a Virus Infection
viruses Review Host–Virus Interaction: How Host Cells Defend against Influenza A Virus Infection Yun Zhang 1 , Zhichao Xu and Yongchang Cao * State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; [email protected] (Y.Z.); [email protected] (Z.X.) * Correspondence: [email protected]; Tel.: +86-020-39332938 Received: 28 February 2020; Accepted: 25 March 2020; Published: 29 March 2020 Abstract: Influenza A viruses (IAVs) are highly contagious pathogens infecting human and numerous animals. The viruses cause millions of infection cases and thousands of deaths every year, thus making IAVs a continual threat to global health. Upon IAV infection, host innate immune system is triggered and activated to restrict virus replication and clear pathogens. Subsequently, host adaptive immunity is involved in specific virus clearance. On the other hand, to achieve a successful infection, IAVs also apply multiple strategies to avoid be detected and eliminated by the host immunity. In the current review, we present a general description on recent work regarding different host cells and molecules facilitating antiviral defenses against IAV infection and how IAVs antagonize host immune responses. Keywords: influenza A virus; innate immunity; adaptive immunity 1. Introduction Influenza A virus (IAV) can infect a wide range of warm-blooded animals, including birds, pigs, horses, and humans. In humans, the viruses cause respiratory disease and be transmitted by inhalation of virus-containing dust particles or aerosols [1]. Severe IAV infection can cause lung inflammation and acute respiratory distress syndrome (ARDS), which may lead to mortality. Thus, causing many influenza epidemics and pandemics, IAV has been a threat to public health for decades [2]. -
Deep Understanding of Cell and Gene Therapy Genome Editing Protocols Enabled with Single-Cell Sequencing
APPLICATION NOTE Deep Understanding of Cell and Gene Therapy Genome Editing Protocols Enabled With Single-cell Sequencing Abstract Takeaways Cell and gene therapies are yielding new treatments, which were inconceivable only a few decades ago, for genetic • Replace multiple traditional disorders including cancers and inherited diseases. Single- bulk assays with one single-cell cell DNA sequencing on the Tapestri Platform provides the sequencing assay most sensitive and nuanced quantification of genetic edits made to single cells with a simple one-day high-throughput • Simultaneously identify edits, workflow. Quantification of on- and predicted off- target zygosity, co-occurrence and edits for multiple targets, zygosity, and translocations are all translocations in up to 10,000 measured simultaneously from a single assay for up to 10,000 single cells per sample single cells per sample. After making genomic edits, single- cell sequencing garners richer information than bulk assays, • Optimize genome editing resulting in accurate quantification of all genome editing cell protocols during development outcomes without the need for multiple cumbersome assays and get superior control during and cell culture. The Tapestri Platform integrates with cell and production manufacturing and release testing gene therapy workflows during development as well as during final product testing and release in manufacturing. Having faster turnaround and more complete data at these steps will aid in reducing the time and cost for cell and gene therapies to go to market. Introduction REMOVE Cell and gene therapy is revolutionizing CELLS the treatment of many intractable EDIT Optimize genome genetic disorders, including hemophilia, CELLS OPTIMIZE EDIT editing conditions CONDITIONS and measure progress sickle-cell anemia, Huntington’s disease, CRISPR CAS9 to desired results and cancer. -
Convergent Evolution in the Mechanisms of ACBD3 Recruitment to Picornavirus Replication Sites
RESEARCH ARTICLE Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites 1 2 3 1 Vladimira Horova , Heyrhyoung LyooID , Bartosz Ro życkiID , Dominika Chalupska , 1 1 2¤ Miroslav Smola , Jana Humpolickova , Jeroen R. P. M. StratingID , Frank J. M. van 2 1 1 Kuppeveld *, Evzen Boura *, Martin KlimaID * 1 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic, 2 Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands, 3 Institute of Physics, Polish a1111111111 Academy of Sciences, Warsaw, Poland a1111111111 a1111111111 ¤ Current address: Viroclinics Biosciences, Rotterdam, The Netherlands a1111111111 * [email protected] (FJMvK); [email protected] (EB); [email protected] (MK) a1111111111 Abstract Enteroviruses, members of the family of picornaviruses, are the most common viral infec- OPEN ACCESS tious agents in humans causing a broad spectrum of diseases ranging from mild respiratory Citation: Horova V, Lyoo H, RoÂżycki B, Chalupska illnesses to life-threatening infections. To efficiently replicate within the host cell, enterovi- D, Smola M, Humpolickova J, et al. (2019) Convergent evolution in the mechanisms of ACBD3 ruses hijack several host factors, such as ACBD3. ACBD3 facilitates replication of various recruitment to picornavirus replication sites. PLoS enterovirus species, however, structural determinants of ACBD3 recruitment to the viral rep- Pathog 15(8): e1007962. https://doi.org/10.1371/ lication sites are poorly understood. Here, we present a structural characterization of the journal.ppat.1007962 interaction between ACBD3 and the non-structural 3A proteins of four representative Editor: George A. Belov, University of Maryland, enteroviruses (poliovirus, enterovirus A71, enterovirus D68, and rhinovirus B14). -
Rab14/MACF2/CAMSAP3 Complex Regulates Endosomal Targeting to the Abscission Site During Cytokinesis
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.052449; this version posted April 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Rab14/MACF2/CAMSAP3 Complex Regulates Endosomal Targeting to the Abscission Site During Cytokinesis Paulius Gibieža1, Eric Peterman2, Huxley K. Hoffman3, Schuyler Van Engeleburg3, Vytenis Arvydas Skeberdis1 and Rytis Prekeris2,4 1. Laboratory of Cell Culture, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania 2. Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA 3. Department of Biological Sciences, Denver University, Denver, CO, USA 4. Corresponding author: [email protected] Keywords: abscission, endosomes, Rab14, cytokinesis, central spindle Running Title: Rab14 regulates endosome targeting in abscission bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.052449; this version posted April 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Abscission is complex cellular process that is required for mitotic division. It is well-established that coordinated and localized changes in actin and microtubule dynamics are vital for cytokinetic ring formation, as well as establishment of the abscission site. Actin cytoskeleton reorganization during abscission would not be possible without the interplay between Rab11- and Rab35- containing endosomes and their effector proteins, whose roles in regulating endocytic pathways at the cleavage furrow have now been studied extensively. Here, we identified Rab14 as novel regulator of abscission. -
Nucleotide Bound to Rab11a Controls Localization in Rod Cells but Not Interaction with Rhodopsin
14854 • The Journal of Neuroscience, November 5, 2014 • 34(45):14854–14863 Cellular/Molecular Nucleotide Bound to rab11a Controls Localization in Rod Cells But Not Interaction with Rhodopsin Nicholas J. Reish,1,2 Evan R. Boitet,1,3 Katie L. Bales,1,3 and XAlecia K. Gross1,2,3 1Evelyn F. McKnight Brain Institute, 2Department of Neurobiology, and 3Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama 35294 Precise vectorial transport of rhodopsin is essential for rod photoreceptor health and function. Mutations that truncate or extend the C terminus of rhodopsin disrupt this transport, and lead to retinal degeneration and blindness in human patients and in mouse models. Here we show that such mutations disrupt the binding of rhodopsin to the small GTPase rab11a. The rhodopsin–rab11a interaction is a direct binding interaction that does not depend on the nucleotide binding state of rab11a. Expression of EGFP-rab11a fusion proteins in Xenopus laevis photoreceptors revealed that the nucleotide binding status of rab11a affects its subcellular localization, with GTP-locked mutants concentrated in the inner segment and GDP-locked mutants concentrated in the outer segment. shRNA-mediated knockdown of rab11a in rods led to shortened outer segments and retinal degeneration. Together, our results show the critical importance of direct rhodopsin–rab11a interactions for the formation and maintenance of vertebrate photoreceptors. Key words: protein interactions; protein trafficking; rab11a; rhodopsin Introduction Golgi and the distal inner segment (IS) in lipid vesicles (Deretic Rod photoreceptors sense light using a specialized organelle and Papermaster, 1991) and may traffic into the outer segment known as the outer segment, a unique structure consisting of a (OS) in vesicular form (Sung and Chuang, 2010) or through primary cilium and a stack of closely spaced membranous disks intraflagellar transport (Bhowmick et al., 2009), or by mecha- that are contained within a plasma membrane. -
The Rab11a Gtpase Controls Toll-Like Receptor 4-Induced Activation of Interferon Regulatory Factor-3 on Phagosomes
Immunity Article TheRab11aGTPaseControls Toll-like Receptor 4-Induced Activation of Interferon Regulatory Factor-3 on Phagosomes Harald Husebye,1,9 Marie Hjelmseth Aune,1,9 Jørgen Stenvik,1,9 Eivind Samstad,1 Frode Skjeldal,3 Øyvind Halaas,1 Nadra J. Nilsen,1 Harald Stenmark,1,4 Eicke Latz,1,5 Egil Lien,1,6 Tom Eirik Mollnes,2 Oddmund Bakke,3,7 and Terje Espevik1,8,* 1Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway 2Institute of Immunology, Rikshospitalet University Hospital, University of Oslo, N-0027 Oslo, Norway 3Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo, N-0316 Oslo, Norway 4Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway 5Institute of Innate Immunity, Biomedical Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany 6Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA 7The Gade Institute, University of Bergen, 5021 Bergen, Norway 8St. Olavs Hospital, N-7489 Trondheim, Norway 9These authors contributed equally to this work *Correspondence: [email protected] DOI 10.1016/j.immuni.2010.09.010 SUMMARY also known as MyD88 adaptor-like protein), Toll-receptor-asso- ciated activator of interferon (TRIF), Toll-receptor-associated Toll-like receptor 4 (TLR4) is indispensable for recog- molecule (TRAM), and Sterile a- and armadillo-motif containing nition of Gram-negative bacteria. We described a protein (SARM) (O’Neill and Bowie, 2007). TLR4 signaling trafficking pathway for TLR4 from the endocytic proceeds through a MyD88-dependent and MyD88-indepen- recycling compartment (ERC) to E. -
Systematic Elucidation of Neuron-Astrocyte Interaction in Models of Amyotrophic Lateral Sclerosis Using Multi-Modal Integrated Bioinformatics Workflow
ARTICLE https://doi.org/10.1038/s41467-020-19177-y OPEN Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow Vartika Mishra et al.# 1234567890():,; Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Net- works (SEARCHIN) to identify ligand-mediated interactions between distinct cellular com- partments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication -
Structural Insights and in Vitro Reconstitution of Membrane
www.nature.com/scientificreports OPEN Structural insights and in vitro reconstitution of membrane targeting and activation of human Received: 18 December 2015 Accepted: 10 March 2016 PI4KB by the ACBD3 protein Published: 24 March 2016 Martin Klima1, Dániel J. Tóth2, Rozalie Hexnerova1, Adriana Baumlova1, Dominika Chalupska1, Jan Tykvart1, Lenka Rezabkova3, Nivedita Sengupta2, Petr Man4,5, Anna Dubankova1, Jana Humpolickova1, Radim Nencka1, Vaclav Veverka1,*, Tamas Balla2,* & Evzen Boura1 Phosphatidylinositol 4-kinase beta (PI4KB) is one of four human PI4K enzymes that generate phosphatidylinositol 4-phosphate (PI4P), a minor but essential regulatory lipid found in all eukaryotic cells. To convert their lipid substrates, PI4Ks must be recruited to the correct membrane compartment. PI4KB is critical for the maintenance of the Golgi and trans Golgi network (TGN) PI4P pools, however, the actual targeting mechanism of PI4KB to the Golgi and TGN membranes is unknown. Here, we present an NMR structure of the complex of PI4KB and its interacting partner, Golgi adaptor protein acyl-coenzyme A binding domain containing protein 3 (ACBD3). We show that ACBD3 is capable of recruiting PI4KB to membranes both in vitro and in vivo, and that membrane recruitment of PI4KB by ACBD3 increases its enzymatic activity and that the ACBD3:PI4KB complex formation is essential for proper function of the Golgi. Phosphatidylinositol 4-kinase beta (PI4KB, also known as PI4K IIIβ ) is a soluble cytosolic protein yet its function is to phosphorylate membrane lipids. It is one of four human PI4K enzymes that phosphorylate phosphatidy- linositol (PI) to generate phosphatidylinositol 4-phosphate (PI4P)1,2. PI4P is an essential lipid found in various membrane compartments including the Golgi and trans-Golgi network (TGN), the plasma membrane and the endocytic compartments. -
Functional Dependency Analysis Identifies Potential Druggable
cancers Article Functional Dependency Analysis Identifies Potential Druggable Targets in Acute Myeloid Leukemia 1, 1, 2 3 Yujia Zhou y , Gregory P. Takacs y , Jatinder K. Lamba , Christopher Vulpe and Christopher R. Cogle 1,* 1 Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610-0278, USA; yzhou1996@ufl.edu (Y.Z.); gtakacs@ufl.edu (G.P.T.) 2 Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610-0278, USA; [email protected]fl.edu 3 Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0278, USA; cvulpe@ufl.edu * Correspondence: [email protected]fl.edu; Tel.: +1-(352)-273-7493; Fax: +1-(352)-273-5006 Authors contributed equally. y Received: 3 November 2020; Accepted: 7 December 2020; Published: 10 December 2020 Simple Summary: New drugs are needed for treating acute myeloid leukemia (AML). We analyzed data from genome-edited leukemia cells to identify druggable targets. These targets were necessary for AML cell survival and had favorable binding sites for drug development. Two lists of genes are provided for target validation, drug discovery, and drug development. The deKO list contains gene-targets with existing compounds in development. The disKO list contains gene-targets without existing compounds yet and represent novel targets for drug discovery. Abstract: Refractory disease is a major challenge in treating patients with acute myeloid leukemia (AML). Whereas the armamentarium has expanded in the past few years for treating AML, long-term survival outcomes have yet to be proven. To further expand the arsenal for treating AML, we searched for druggable gene targets in AML by analyzing screening data from a lentiviral-based genome-wide pooled CRISPR-Cas9 library and gene knockout (KO) dependency scores in 15 AML cell lines (HEL, MV411, OCIAML2, THP1, NOMO1, EOL1, KASUMI1, NB4, OCIAML3, MOLM13, TF1, U937, F36P, AML193, P31FUJ).