An Overview of Aquaponic Systems: Aquaculture Components D

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of Aquaponic Systems: Aquaculture Components D NCRAC Technical Bulletins North Central Regional Aquaculture Center 10-2017 An Overview of Aquaponic Systems: Aquaculture Components D. Allen Pattillo Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ncrac_techbulletins Part of the Agriculture Commons Recommended Citation Pattillo, D. Allen, "An Overview of Aquaponic Systems: Aquaculture Components" (2017). NCRAC Technical Bulletins. 20. http://lib.dr.iastate.edu/ncrac_techbulletins/20 This Report is brought to you for free and open access by the North Central Regional Aquaculture Center at Iowa State University Digital Repository. It has been accepted for inclusion in NCRAC Technical Bulletins by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. An Overview of Aquaponic Systems: Aquaculture Components Abstract Aquaponics is an integrated production operation that encompasses recirculating aquaculture systems and hydroponics to produce fish and plants in a closed-loop system that mimics the ecology of nature. Simply said, the fish produce nutrient-rich effluent that fertilizes the plants, and the plants filter the water for the fish. Fish waste from the aquaculture portion of the system is broken down by bacteria into dissolved nutrients that plants then utilize to grow in the hydroponic component. This nutrient removal not only improves water quality for the fish but also decreases overall water consumption by limiting the amount released as effluent. The synergistic relationship of the fish and plants has created a popular perception of sustainability around aquaponics by the general public. Additionally, aquaponics can be scaled from a bench-top hobby unit to multi-acre commercial production facilities. Disciplines Agriculture This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ncrac_techbulletins/20 Technical Bulletin Series North Central Regional Aquaculture Center Technical Bulletin Series An Overview of Aquaponic Systems: Aquaculture Components D. Allen Pattillo1 Introduction system, nutrient effluence is virtually non-existent, allowing Aquaponics is an integrated production operation agriculture to take a large step toward environmental that encompasses recirculating aquaculture systems and sustainability. Moreover, fish, plant, and waste solids can hydroponics to produce fish and plants in a closed-loop all be captured and converted into fertilizer products for system that mimics the ecology of nature. Simply said, the additional sale. These benefits make aquaponics a viable fish produce nutrient-rich effluent that fertilizes the plants, option for gardeners and producers who have limited space and the plants filter the water for the fish. Fish waste from or reside in cities, giving more people access to locally- the aquaculture portion of the system is broken down by produced, healthy foods. bacteria into dissolved nutrients that plants then utilize to Hydroponics and recirculating aquaculture evolved grow in the hydroponic component. This nutrient removal as separate disciplines for decades before aquaponics not only improves water quality for the fish but also was discovered, meaning there is very little specialized decreases overall water consumption by limiting the amount equipment for aquaponics. For information on system released as effluent. The synergistic relationship of the fish design for aquaponics, please refer to the North Central and plants has created a popular perception of sustainability Region Aquaculture Center publication “An Overview of around aquaponics by the general public. Additionally, Aquaponic Systems: Hydroponic Components” (NCRAC aquaponics can be scaled from a bench-top hobby unit to TBS 0123) https://store.extension.iastate.edu/Product/15111. multi-acre commercial production facilities. Advantages of this closed-loop system over conventional crop production methods include: • reduced land area requirements, • reduced water consumption, • accelerated plant growth rates, • year-round production in controlled environments, • operational efficiency with shared equipment, • reduced or eliminated effluents, and • multiple crops produced simultaneously. High-value herbs, vegetables, and leafy greens, as well as fish, crayfish, worms, and a number of other products can all be produced, which the producer can use to meet a highly diversified market. Because aquaponics is a closed-loop 1 Iowa State University Extension and Outreach Technical Bulletin #124 October 2017 Technical Bulletin Series Aquaculture System Components Aquaculture” (FA 0003A) https://store.extension.iastate.edu/ Product/14271, and “Standard Operating Procedures – There are several basic components required for an Water Quality Management for Recirculating Aquaculture“ aquaponics system to run effectively. Recirculating (FA 0003B) https://store.extension.iastate.edu/Product/14272. aquaculture systems (RAS) are self-contained growing environments for producing aquatic organisms. Price, Generally, there is a direct relationship between fish size components, functionality, and production capabilities can and tank size (i.e., small fish should be grown in small all vary greatly in RAS, but all systems must have a place tanks). Also, the volume of water available to the fish for solids removal, biological filtration, water flow, and directly affects the dilution of potential toxins in the water for the culture animals to live. Examples of recirculating as well as the stability of water temperature and other water aquaculture system components are illustrated in “Intensive quality parameters; typically, the more water available to Aquaculture Systems – Managing Iowa Fisheries” (PM the fish the better. The shape and materials used for the 1352F) https://store.extension.iastate.edu/Product/4761. culture tanks may be different depending on fish species, The aquaponic system designed and used at Iowa State space limitations in the building, flow regime requirements, University can be seen in Figure 1. A general overview of grading, sorting, and harvesting needs, and other factors RAS components (not fully inclusive) is presented in the (Table 1). The cost of these tanks depends on source following text. materials (Table 2). Table 1. Culture tank shape. Type Quality Pros Cons Cost Grade Round Depends Aids waste Space Depends on removal inefficient on materials Promotes Difficult to materials and swimming grade and design fish harvest Square/ Depends Space Some fish Depends Rectangular on efficient cannot on materials Easy to grade adapt to tank materials and and harvest corners design Flat surfaces cause injuries to swimming Figure 1. Schematic representation of the aquaponic units used fish at Iowa State University. Solids tend to collect Culture Tanks – The culture tank is where the fish in corners live during their growth to the desirable market size. In of tanks aquaculture, there are three main stages of fish production: causing water quality Phase 1–Hatchery, Phase 2–Nursery, and Phase 3–Growout. issues (i.e. As the fish grow their requirements for space, food, water dead zones) quality, lighting, flow, and other factors will change. It is Elliptical Depends Compromise Moderate Depends important to maintain good water quality, adequate oxygen on between solids on materials square and removal materials levels, ideal flow rates, and waste removal in this area. and round tanks ability Water quality is related to chemical components in the water design More space such as ammonia and nitrite, as well as elements needed efficient than for respiration, namely oxygen. For information regarding round tanks water quality, see “Water Quality – Managing Iowa Promotes Fisheries” (PM 1352A) https://store.extension.iastate.edu/ swimming fish Product/4756, “Water Quality Management for Recirculating Easy to grade and harvest 2 An Overview of Aquaponic Systems: Aquaculture Components Technical Bulletin Series Table 2. Culture tank materials. Aeration – The process of aeration agitates the water, Material Grade Pros Cons Cost creating a large surface area for contact between air and Plastic/ Moderate Light weight Size limited Moderate water, thus enhancing gas exchange. The smaller the HDPE Widely by material bubbles, the greater gas exchange that can occur. Aeration strength (High Density available/pre- should be provided in the culture tank to aid the removal Polyethylene) manufactured Rectangular of carbon dioxide (CO2) and increase the dissolved oxygen Non-corrosive tanks can deform due (DO) concentration. Aeration is typically supplied with a HDPE is to water blower that pushes air through a porous sand or ceramic food safe weight block called an air stone. Air bubbles can make some fish UV resistant species feel hidden and more comfortable, while improving Cleanable feeding behavior. Fiberglass High High strength Can Moderate/ Can be used degrade High It is also necessary to provide a cover to prevent fish when for any tank from jumping out of the tanks; some fish, like tilapia, are shape exposed to UV light powerful jumpers and given the opportunity will escape Can be to their demise. Using a heavy lid made of waterproof purchased Non-gel as modules coated material that covers the tank completely is ideal. However, for easy fiberglass gas exchange is important for fish respiration, thus leaving shipping will cause skin irritation small gaps to retain the fish while allowing air to get in Modular for workers
Recommended publications
  • Aquaculture I
    AQUACULTURE I 4. Week HIsToRy of aquaculture WEEkLy TOPICs Week Topics 1. Week What Is aquaculture? 2. Week Importance of aquaculture 3. Week Aquaculture: AnImAL pRoTEIn 4. Week HIsToRy of aquaculture 5. Week oRgAnIsation of aquaculture 6. Week Characteristics of aquaculture 7. Week pond culture 8. Week In static freshwater ponds 9. Week In brackIsH-water ponds 10. Week RUnnIng water culture 11. Week Culture In RE-circulatoRy systems (RAs) 12. Week Aquaculture In raceways, cagEs, And EnCLosures 13. Week monoculture And poLyculture 14. Week RecenT AdvAnces In Aquaculture Aquaculture consists in farming aquatic organisms. Around 500 BCE, the Romans farmed oysters and fish in Mediterranean lagoons, whereas freshwater aquaculture developed empirically some 1000 years earlier in China. Farming carp in ponds led to the complete domestication of this species in the Middle Ages, which is also when mussel farming began, following a technique that remained largely unchanged until the 20th century. https://www.alimentarium.org/en/knowledge/history-aquaculture Farming in ponds through the ages The earliest evidence of fish farming dates back to before 1000 BCE in China. The Zhou dynasty (1112-221 BCE), then the politician Fan Li, around 500 BCE, were the first to describe carp, a symbol of good luck and fortune, as being farmed for food. During the Tang dynasty, around 618, the Emperor Li, whose name means ‘carp’, forbade farming the fish that bore his name. Farmers then turned their attention to similar fish in the Cyprinidae family and developed the first form of polyculture. Liquid manure from livestock farming was also used to stimulate algae growth in ponds and make it more nutritious.
    [Show full text]
  • Aquaponics As an Emerging Production System for Sustainable Production
    Horticulture International Journal Mini review Open Access Aquaponics as an emerging production system for sustainable production Abstract Volume 4 Issue 5 - 2020 With the increase in the consumption of vegetables due to the increase in the population Thaís da Silva Oliveira,1 Letícia Fernanda and the tendency to change the consumer’s eating habits, the demand for water in the 2 1 production process of these foods also grows, requiring the production systems more Baptiston, Jéssica Pacheco de Lima 1Aquaculture Center of University of São Paulo (CAUNESP), efficient in terms of space utilization and natural resources. Aquaponics has gained University of State of São Paulo, Brazil attention for being considered a sustainable system that uses the residues of the creation of 2College of zootechnics and food engineering (USP-FZEA), aquatic organisms for the cultivation of plants, thus having a water and nutrients recycling, University of São Paulo (USP), Brazil in addition to the possibility of having a vertical distribution, optimizing the space. This production system is very interesting due to the possibility of being implemented in homes, Correspondence: Thaís da Silva Oliveira, Aquaculture Center serving as a complement to a family’s diet, and the surplus can be sold in nearby markets, of University of São Paulo (Caunesp), Access Road Prof. Paulo contributing to the local microeconomics, in addition to issues involving human health and Donato Castellane, Jaboticabal, São Paulo, Brazil, nutrition, valuing local culture and environmental education. Following the Sustainable Tel (16)3209-7477, Email Development Goals (SDGs) established by the UN, this food production technique fits into the “Zero Hunger and Sustainable Agriculture” objective, as it provides quality food, Received: August 27, 2020 | Published: September 28, 2020 closer to the consumer and produced with low inclusion of industrial fertilizers, in addition to recognized by FAO as a potential alternative to Smart Agriculture for the climate (Climate-smart agriculture-CSA).
    [Show full text]
  • 12Things You Need to Know to Garden Successfully with Aquaponics
    12Things You Need to Know to Garden Successfully With Aquaponics CONTACT US [email protected] Website Blog Facebook Twitter Community YouTube Introduction Aquaponics is an exciting new way to grow your favorite fruits, vegetables, and ornamental plants by combining the best of aquaculture and hydroponics to create a completely organic, sustainable and productive growing method. This method can be used both inside and out, it is dirt- free, weed-free, chemical-free, and it uses less than 1/10 the water needed by traditional, soil-based gardening. In aquaponic gardening water is pumped from the fish tank into a grow bed that is filled with an inert growing medium. The medium is home to colonies of beneficial bacteria and composting red worms. The bacteria converts the toxic ammonia from the fish waste first into nitrites then into nitrates, and the worms convert the solid waste into vermicomost. At this point the fish waste has become a near-perfect food for the plants. The plants now filter the water by absorbing the converted fish waste, making a healthier environement for the fish. This symbiotic relationship between the plants, fish, and bacteria / worms creates an environment where all the living elements thrive. This article is a guide to some of what you need to know to grow plants and fish successfully in a media-based aquaponic system. It is not intended to be comprehensive, but rather is a high level overview of some of the basic things you need to know in order to start an aquaponics system of your own. We will go into more depth on each of these subject in upcoming newsletters, so watch for them in your inbox! We are passionate about aquaponic gardening here at The Aquaponic Source™, and we hope that you will find a passion for aquaponic gardening gardening as well.
    [Show full text]
  • Recirculating Aquaculture Systems in China-Current Application And
    quac d A ul n tu a r e s e J i o r u e r h n Ying et al., Fish Aquac J 2015, 6:3 s i a F l Fisheries and Aquaculture Journal DOI: 10.4172/2150-3508.1000134 ISSN: 2150-3508 ResearchCommentary Article OpenOpen Access Access Recirculating Aquaculture Systems in China-Current Application and Prospects Liu Ying, Liu Baoliang, Shi Ce and Sun Guoxiang Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China For the past 20 years, aquaculture has seen a worldwide expansion RAS with independent intellectual property rights achieved from the and is the fastest growing food-producing sector in the world, with an experimental stage gradually turns to industrialization, large-scale average annual growth rate of 6-8%. World aquaculture has grown popularization and application. tremendously during the last sixty years from a production of less than a million tonne in the early 1950s to 90.43 million tonnes by 2012. Of Integrative stage (2007~2011): China has made considerable this production, 66.63 million tonnes, or 73.68%, was fish. Aquaculture progress in research and application of marine industrial aquaculture, is now fully comparable to marine capture fisheries when measured by and established the suitable development mode of China’s RAS. volume of output on global scale. The contribution from aquaculture During this period, many species, such as grouper, half-smooth to the world total fish production of capture and aquaculture in 2012 tongue sole, fugu, abalone, and sea cucumber were firstly cultured in reached 42.2%, up from 25.7% in 2000.
    [Show full text]
  • Gulf Council Aquaculture Faqs
    Gulf of Mexico Fishery Management Council Aquaculture Fishery Management Plan Frequently Asked Questions What is offshore aquaculture? Offshore aquaculture is the rearing of aquatic organisms in controlled environments (e.g., cages or net pens) in federally managed areas of the ocean. Federally managed areas of the Gulf of Mexico begin where state jurisdiction ends and extend 200 miles offshore, to the outer limit of the U.S. Exclusive Economic Zone (EEZ). Why conduct aquaculture offshore? Offshore aquaculture is desirable for several reasons. First, there are fewer competing uses (e.g., fishing and recreation) farther from shore. Second, the deeper water makes it a desirable location with more stable water quality characteristics for rearing fish and shellfish. The stronger waterflows offshore also mitigate environmental effects such as nutrient and organic loading. Are there currently any offshore aquaculture operations in federal waters of the United States? Currently there are no commercial finfish offshore aquaculture operations in U.S. federal waters. There are currently 25 permit holders for live rock aquaculture in the EEZ. There are also several aquaculture operations conducting research and commercial production in state waters, off the coasts of California, New Hampshire, Hawaii, Washington, Maine, and Florida. Why did the Gulf of Mexico Fishery Management Council develop a Fishery Management Plan (FMP) for regulating offshore marine aquaculture in the Gulf of Mexico? The current Federal permitting process for offshore aquaculture is of limited duration and is not intended for the large-scale production of fish, making commercial aquaculture in federal waters impracticable at this time. Offshore aquaculture could help meet consumers’ growing demand for seafood with high quality local supply, create jobs in coastal communities, help maintain working waterfronts, and reduce the nation’s dependence on seafood imports.
    [Show full text]
  • China Eco-Wisdom: a Review of Sustainability of Agricultural Heritage Systems on Aquatic-Ecological Conservation
    sustainability Article China Eco-Wisdom: A Review of Sustainability of Agricultural Heritage Systems on Aquatic-Ecological Conservation Maolin Li 1,2, Yongxun Zhang 3,* , Ming Xu 4,*, Lulu He 5, Longteng Liu 6 and Qisheng Tang 7 1 College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China; [email protected] 2 Bureau of Ecology and Environment, The Third Division of Xinjiang Production and Construction Corps, Tumushuke 844000, China 3 Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China 4 Center of International Cooperation Service, Ministry of Agriculture and Rural Affair, Beijing 100125, China 5 College of Humanities and Development Studies, China Agricultural University, Beijing 100094, China; [email protected] 6 Fisheries Development Strategy Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; [email protected] 7 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; [email protected] * Correspondence: [email protected] (Y.Z.); [email protected] (M.X.); Tel.: +86-010-8210-6193 (Y.Z.) Received: 11 October 2019; Accepted: 15 December 2019; Published: 19 December 2019 Abstract: The multiple problems of modern agriculture urge people to probe into sustainability of the traditional agriculture. As important representatives of Chinese traditional agriculture, the agricultural heritage systems on aquatic-ecological conservation (AHSAEC) are confronting threats and urgently needs to be protected. In this study, the functions and value of the AHSAECs are analyzed by multi-disciplinary methods including system analysis methods based on the review of old books and modern scientific research literature, and the nature of their sustainability are discussed, and the countermeasures against their current unsustainability are proposed.
    [Show full text]
  • FAO Fisheries & Aquaculture
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Fishing Techniques Shrimp Otter Trawling Main Components Aquatic species Target Species Shrimps Gear types: Single boat bottom otter trawls Single boat bottom otter trawls A single boat bottom otter trawl is a cone-shaped net consisting of a body, normally made from two, four and sometimes more panels, closed by one or two codends and with lateral wings extending forward from the opening. A bottom trawl is kept open horizontally by two otter boards. A boat can be rigged to tow a single or two parallel trawls from the stern or from two outriggers. Vessel types: Otter trawlers These are trawlers on which the fish is preserved by freezing. Characteristics Shrimp otter trawling Species Environment Shrimps constitute one of the most valuable groups of marine species resources. Approximately 2 million tonnes are captured annually in world's fisheries. Targets in shrimp otter trawling encompasses a wide range of species in both tropical and temperate waters. Fishing Gear Trawls used in otter shrimp trawling encompass a range of designs and sizes. Shrimp trawls are typical made in relatively small meshes, with 20-60 mm in the codend. The mesh size in the belly part of the trawls seldom exceed 80 mm. Some larger shrimp trawls may have larger meshes in the wings, up till 100-200 mm. Vertical opening of shrimp trawls may range from less than 1 till 15-20 meters. Characteristic for otter shrimp trawling is that one or two trawls are towed from the stern of a vessel.
    [Show full text]
  • Fisheries and Aquaculture in Japan January 2021
    Fisheries and Aquaculture in Japan January 2021 Globally, fisheries and aquaculture production is an important source of accessible nutritious food, and abasisof livelihoods. It is also a key driver of coastal and rural economic well-being. However, overfishing, illegal fishing and the combined effects of ocean-based activities and climate change on resources and ecosystems put the sector atrisk and undermine the resilience of those relying on it in many places. Improving fisheries and aquaculture management is crucial to ensure future generations continue to benefit from Ocean resources and ecosystem services. The country notes of the OECD Review of Fisheries 2020 present each country’s situation in brief and identify best policy practices and reform pathways. These notes can also inform dialogue on progress towards internationally- adopted goals and targets with respect to sustainable fisheries and aquaculture management and support policies. Overview of the sector Fisheries and aquaculture production In 2018, Japan produced 4.2 million tonnes of fish (including molluscs and crustaceans), with a value of USD 13775.7 million. 38% of this value came from aquaculture and 62% from fisheries (that is, the capture of wild resources). Between 2008 and 2018, the quantity produced decreased by 25%, while its value decreased by 10%. Figure 1: Fisheries and aquaculture’s contribution to seafood production Aquaculture Marine fisheries Total Seafood production volume, Million t Seafood production value, USD Millions 6 15,000 4 10,000 2 5,000 0 0 2005 2007 2009 2011 2013 2015 2017 2005 2007 2009 2011 2013 2015 2017 Source: FAO dataset ‘Global Fishery and Aquaculture Production Statistics’ (FishStatJ); OECD dataset ‘Marine landings’ (OECD.Stat).
    [Show full text]
  • Utilization of Unique Tailwater Habitats Below High-Head Dams Has Become
    Brown Trout Population Response to Trophy Regulations and Reservoir Discharge in a Large, Southeastern U.S. Tailwater by: David P. Dreves, Jeff R. Ross, and Jarrad T. Kosa Bulletin No. 111 March 2014 BROWN TROUT POPULATION RESPONSE TO TROPHY REGULATIONS AND RESERVOIR DISCHARGE IN A LARGE, SOUTHEASTERN U.S. TAILWATER By David P. Dreves, Jeff R. Ross, Jarrad T. Kosa Kentucky Department of Fish & Wildlife Resources March 2014 Partially funded by Sport Fish Restoration Funds Sport Fish Restoration Project F-40 “Statewide Fisheries Research” ABSTRACT Reservoir tailwaters can be an important resource for developing quality trout fisheries, especially when managed with special regulations. The objective of this study was to evaluate the effectiveness of a 508 mm minimum length limit and a one-fish-per-day creel limit on improving the size structure of the brown trout Salmo trutta population in the Cumberland River below Lake Cumberland, Kentucky. The purpose of the new regulations, which did not include gear or bait restrictions, was to increase the numbers of quality (381-507 mm total length) and trophy-size (≥ 508 mm total length) brown trout in the 121 km tailwater. A significant increase in brown trout electrofishing catch per unit effort was observed across years for small (< 381 mm), quality, trophy-size trout, and all sizes combined. As brown trout electrofishing and angler catch rates increased over time, no corresponding decrease in growth or condition was observed. Reservoir discharge was positively correlated with warmer water temperatures and lower dissolved oxygen in the tailwater. Growth and condition of brown trout in the tailwater were inversely correlated with an index of discharge from the reservoir.
    [Show full text]
  • Aquaponics Systems and Management
    Introduction to Aquaponics Systems and Management Patricia Duncan, Ph.D. Georgia Center for Aquaculture Development Cooperative Extension Program, Fort Valley State University Fort Valley, GA What is Aquaponics? Aquaponics combines the culture of aquatic animals in recirculating aquaculture systems (RAS) with the hydroponic cultivation of plants. Hydroponics is the soilless culture of plants in a nutrient solution. Aquaponics vs Hydroponics In Hydroponics, a chemical nutrient solution is provided for the plants In aquaponics, by providing a nutritionally complete, formulated feed to the fish, the required nutrients and minerals will be supplied to the plants through the fish feeding and processing feed. As in all recirculating aquaculture systems (RAS), all the nutrients must be supplied to the fish in the feed since there are no pond organisms available as food. Requirements to Grow Plants in Hydroponic Systems Support for the plant above the solution Aeration of the solution Prevention of light reaching the solution so there will be no growth of algae Proper pH balance Proper nutrients Requirements to Grow Aquatic Animals in Recirculating Aquaculture Systems (RAS) Good Water Quality Optimum temperature Proper pH Sufficient Dissolved Oxygen Good Feed Means to treat animal waste Water Quality Parameters Important to Aquatic Animal Growth and Health Dissolved oxygen Temperature Ammonia Nitrite pH Alkalinity/Hardness Carbon Dioxide/Carbonate Cycle Solids (Total Suspended Solids) Aquaponic Systems which Support Dense
    [Show full text]
  • Polyculture of Fishes in Aquaponics and Recirculating Aquaculture
    Issue # 48 Aquaponics Journal www.aquaponicsjournal.com 1st Quarter, 2008 Polyculture of Fishes in Aquaponics and Recirculating Aquaculture By: Eron Martan Abstract Polyculture of fishes (and invertebrates) in aquapon‐ base produced the most relevant results. When ics and recirculating aquaculture is a promising way the key words polyculture and aquaponics were we can return advanced modern agriculture to sus‐ used, there were no articles found. Using the for‐ tainable agriculture using biological controls. Poly‐ mer set of key words, there were about 40 articles culture would enhance aquaponics by producing a related to polyculture, almost all of which were variety of seafood products for local consumption. referring to polycultures carried out in earthen There has been very little published research on ponds. Other databases were tried also, but pro‐ polycultures in aquaponics so much of this work is duced fewer and less relevant results. Searches based on the experience of expert scientists. Be‐ using the key word aquaponics came up with zero cause of the lack of previous studies, there is very results in all but the Blackwell Synergy database little statistical data to present. However, it has which contained one relevant article. been confirmed that redclaw lobsters are being polycultured with tilapia; they are cultured in the Due to a lack of information alternative sources hydroponics raceways where the plants are grown were sought out. A subscription to the Aquaponics on floating rafts. The information from the inter‐ Journal was ordered. Use of a World Aquaculture views indicates that using physical separation is nec‐ Society (WAS) membership which includes access essary to prevent negative species interactions.
    [Show full text]
  • Tilapia Culture in Mainland China
    TILAPIA CULTURE IN MAINLAND CHINA Lai Qiuming1 and Yang Yi2 1. College of Aquaculture, Hainan University, China 2. Aquaculture and Aquatic Resources Management, Asian Institute of Technology, Thailand INTRODUCTION Tilapia culture in mainland China ! Started in early 1960s. " Not successful, due to many reasons. ! Have expanded rapidly since early 1980s In responds to: " Introduction of new strains " Success in all-male tilapia production " Improvement in both nursing and grow-out technologies " 18,100 mt in 1984 ---- 706,585 mt in 2002 " Annual growth rate of 25%. " Since 1997, production in China has produced about 50% of the world tilapia production 800,000 700,000 600,000 500,000 400,000 300,000 200,000 Production (metric tons) Production 100,000 0 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 World Tilapia Production World Tilapia Production of 1,461,239 mt in 2002 Cuba 3% Others Colombia United States 4% 3% 1% Brasil Costa Rica 5% 1% Indonesia 3% Ecuador 2% Egypt China 4% 47% Mexico 8% Thailand 7% Philippines 6% Taiwan Prov. 6% Major Tilapia Producers (2002) • China - 706,000 metric tons / year • Mexico - 102,000 mt / year • Thailand - 100,000 mt / year • Philippines - 92,284 mt / year • Taiwan Province - 85,000 mt / year • Brazil - 75,000 mt / year • Indonesia - 50,000 mt / year HISTORY OF TILAPIA INTRODUCTION AND CULTURE IN CHINA Initial stage: 1960s - 1970s. ! Mozambique tilapia: Introduced to Guangdong province from Vietnam in 1956 Culture failed, due to: • early maturation • overpopulation • small size and slow growth • poor cold-tolerance ! Israeli red tilapia was introduced from Japan in 1973, but no large-scale culture in 1970s.
    [Show full text]