SEMECARPUS ANACARDIUM LINN. – a REVIEW Paras Jain* and HP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leaf Aqueous Extract in the Seed Germination and Seedling Growth of Lettuce, Tomato and Sicklepod
1932 Bioscience Journal Original Article CHEMICAL PROFILE AND ALLELOPATHIC POTENTIAL OF Anacardium humile St. Hill. (CAJUZINHO-DO-CERRADO) LEAF AQUEOUS EXTRACT IN THE SEED GERMINATION AND SEEDLING GROWTH OF LETTUCE, TOMATO AND SICKLEPOD PERFIL QUÍMICO E POTENCIAL ALELOPÁTICO DO EXTRATO AQUOSO DE Anacardium humile St. Hill. (CAJUZINHO-DO-CERRADO) NA GERMINAÇÃO E FORMAÇÃO DE PLÂNTULAS DE ALFACE, TOMATE E FEDEGOSO Kelly Cristina Lacerda PEREIRA1; Rosemary MATIAS1; Elvia Silvia RIZZI1; Ana Carolina ROSA1; Ademir Kleber Morbeck de OLIVEIRA1* 1. Graduate Studies Program in Environment and Regional Development, University Anhanguera-Uniderp, Campo Grande, MS, Brazil. *[email protected] ABSTRACT: Anacardium genus, Anacardiaceae, stands out for the presence of phenolic compounds. One of its species, investigated for its different potential uses, is Anacardium humile; however, little is known about its allelopathic effects. Therefore, the present study aimed to determine the chemical profile and evaluate the herbicide potential of your leaves in the germination of seeds and growth of seedlings of Lactuca sativa (lettuce), Lycopersicon esculentum (tomato) and Senna obtusifolia (sicklepod), both in vitro and in greenhouse. Leaves of A. humile were obtained from 20 matrices of Cerrado fragments in the municipality of Campo Grande, Mato Grosso do Sul state, Brazil. A voucher specimen was deposited at the herbarium (no. 8448). The aqueous extract was obtained from dried and crushed leaves using the extraction method of ultrasonic bath (30 min) with subsequent static maceration. After solvent evaporation, 12.78 g of extract were obtained. The chemical profile of the aqueous extract included determination of total phenolic and flavonoid contents, pH, electrical conductivity, and soluble solids concentration. -
(Anacardium Excelsum (Bertero Ex Kunth) Skeels) En La Jurisdicción CAR
Plan de manejo y conservación del Caracoli (Anacardium excelsum (Bertero ex Kunth) Skeels) en la jurisdicción CAR. P lan de Manejo y Conservación del Caracoli (Anacardium excelsum (Bertero ex Kunth) Skeels) en la jurisdicción CAR Plan de Manejo y Conservación del Caracoli (Anacardium excelsum (Bertero ex Kunth) Skeels) en la jurisdicción CAR 2020 Plan de manejo y conservación del Caracoli (Anacardium excelsum (Bertero ex Kunth) Skeels) en la jurisdicción CAR. PLAN DE MANEJO Y CONSERVACIÓN DEL CARACOLI (Anacardium excelsum (Bertero ex Kunth) Skeels) EN LA JURISDICCIÓN CAR DIRECCIÓN DE RECURSOS NATURALES DRN LUIS FERNADO SANABRIA MARTINEZ Director General RICHARD GIOVANNY VILLAMIL MALAVER Director Técnico DRN JOHN EDUARD ROJAS ROJAS Coordinador Grupo de Biodiversidad DRN JOSÉ EVERT PRIETO CAPERA Grupo de Biodiversidad DRN CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA CAR ACTUALIZACIÓN 2020 2 TERRITORIO AMBIENTALMENTE SOSTENIBLE Bogotá, D. C. Avenida La Esperanza # 62 – 49, Centro Comercial Gran Estación costado Esfera, pisos 6 y 7 Plan de manejo y conservación del Caracoli (Anacardium excelsum (Bertero ex Kunth) Skeels) en la jurisdicción CAR. Los textos de este documento podrán ser utilizados total o parcialmente siempre y cuando sea citada la fuente. Corporación Autónoma Regional de Cundinamarca Bogotá-Colombia Octubre 2020 Este documento deberá citarse como: Corporación Autónoma Regional de Cundinamarca CAR. 2020. Plan de Manejo y Conservación del Caracoli (Anacardium excelsum (Bertero ex Kunth) Skeels) en la jurisdicción CAR. 61p. 2020. Plan de manejo y conservación del Caracoli (Anacardium excelsum (Bertero ex Kunth) Skeels) en la jurisdicción CAR. Todos los derechos reservados. 3 TERRITORIO AMBIENTALMENTE SOSTENIBLE Bogotá, D. C. Avenida La Esperanza # 62 – 49, Centro Comercial Gran Estación costado Esfera, pisos 6 y 7 Plan de manejo y conservación del Caracoli (Anacardium excelsum (Bertero ex Kunth) Skeels) en la jurisdicción CAR. -
Transferability and Characterization of Microssatellite Loci in Anacardium Humile A
Transferability and characterization of microssatellite loci in Anacardium humile A. St. Hil. (Anacardiaceae) T.N. Soares, L.L. Sant’Ana, L.K. de Oliveira, M.P.C. Telles and R.G. Collevatti Laboratório de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil Corresponding author: T.N. Soares E-mail: [email protected] Genet. Mol. Res. 12 (3): 3146-3149 (2013) Received June 1, 2012 Accepted September 25, 2012 Published January 4, 2013 DOI http://dx.doi.org/10.4238/2013.January.4.24 ABSTRACT. Microsatellite markers were transferred from the cashew, Anarcadium occidentale, to Anacardium humile (Anacardiaceae), a Neotropical shrub from the Brazilian savanna, that produces an edible nut and pseudo-fruit. We tested 14 microsatellite primers from A. occidentale on A. humile. Polymorphism of each microsatellite locus was analyzed based on 58 individuals from three populations. Twelve loci amplified successfully and presented 2 to 9 alleles; expected heterozygosity ranged from 0.056 to 0.869. These 12 microsatellite loci provide a new tool for the generation of fundamental population genetic data for devising conservation strategies for A. humile. Key words: Anacardium humile; Anarcadium occidentale; Genetic diversity; Heterologous primer; Neotropical savannas Genetics and Molecular Research 12 (3): 3146-3149 (2013) ©FUNPEC-RP www.funpecrp.com.br Microsatellite transferability in Anacardium humile 3147 INTRODUCTION Anacardium humile A. St. Hil. (Anacardiaceae) is a Neotropical shrub species distributed in well-delimited patches of rocky savannas in the Cerrado biome, Central-West Brazil. The nut, similar to the Brazilian cashew nut, and the edible pseudo-fruit are consumed in natura or used as a source of raw material by small industries of traditional candies, and also for homemade therapeutic recipes due to its antifungal, antibacterial and antidiarrheal activity, thereby playing an important role in the traditional culture and economy of the local population of Central-West Brazil. -
Effect of Seed Size on Germination of Semecarpus Anacardium (Marking Nut) in Garhwal Himalaya
Int.J.Curr.Microbiol.App.Sci (2019) 8(9): 2590-2596 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 09 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.809.300 Effect of Seed Size on Germination of Semecarpus anacardium (Marking Nut) in Garhwal Himalaya P. Rathiesh*, Ajeet Kumar Negi and Dinesh Singh Department of Forestry and NR, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India *Corresponding author ABSTRACT The present study was conducted to generate information on effect of seed size on germination of Semecarpus anacardium in Garhwal Himalaya. K e yw or ds Semecarpus anacardium is a medium sized deciduous tree, growing up to Seed Size, 10-15 metres in height. The plant grows naturally in tropical and sub- Germination, tropical climate and distributed in sub-Himalayan region, Tropical region, Semecarpus Bihar, Bengal, Orissa and central parts of India. It’s an important medicinal anacardium, Garhwal Himalaya plant species possessing Anti-Cancer, Anti-inflammatory and several diseases like skin disease, fungal disease, excessive menstruation, fever, Article Info constipation, etc. The experiment was carried out at HNB Garhwal Accepted: University, Srinagar during 2015-2016 in CRD experimental design with 24 August 2019 five replications. There were 3 treatments namely S1 as small seeds, S2 as Available Online: 10 September 2019 medium seeds and S3 as larger seeds. The highest germination percent was found in S (Large sized seed) is 32%. Thus the experiment reveals that the 3 seed size enhances the seed germination percent of Semecarpus anacardium. -
(Semecarpus Anacardium L.): an Underutilized Plant of Tropics
Eluciadation of the Plant Morphological and Biochemical Characterization of Bhela (Semecarpus Anacardium L.): An Underutilized Plant of Tropics Arkendu Ghosh ( [email protected] ) Birsa Agricultural University Koyel Dey Government of West Bengal Health & Family Welfare Department Md Abu Hassan Bidhan Chandra Krishi Viswa Vidyalaya Fatik Kumar Bauri Bidhan Chandra Krishi Viswa Vidyalaya Bikash Chandra Das Bidhan Chandra Krishi Viswa Vidyalaya Research Article Keywords: Characterization, Growth trend, Reproductive phenology, Semecarpus anacardium, Underutilized fruit Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-533042/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Semecarpus anacardium L. is a potential underutilized edible, highly nutritious fruit crop with ample medicinal properties grown in some localized pockets of India. Being a hardy crop, it can be easily used for climate resilient horticulture adaptation. But due to inadequate knowledge it is remains in underused position. Therefore the investigation was carried out to study the morphological and biochemical characteristics of the plant which will help in further improvement of the crop. The plant followed quadratic growth curve in different vegetative characters and leaf chlorophyll in both the years. Positive correlation was observed in different vegetative characters with different weather parameters during rst year whereas in second year negatively correlation was recorded with sunshine hours only. The vegetative growth almost ceased during winter season, slow to moderate growth during summer and rapid growth was noticed from rainy to autumn season during experimentation. Leaf chlorophyll content followed an increasing trend during April to November and whereas a decreasing trend from December-March. -
Diversity and Evolution of Rosids
*Malpighiales • large and diverse group of 39 families - many of them Diversity and contributing importantly to tropical Evolution of Rosids forest diversity . willows, spurges, and maples . *Salicaceae - willows, poplars *Salicaceae - willows, poplars Chemically defined by salicins (salicylic acid). Many 55 genera, 1000+ species of shrubs/trees - 450 are willows members of the tropical “Flacourtiaceae” with showy flowers (Salix), less numerous are poplars, aspens (Populus). also have salicins and are now part of the Salicaceae Populus deltoides - Salix babylonica - Dovyalis hebecarpa Oncoba spinosa American cottonwood weeping willow 1 *Salicaceae - willows, poplars *Salicaceae - willows, poplars Willows (Salix) are dioecious trees of temperate regions with female male • nectar glands at base of bract allows reduced flowers in aments - both insect and wind pollinated insect as well as wind pollination • fruit is a capsule with cottony seeds for wind dispersal female male Salix babylonica - weeping willow *Salicaceae - willows, poplars *Salicaceae - willows, poplars • species vary from large trees, shrubs, to tiny tundra subshrubs • many species are “precocious” - flower before leaves flush in spring Salix discolor - pussy willow Salix herbacea - Salix pedicellaris - Salix fragilis - dwarf willow bog willow crack willow 2 *Salicaceae - willows, poplars *Salicaceae - willows, poplars Populus - poplars, cottonwood, aspens male • flowers possess a disk • cottony seeds in capsule female Populus deltoides American cottonwood Populus deltoides - American cottonwood *Salicaceae - willows, poplars *Salicaceae - willows, poplars Populus balsamifera Balsam poplar, balm-of-gilead P. tremuloides P. grandidentata trrembling aspen bigtooth aspen • aspens are clonal from root sprouts, fast growing, light Populus alba wooded, and important for White poplar pulp in the paper industry Introduced from Europe 3 *Euphorbiaceae - spurges *Euphorbiaceae - spurges Euphorbiaceae s.l. -
I Is the Sunda-Sahul Floristic Exchange Ongoing?
Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared. -
Phylogeny Within the Anacardiaceae Predicts Host Range of Potential Biological Control Agents of Brazilian Peppertree ⇑ G.S
Biological Control 108 (2017) 22–29 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Phylogeny within the Anacardiaceae predicts host range of potential biological control agents of Brazilian peppertree ⇑ G.S. Wheeler , P.T. Madeira Invasive Plant Research Laboratory, USDA-ARS, 3225 College Avenue, Ft. Lauderdale, FL 33314, USA highlights graphical abstract Phylogenetic signal of plant species may predict host range of biocontrol agents. We calculated phylogenetic distances between species with combined ITS1 and trnL-F. Host range of recommended agents decreased steeply with phylogenetic distance. Phylogenetic distance had greater influence on recommended than rejected species. Phylogenetic distance can predict of host range and can assist in test plant lists. article info abstract Article history: Predicting the host range of a biological control agent prior to release is one of the most important steps Received 30 November 2016 in the development of new agents. Knowing which species are most at risk of this non-target damage Revised 23 January 2017 improves the predictability of these tests. To predict safety, the potential agent is exposed to a subset Accepted 31 January 2017 of the entire flora that represents valued native, agricultural and ornamental plant species. The list of Available online 2 February 2017 plants includes those species that are the closest relatives to the target weed. To identify these species, molecular phylogenies can be useful tools that potentially identify the most vulnerable plant species. Keywords: While conducting biological control research of the invasive weed Brazilian peppertree, Schinus tere- Phylogenetic distance binthifolia, we conducted nuclear ITS1 and chloroplast trnL-F analysis of agricultural, commercial and Schinus terebinthifolia Anacardiaceae native plants that are related to the weed. -
Osmophores and Floral Fragrance in Anacardium Humile and Mangifera Indica (Anacardiaceae): an Overlooked Secretory Structure in Sapindales
Research Article Osmophores and floral fragrance inAnacardium humile and Mangifera indica (Anacardiaceae): an overlooked secretory structure in Sapindales Elisabeth Dantas Tölke1*, Julien B. Bachelier2, Elimar Alves de Lima1, Marcelo José Pena Ferreira3, Diego Demarco3 and Sandra Maria Carmello-Guerreiro1 1Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CEP 13083-970 Campinas, São Paulo, Brazil 2Institute of Biology, Structural and Functional Plant Diversity Group, Freie Universität Berlin, Altensteinstrasse 6, 14195 Berlin, Germany 3Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP 05508-090 São Paulo, São Paulo, Brazil Received: 18 July 2018 Editorial decision: 21 September 2018 Accepted: 4 October 2018 Published: 5 October 2018. Associate Editor: Paula Jameson Citation: Tölke ED, Bachelier JB, de Lima EA, Ferreira MJP, Demarco D, Carmello-Guerreiro SM. 2018. Osmophores and floral fragrance in Anacardium humile and Mangifera indica (Anacardiaceae): an overlooked secretory structure in Sapindales. AoB PLANTS 10: ply062; doi: 10.1093/aobpla/ply062 Keywords=Head1=Keywords=Head1_First Head1=Head2=Head1=Head2/Head1 Abstract. Flowers of Anacardiaceae and other Sapindales typically produce nectar, but scent, often associated Head2=Head3=Head2=Head3/Head2 with a reward for pollinators, has surprisingly been mentioned only rarely for members of the family and order. Head1_First=Head2=Head1_First=Head2/Head1 However, flowers of Anacardium humile and Mangifera indica produce a strong sweet scent. The origin and com- NList_dot_numeric2=NList_lc_dot_alpha_Sub1=NList_dot_numeric=NList_lc_dot_alpha_Sub position of these floral scents is the subject of this study. Screening of potential osmophores on the petals and App_Head1=App_Head2=App_Head1=App_Head2/Head1 investigations of their anatomy were carried out by light, scanning and transmission electron microscopy. -
Molecular Systematics of the Cashew Family (Anacardiaceae) Susan Katherine Pell Louisiana State University and Agricultural and Mechanical College
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2004 Molecular systematics of the cashew family (Anacardiaceae) Susan Katherine Pell Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Pell, Susan Katherine, "Molecular systematics of the cashew family (Anacardiaceae)" (2004). LSU Doctoral Dissertations. 1472. https://digitalcommons.lsu.edu/gradschool_dissertations/1472 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. MOLECULAR SYSTEMATICS OF THE CASHEW FAMILY (ANACARDIACEAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Susan Katherine Pell B.S., St. Andrews Presbyterian College, 1995 May 2004 © 2004 Susan Katherine Pell All rights reserved ii Dedicated to my mentors: Marcia Petersen, my mentor in education Dr. Frank Watson, my mentor in botany John D. Mitchell, my mentor in the Anacardiaceae Mary Alice and Ken Carpenter, my mentors in life iii Acknowledgements I would first and foremost like to thank my mentor and dear friend, John D. Mitchell for his unabashed enthusiasm and undying love for the Anacardiaceae. He has truly been my adviser in all Anacardiaceous aspects of this project and continues to provide me with inspiration to further my endeavor to understand the evolution of this beautiful and amazing plant family. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
Pollen Wall Development in Mango (Mangifera Indica L., Anacardiaceae)
Pollen wall development in mango (Mangifera indica L., Anacardiaceae) Jorge Lora and José I. Hormaza Department of Subtropical Fruit Crops. Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM la Mayora-UMA-CSIC). Avenida Dr. Wienberg, s/n. 29750 Algarrobo-Costa, Málaga (Spain) Tel: (+34) 952 54 89 90 Fax:(+34) 952 55 26 77 ✉ Jorge Lora [email protected] ORCID ID: 0000-0001-9713-0431 1 Abstract The mango (Mangifera indica) is a woody perennial crop currently cultivated worldwide in regions with tropical and subtropical climates. Despite its importance, an essential process such as pollen development, and, specifically, cell wall composition that influences cross-talk between somatic cells and the male germline, is still poorly understood in this species and in the Anacardiaceae as a whole. A detailed understanding of this process is particularly important to know the effect of low temperatures during flowering on pollen development that can be a limiting factor for fertilization and fruit set. To fill this gap, we performed a thorough study on the cell wall composition during pollen development in mango. The results obtained reveal a clear differentiation of the cell wall composition of the male germline by pectins, AGPs and extensins from the early developmental stages during microsporogenesis and microgametogenesis reflecting a restricted communication between the male germline and the surrounding somatic cells that is very sensitive to low temperatures. The combination of the results obtained provides an integrated study on cell wall composition of the male germline in mango that reveals the crucial role of the sporophyte and the gametophyte and the vulnerability of the process to low temperatures.