Chronotropic Incompetence: a Proposal for Br Heart J: First Published As 10.1136/Hrt.70.5.400 on 1 November 1993

Total Page:16

File Type:pdf, Size:1020Kb

Chronotropic Incompetence: a Proposal for Br Heart J: First Published As 10.1136/Hrt.70.5.400 on 1 November 1993 400 Br Heart3' 1993;70:400-402 FOR DEBATE Chronotropic incompetence: a proposal for Br Heart J: first published as 10.1136/hrt.70.5.400 on 1 November 1993. Downloaded from definition and diagnosis Demosthenes Katritsis, A John Camm Between 1958 and 1960 Astrand docu- exercise testing that is <75%16 or <80%"7 of mented the normal heart rate response to the predicted MPHR. Other arbitrary defini- exercise in healthy individuals and noted that tions such as a maximum exercise heart rate the maximum heart rate decreased with age.' 2 <100 beats/min" or <120 beats/min'8 have A reduced cardiac chronotropic response to also been used. However, the achievement of isoprenaline has been reported in elderly sub- maximum exercise is not always possible. jects and alterations in catecholamine- Elderly cardiac patients, especially those adrenergic receptor interactions may be disabled by chronotropic incompetence, are responsible for this change of cardiovascular unable to perform sufficient exercise on the regulation in the elderly.35 In addition the treadmill. Furthermore, everyday life activi- parasympathetic innervation of the sinus ties of these patients usually correspond to node is currently under investigation.6 Over low work loads up to 6 metabolic equivalents the years it has also been recognised that corresponding to the first stage of the stan- an inadequate chronotropic response dard Bruce protocol. In addition, not much is (chronotropic incompetence) at maximal known about the patterns of heart rate accel- exercise is common in patients with cardiac eration and deceleration in the presence of disease78 and much interest has centred chronotropic incompetence. on the pathophysiological mechanism(s) Wilkoff et al,'9 using exercise testing with involved in chronotropic incompetence.910 respiratory gas analysis and employing a Despite this, no universally accepted defini- less demanding protocol, the so-called tion of chronotropic incompetence exists and Chronotropic Assessment Exercise Protocol the criteria for its diagnosis are not defined. (CAEP), recently established a method by However, a precise diagnosis of this condition which the chronotropic response during sub- http://heart.bmj.com/ is of clinical importance. First, adaptive-rate maximal exercise can be assessed. This was pacing may be beneficial in patients who achieved by comparing relative metabolic clearly demonstrate chronotropic incompe- levels with relative heart rates-that is, by tence."'''4 Secondly, chronotropic incompe- normalising the change in heart rate from rest tence has also been documented in patients to maximal exertion as a linear function of with chronic heart failure and may contribute the change in metabolic workload. The to the impairment of physical capacity seen in normal predicted heart rate at some sub- these patients.7 '5 maximal stage of exercise, regardless of on October 1, 2021 by guest. Protected copyright. the protocol used, is given by the formula: Terminology and definitions HRstage = [(220-age-HRret) x The term chronotropic incompetence implies (METSstage-1) I (METSpeak1)] + HRrest the inability of the heart to increase its rate in proportion to metabolic demand. where METS = Vo2(ml/kg/min)/3 5, and Consequently, it refers either to inadequacy METSpeak = the peak functional capacity of the sinus node or, in the case of complete achieved during the test. heart block, of the lower escape pacemaker to This formula is proposed as a guide to the respond to exercise or other autonomic expected heart rate at various stages of exer- changes. Unfortunately in published reports a cise in normal subjects able to exercise to maxi- clear distinction is not always made between mum workload, but it gives no idea as to the of the sinus node expectation in patients who are unable to Department of chronotropic incompetence Cardiological and of the lower escape pacemaker. achieve anaerobic peak exercise. In these Sciences, St George's The current definitions of chronotropic patients the application of the formula will Hospital Medical incompetence usually rely on the heart rate produce an exaggerated estimate of School, London D Katritsis response achieved at maximal exercise. The chronotropic incompetence during submaxi- A J Camm expression which was formulated by Astrand mal exercise because of its reliance on Correspondence to: to predict the age dependent maximum sinus METSpeak as a denominator in the equation. Dr D Katritsis, Department rate to exercise Wilkoffs methodology has been used of Cardiological Sciences, St response (maximum pre- recently Georges's Hospital Medical dicted heart rate, MPHR) was MPHR = by Kay20 in a proposed model for assessment School, Cranmer Terrace, incom- of the rates offered London SW17 ORE. (220-age) beats/min and chronotropic pacing by adaptive-rate defined as a pacemakers from the of exercise to Accepted for publication petence has been arbitrarily beginning 26 April 1993 maximum exercise heart rate achieved during complete recovery. Chronotropic incompetence: a proposalfor definition and diagnosis 401 Prevalence the sinus node to accelerate in response to The prevalence of this condition in most metabolic demands secondary to intrinsic dis- patient populations is not known and the ease or negative chronotropic drugs. inconsistency in defining chronotropic incom- Functional chronotropic incompetence mani- petence in the various reported studies makes fests itself either as atrial tachyarrhythmias or Br Heart J: first published as 10.1136/hrt.70.5.400 on 1 November 1993. Downloaded from comparative analysis of the existing data diffi- as retrograde ventriculoatrial conduction cult. It has been suggested that approximately resulting in sinus node reset, pacemaker- 40% of the pacemaker population exhibit mediated tachycardia, or the so-called atri- some degree of chronotropic incompetence oventricular desynchronisation arrhythmia and might benefit from rate-adaptive pacing2l (that is, unsensed retrograde P waves fol- and that this percentage increases with time lowed by ineffectual atrial stimulation during after implantation.'7 The prevalence of atrial refractoriness26). In such cases there is chronotropic incompetence in sick sinus interference with sinus node activity prevent- syndrome (due to inadequate response of the ing an appropriate sinus node rate response sinus node), defined as <120 beats/min at to exercise or autonomic changes. maximum exercise, has been reported to Jrunctional chronotropic incompetence in range from 28% to 57%.18 Characteristically, patients with permanent atrial fibrillation the definition of chronotropic incompetence implies inability of the heart rate to achieve in the published series is not always clear.22 In 80% of the predicted values owing to the atri- atrial fibrillation (usually due to inadequate oventricular conduction defect. Also in response of the atrioventricular node conduc- patients with complete heart block it refers to tion) the chronotropic response to exercise the inability of the escape junctional pace- may be impaired in up to 60% of the maker to achieve at least 80% of the pre- patients.23 In patients with acquired complete dicted value. In cases of an intra-hisian or heart block (usually due to inadequate infra-hisian block the term ventricular response of the His-Purkinje pacemaker) chronotropic incompetence is more appropri- chronotropic incompetence is almost univer- ate-to denote incompetence of the escape sal. Chronotropic incompetence is not only focus. important in patients with primary conduc- tion disease but is also common in patients DIAGNOSIS with heart failure whether this is caused by Ideally, cardiopulmonary exercise testing with ischaemic heart disease'5 or dilated or hyper- respiratory gas analysis is required for a trophic cardiomyopathy.2' Studies are cur- proper assessment of the chronotropic rently underway to determine the true response, though this facility is not univer- prevalence of chronotropic incompetence in sally available. We propose the following such patients and to assess whether the practical scheme: restoration of chronotropic competence is of (1) If patients achieve more than 80% of therapeutic benefit. their predicted maximum heart rate during an ordinary exercise test chronotropic incompe- http://heart.bmj.com/ tence is not present. Proposals (2) In patients unable to achieve at least DEFINITIONS 80% of their predicted maximum heart rate A standard definition of chronotropic incom- on exercise, exercise testing with respiratory petence is proposed based ott an anatomical gas analysis should be performed, particularly and a physiological differentiation. From an in patients with abnormal left ventricular anatomical perspective chronotropic incom- function. petence is divided into sinus nodal, junc- (a) Patients who achieve the anaerobic on October 1, 2021 by guest. Protected copyright. tional, or ventricular. Whereas from a threshold are chronotropically incompetent. physiological perspective we have proposed25 (b) In those patients who do not reach the a distinction between two varieties: specific or anaerobic threshold at peak exercise, submax- functional. imal chronotropic incompetence at any stage of submaximal exercise can be assessed Chronotropic incompetence is the inability of the according to Wilkoffs formula. Since the heart rate to achieve at least 80% (an arbi- "METSpeak" value available will be necessarily trary percentage for the time being) of the smaller than the one that corresponds to the predicted value
Recommended publications
  • Electrocardiography in Horses – Part 2: How to Read the Equine ECG
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography Vlaams Diergeneeskundig Tijdschrift, 2010, 79 Thema: electrocardiography in horses 337 Electrocardiography in horses – part 2: how to read the equine ECG Elektrocardiografie bij paarden – deel 2: interpretatie van het EKG T. Verheyen, A. Decloedt, D. De Clercq, P. Deprez, S. U. Sys, G. van Loon Department of Large Animal Internal Medicine Faculty of Veterinary Medicine, Ghent University Salisburylaan 133, 9820 Merelbeke, Belgium [email protected] ABSTRACT The equine practitioner is faced with a wide variety of dysrhythmias, of which some are physiological. The recording of an exercise electrocardiogram (ECG) can help distinguish between physiological and patholog- ical dysrhythmias, underlining the importance of exercise recordings. The evaluation of an ECG recording should be performed in a highly methodical manner in order to avoid errors. Each P wave should be followed by a QRS complex, and each QRS complex should be preceded by a P wave. The classification of dysrhythmias according to their origin helps to understand the associated changes on the ECG. In this respect, sinoatrial nodal (SA nodal), atrial myocardial, atrioventricular nodal (AV nodal) and ventricular myocardial dysrhythmias can be distinguished. Artefacts on the ECG can lead to misinterpretations. Recording an ECG of good quality is a prerequisite to prevent misinterpretations, but artefacts are almost impossible to avoid when recording during exercise. Changes in P or T waves during exercise also often lead to misinterpretations, however they have no clinical significance. SAMENVATTING De paardendierenarts wordt geconfronteerd met een waaier van dysritmieën, waarvan sommige fysiologisch zijn.
    [Show full text]
  • Presentation Title
    Meet the experts: Cardiogenic Shock Inotropes: effects on the heart, the microcirculation and other organs ACCA Masterclass 2017 Alessandro Sionis Director Acute & Intensive Cardiac Care Unit Hospital de la Santa Creu I Sant Pau Universitat de Barcelona Spain Disclosures (last 5 years) ► Speaker: Abiomed, Maquet, Novartis, Orion-Pharma ► Clinical trials: Cardiorentis, Novartis, Orion-Pharma ► Research grants: Novartis, Orion-Pharma ► Royalties: No PATIENT WITH AHF Bedside assessment to identify haemodynamic profile CONGESTION? YES (95% of AHF patients) NO (5% of AHF patients) “Wet” “Dry” POOR PERFUSION? NO YES NO YES “Wet” & “Warm” “Wet” & “Cold” “Dry” & “Warm” “Dry” & “Cold” Adapted from 2016 ESC HF Guildeines PATIENT WITH AHF Bedside assessment to identify haemodynamic profile CONGESTION? YES (95% of AHF patients) NO (5% of AHF patients) “Wet” “Dry” POOR PERFUSION? NO YES NO YES “Wet” & “Warm” “Wet” & “Cold” “Dry” & “Warm” “Dry” & “Cold” Adapted from 2016 ESC HF Guildeines Definitions of Terms Used in Cardiogenic Shock Diagnosis Term Definition Symptoms/signs of congestion (left-sided) Orthopnoea, paroxysmal nocturnal dyspnoea, pulmonary rales (bilateral), peripheral oedema (bilateral). Symptoms/signs of congestion (right-sided) Jugular venous dilatation, peripheral oedema, congested hepatpmegaly, hepatojugular reflux, ascites, symptoms of gut congestionsymptoms of gut congestion. Symptoms/signs of hypoperfusion Clinical: cold sweated extremities, oliguria, mental confusion, dizziness, narrow pulse pressure. Laboratory measures: metabolic
    [Show full text]
  • Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M
    Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M. Baumgarten, Ph.D. OBJECTIVES: 1. Describe the basic characteristics of cardiac electrical activity and the spread of the action potential through the heart 2. Compare the characteristics of action potentials in different parts of the heart 3. Describe how serum K modulates resting potential 4. Describe the ionic basis for the cardiac action potential and changes in ion currents during each phase of the action potential 5. Identify differences in electrical activity across the tissues of the heart 6. Describe the basis for normal automaticity 7. Describe the basis for excitability 8. Describe the basis for conduction of the cardiac action potential 9. Describe how the responsiveness relationship and the Na+ channel cycle modulate cardiac electrical activity I. BASIC ELECTROPHYSIOLOGIC CHARACTERISTICS OF CARDIAC MUSCLE A. Electrical activity is myogenic, i.e., it originates in the heart. The heart is an electrical syncitium (i.e., behaves as if one cell). The action potential spreads from cell-to-cell initiating contraction. Cardiac electrical activity is modulated by the autonomic nervous system. B. Cardiac cells are electrically coupled by low resistance conducting pathways gap junctions located at the intercalated disc, at the ends of cells, and at nexus, points of side-to-side contact. The low resistance pathways (wide channels) are formed by connexins. Connexins permit the flow of current and the spread of the action potential from cell-to-cell. C. Action potentials are much longer in duration in cardiac muscle (up to 400 msec) than in nerve or skeletal muscle (~5 msec).
    [Show full text]
  • Cardiovascular System: Heart
    Cardiovascular System: Heart Cardiovascular System – Heart Conducting cells: Cardiac Electrophysiology Cardiac cells specialized to quickly spread action potentials across myocardium • Weak force generators System allows for orderly, sequential depolarization and Intrinsic Conduction System: contraction of heart Normal sinus rhythm: 1) AP originates at SA node 2) SA node fires at 60 – 100 beats / min Atrial internodal tracts Sinoatrial node: (SA node) 3) Correct myocardial activation sequence • Located in right atrial wall • Initiates action potentials (APs) • Pacemaker (~ 80 beats / min) Bundle branches Atrioventricular node: (AV Node) • Connects atria to ventricles • Slowed conduction velocity • Ventricular filling Purkinje Bundle of His fibers Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 18.14 1 Cardiovascular System – Heart Cardiac Electrophysiology The autonomic nervous system can directly affect the heart rate; these effects are called chronotropic effects Recall: spontaneous depolarization = VG Na+ channels Positive chronotrophic effects: (increase heart rate) • Under sympathetic control Leads to g ; cells SA Na NE node reach threshold more rapidly Sinoatrial node Pharmacology: β1 receptors β-blockers (e.g., propanolol) Negative chronotrophic effects: (decrease heart rate) • Under parasympathetic control Leads to gNa; cells reach threshold SA less rapidly ACh node Leads to gK; cells hyperpolarized during Muscarinic receptors repolarization stage (further from threshold) Costanzo (Physiology, 4th ed.) – Figure
    [Show full text]
  • Basic ECG & Arrhythmias
    Basic ECG & Arrhythmias Damronggpyj, Sukitpunyaroj, MD ECG • 12 lead ECG • ECG strip (Rhythm strip) ECG • 12 ldECGlead ECG • ECG s tri p – Complete – Limited information information • RtRate, r hthhythm, + Ischemia • Rate, rhythm, axis, hthhypertrophy, – Easy to get ischemia, • Monitor : Telemetry, miscellaneous Defibrillator – Longer strip give – Takes more time more information – May not obtained about rhythm = from telemetry rhythm strip monitor Cardiac Cycle R ST P T PR Q S QT interval P wave: Atrial contraction (<2.5 small box) PR interval: AV conduction time (< 1 large box) QRS complex: Ventricular depolarization(< 3 small box ) Twave: Ventricular repolarization Five Aspects for ECG Reading •Rate • Rhythm • AiAxis • Hypertrophy • Infarction ECG Paper 5 big box = 1 sec 0.1 mV • ECG paper runs by a machine with the rate of 25 mm/sec •Standardization 10 mm = 1 mVolt Rate = 300/N = 1500/n R 0 R1 300 150 100 75 60 50 43 กระดาษว่ิงดวยความเร็ว 25 mm ใน 1 วินาที ” ” 1 ” 1/ 25 = 0.04 ” ” ” 5 ” 0.04 x 5 = 0.2” จาก R0 ถึง R1 : 0.2 sec ได = 1 cardiac cycle 60 sec = 60/ 0.2 = 300/ 1 Quick rate determination Rate = ???? Marked Bradyygycardia or Total Irregular Rhythm 3 second marks 6 second strip Rate = Cardiac cycle in 6 second strip x 10 Rate = ??? Rate = ??? Five Aspects for ECG Reading • RtRate •Rhyth m • Axis • Hypertrophy • Infarction Rhyy(thm(Arrh ythmia ) “ Always Measure P-R In terva l an d QRS C ompl ex ” Varying Rhythm : sinus arrhythmia, Wandering pacemaker, AF Extra Beats and Skips : premature beats, escape beats, sinus arrest Rapid Rhythm : PSVT, AFl, AF, VT, VFl, VF Heart Blocks : SA blockk, AV block, BBB การอการอานจงหวะการเตนหวใจานจังหวะการเตนหัวใจ • ตองมองหา P waves และ QRS complexes – Rate – Regular or Irregular – MhlMorphology • สังเกตุความสัมพันธระหวาง P waves และ QRS complexes -> PR interval 1.
    [Show full text]
  • ECG Interpretation
    Basics of ECG Interpretation Royal College of Physicians Conference Student Track September 2018 Dr. Stephen Noe, DMS-c, MPAS, PA-C Objectives • Explain how depolarization and repolarization of cardiac myocytes produces a predictable waveform patter on an ECG. • Identify patterns of myocardial ischemia, injury, and infarction on an ECG. • Explain how myocardial ischemia, injury, and infarction produce predictable waveform patterns on the ECG. • Explain the pathophysiology and clinical significance of atrioventricular block, bundle branch block, hypertrophy, and QT prolongation. • Identify atrioventricular block, bundle branch block, hypertrophy, and QT prolongation on an ECG. • Explain the pathophysiology and clinical significance of chronotropic incompetence, sinus pause, sinus exit block, and sick sinus syndrome. Cardiac Depolarization and Repolarization ECG Basics • ECG complexes appear upright (Positive) if electricity is moving towards the area of the myocardium that ECG complex represents • ECG complexes appear downright (Negative) if electricity is moving away from the area the myocardium that ECG complex represents Bipolar Limb Leads (I, II, III) Unipolar Limb Leads Chest Leads Chest Leads ECG Leads ECG Waveforms PR Interval: Start of P wave to QRS Complex; time from SA node activation to AV node activation QT Interval: Start of QRS to end of T wave Measurement Intervals Calculating Rate Calculating Axis RCA: supplies the RV and the inferior portion of the LV, the AV node and the conal branch supplies the SA node LAD: supplies
    [Show full text]
  • Inotropes, Vasopressors, and Chronotropes OH MY! a Review For
    Inotropes, Vasopressors, and Chronotropes OH MY! A Review for the Young and the Seasoned MATT RUBERTUS, PHARMD CLINICAL PHARMACY SPECIALIST – CARDIOTHORACIC SURGERY/CRITICAL CARE EMORY UNIVERSITY HOSPITAL ATLANTA, GA Disclosure I have nothing to disclose pertaining to this presentation http://oz.wikia.com Objectives Review the mechanism of action for vasopressors and inotropes Recognize common side effects of different vasopressors and inotropes Review data for the use of alternative agents to treat vasoplegia Describe where angiotensin II fits into therapy Clinical Scenarios Shock Cardiogenic Vasodilatory Sepsis Cardiac Surgery Valve Disease Decompensated Heart Failure http://thefilmspectrum.com Hypotension Hypotension Baroreceptor Decreased Renal Activation Perfusion Increased RASS Activation Sympathetic Activity Cardiac Stimulation Vasoconstriction Volume Expansion Increased HR and Increased Preload Contractility Increased Cardiac Increased Systemic Increased Cardiac Output Vascular Resistance Output Increased Blood Pressure Hemodynamics The ultimate goal of cardiac function is perfusion Must deliver adequate oxygen to meet metabolic demand of end organs Oxygen delivery is affected by multiple factors Hemoglobin Oxygen saturation Cardiac output Cardiac Output (CO) = Heart Rate (HR) x Stroke Volume (SV) Hemodynamics Stroke Heart Rate CO = X Volume Rate Rhythm Preload Contractility Afterload CVP MAP Vasopressors http://thefilmspectrum.com Alpha Receptors Alpha1 Located in vascular smooth muscle Cause vasoconstriction
    [Show full text]
  • Chronotropic Incompetence Limits Aerobic Exercise Capacity in Patients Taking Beta-Blockers: Real-Life Observation of Consecutive Patients
    healthcare Article Chronotropic Incompetence Limits Aerobic Exercise Capacity in Patients Taking Beta-Blockers: Real-Life Observation of Consecutive Patients Krzysztof Smarz 1,*,† , Maciej Tysarowski 1,2,†, Beata Zaborska 1, Ewa Pilichowska-Paszkiet 1 , Małgorzata Sikora-Frac 1 , Andrzej Budaj 1 and Tomasz Jaxa-Chamiec 1 1 Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; [email protected] (M.T.); [email protected] (B.Z.); [email protected] (E.P.-P.); [email protected] (M.S.-F.); [email protected] (A.B.); [email protected] (T.J.-C.) 2 Department of Medicine, Rutgers University New Jersey Medical School, Newark, NJ 07103, USA * Correspondence: [email protected] † Both Smarz and Tysarowski contributed equally as first authors to this study. Abstract: Background: Chronotropic incompetence in patients taking beta-blockers is associated with poor prognosis; however, its impact on exercise capacity (EC) remains unclear. Methods: We analyzed data from consecutive patients taking beta-blockers referred for cardiopulmonary exercise testing to assess EC. Chronotropic incompetence was defined as chronotropic index (CI) ≤ 62%. Results: Among 140 patients all taking beta-blockers (age 61 ± 9.7 years; 73% males), 64% with heart failure, chronotropic incompetence was present in 80.7%. EC assessed as peak oxygen uptake was lower in the group with chronotropic incompetence, 18.3 ± 5.7 vs. 24.0 ± 5.3 mL/kg/min, p < 0.001. EC correlated positively with CI (β = 0.14, p < 0.001) and male gender (β = 5.12, p < 0.001), and negatively Citation: Smarz, K.; Tysarowski, M.; with age (β = −0.17, p < 0.001) and presence of heart failure (β = −3.35, p < 0.001).
    [Show full text]
  • The Effects of Vasopressin in Isolated Rat Hearts
    IndiaD J Physiol Pharmacol 2001; 45 (I); 54-62 THE EFFECTS OF VASOPRESSIN IN ISOLATED RAT HEARTS ZIYA KAYGISIZ', T. ERDAL KABADERE", SADETTIN DERNEK'" AND SERDAR H. ERDEN···· Departments of "'Physiology, "''''Ophthalmology, no·Cardiovascular Surgery and nonoCheckup, Osmangazi University, Medical Faculty, 26480, Eskisehir, Turkey (Received on January 4, 2000) Abstract: The roles of cOMP, prostaglandins, the entry of extracellular ea2• through slow channels, endothelium and VI receptors in the negative inotropic, chronotropic and coronary vasoconstrictor responses to arginine vasopressin (AVP) have been investigated in isolated perfused rat hearts. The bolus injection of 5)(10·' M AVP produced a significant decrease in contractile force, heart rate and coronary now. AVP also significantly decreased conlractile force, heart rate and coronary now in hearts pretreated with an inhibitor of soluble guanylate cyclase methylene blue (IO-ll M), an effective drug for removing endothelium saponin (500 ~g/ml), an inhibitor of cyclooxygenasc indomethacin (10-5 M) or a calcium channel antagonist verapamil (5)( 10-1 M). The potent V. receptor antagonist (Deamino.Pen' , Val4, D-ArrJ·vasopressin (9xlO'" 11) did not alter effects of AVP but the very potent V. receptor antagonist II3·Mercapto-Ii, p­ cyc1opentamethylene-propionyl', O·Me.TyrZ, Arrl-vasopressin (8)(10'" M) abolished these effects. Our results suggest that AVP produces negative inotropic. chronotropic and coronary vasoconstrictor effects in isolated perfused rnt hearts. cOMPo prostaglandin release and C 0 2. entry does not involve in the effects of AVP. These effects are endothelium independent and mediated by V I receptors. The use of V l receptor antagonist [1}­ mercapto-I}.
    [Show full text]
  • Drugs in Cardiology
    Drugs in Cardiology Fozia Ahmed Consultant Cardiologist Manchester Heart Centre What do you need to know about pharmacology for BHRS exam • Cardiac action potential • Vaughn William’s classification • Effects of drugs on pacing thresholds and DFTs • Indications for different drugs • Side effects of drugs – QT interval – Toxicity – contraindications • Drugs for heart failure Phase 4 (Cardiomyocyte AP) • Phase 4= Resting membrane potential – Horizontal line (non-pacemaker cells) – -90mV • In phase 4 membrane most permeable to K+ ions – Fast Na+ channels and slow Ca 2+ channels are closed • Stable vs. unstable phase 4 Phase 0 (depolarisation) • Phase 0=rapid depolarisation – Electrical stimulation of cell by adjacent cell undergoing depolarisation – The K+ channels are closed during phase 0 – Opening of Fast Na+ channels – Influx of Na+ – Increase in membrane potential • Potential inside the cell rises to +10mV Phase 1 (initial repolarisation) • Phase 1 represents initial repolarisation • Closure of fast Na+ channels • Net outflow of K+ – caused by opening of transient + outward K channel (Kto) – hyperpolarising outward K+ current(iKto) Phase 2 (plateau phase) • Phase 2 represents the “plateau phase” • Sustained by: – Inward movement of calcium through Slow (L-type) calcium channels – Slow outward movement of K+ thru the slow delayed rectifier K+ channel • Phase 2 differentiates cardiomyocyte action potentials from those of pacemaker cells, skeletal muscle and nerves Phase 3 (rapid repolarisation phase) • During phase 3, L-type Ca2+ channels
    [Show full text]
  • Inotropic Drugs and Their Mechanisms of Action
    lACC Vol. ~ . No.2 389 August J98· ~ 389-97 BASIC CONCEPTS IN CARDIOLOGY Arnold M. Katz, MD, FACC, Guest Editor Inotropic Drugs and Their Mechanisms of Action HASSO SCHOLZ, MD Hamburg, West Germany This report describes various old and new positive ino­ The latter resemble theophylline and other methylxan­ tropic drugs with respect to their mechanisms of action. thines in that they appear to act mainly as phosphodi­ Drugs with established cardiotonic effects include car­ esterase inhibitors with a subsequent increase in cyclic diac glycosides, betaj-adrenergic agents, glucagon, his­ adenosine monophosphate (cAMP). The mechanism of tamine and the methylxanthines. New agents discussed the positive inotropic effect of alpha-adrenergic stimu­ art: prenalterol, betas- and alpha-adrenergic drugs, am­ lating agents (for example, phenylephrine) is unknown. rinone and sulmazole. Prenalterol is a betaj-adrenergic It is independent of the cAMP system and is not accom­ agent. Betaj-adrenerglc drugs, amrinone and sulmazole, panied by changes in frequency. combine a positive inotropic and a vasodilator effect. Agents that increase the force of contraction of the heart (Fig. I) (7-11). Depolarization of the sarcolemma, that is, are referred to as positive inotropic or cardiotonic drugs. the Na + -dependent upstroke of the action potential , is the The increase in the force of myocardial contraction is ul­ initial event. The depolarization of the cell membrane allows 2 z timately due to an increase in intracellular free Ca + [Ca + li CaZ+ to move down its electrochemical gradient and enter to interact with the contractile proteins or to an increased the cell from the extracellular space during the plateau phase sensitivi ty of the myofilaments for Caz+ , or both.
    [Show full text]
  • Resuscitating the Exercise Stress Test
    TAKE-HOME MEDICAL GRAND ROUNDS POINTS FROM LECTURES BY CLEVELAND CLINIC AND VISITING FACULTY Resuscitating the exercise stress test MICHAEL S. LAUER, MD We are asking the wrong question. Co-director, Coronary Intensive Care Unit; Department of Cardiology, Cleveland Clinic Instead of trying to use exercise testing for diagnosis, we should use it to determine prog- II ABSTRACT nosis. With coronary disease endemic in our society, many, if not most, patients referred for By incorporating additional data, clinicians exercise stress testing have some degree of can transform the exercise stress test from a coronary disease. Exercise stress testing should poor diagnostic test to a good prognostic not be used to diagnose coronary disease, but one. These additional data include indices of to predict cardiac events and mortality. These how the patient's heart rate and blood findings should then be used to guide treat- pressure respond to exercise. Computerized ment and to educate patients about risk fac- measures of electrocardiographic ST- tors. segment changes that adjust for heart rate We are looking for the wrong lesions. also show promise. An exercise ECG is considered abnormal if it shows 1 mm or more of horizontal or LD DOESN'T NECESSARILY MEAN obsolete downsloping ST-segment depression 60 to 80 when it comes to medical technology. msec after the J point. However, ST-segment A case in point is the exercise stress test, abnormalities appear only when the patient used for decades as a test for coronary artery has hemodynamically obstructive lesions; Clinicians are disease. These days, many physicians are stenoses of 50% may not cause stress-induced using the turning away from the traditional exercise ischemia.
    [Show full text]