Anthocyanins of Bignoniaceae. II. Additional Data and Cladistic Analysis Ron Scogin Rancho Santa Ana Botanic Garden
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fair Use of This PDF File of Herbaceous
Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Morphological Phylogenetics of Bignoniaceae Juss
beni-suef university journal of basic and applied sciences 3 (2014) 172e177 HOSTED BY Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/bjbas Full Length Article Morphological phylogenetics of Bignoniaceae Juss. * Usama K. Abdel-Hameed Ain Shams University, Faculty of Science, Botany Department, Abassia, Cairo, Egypt article info abstract Article history: The most recent classification of Bignoniaceae recognized seven tribes, Phylogenetic and Received 7 April 2014 monographic studies focusing on clades within Bignoniaceae had revised tribal and generic Received in revised form boundaries and species numbers for several groups, the portions of the family that remain 22 September 2014 most poorly known are the African and Asian groups. The goal of the present study is to Accepted 23 September 2014 identify the primary lineages of Bignoniaceae in Egypt based on macromorphological traits. Available online 4 November 2014 A total of 25 species of Bignoniaceae in Egypt was included in this study (Table 1), along with Barleria cristata as outgroup. Parsimony analyses were conducted using the program Keywords: NONA 1.6, preparation of data set matrices and phylogenetic tree editing were achieved in Cladistics WinClada Software. The obtained cladogram showed that within the studied taxa of Phylogeny Bignoniaceae there was support for eight lineages. The present study revealed that the two Morphology studied species of Tabebuia showed a strong support for monophyly as well as Tecoma and Monophyletic genera Kigelia. It was revealed that Bignonia, Markhamia and Parmentiera are not monophyletic Bignoniaceae genera. Copyright 2014, Beni-Suef University. Production and hosting by Elsevier B.V. All rights reserved. -
Lamiales – Synoptical Classification Vers
Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. -
China: a Rich Flora Needed of Urgent Conservationprovided by Digital.CSIC
Orsis 19, 2004 49-89 View metadata, citation and similar papers at core.ac.uk brought to you by CORE China: a rich flora needed of urgent conservationprovided by Digital.CSIC López-Pujol, Jordi GReB, Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Avda. Joan XXIII s/n, E-08028, Barcelona, Catalonia, Spain. Author for correspondence (E-mail: [email protected]) Zhao, A-Man Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, The People’s Republic of China. Manuscript received in april 2004 Abstract China is one of the richest countries in plant biodiversity in the world. Besides to a rich flora, which contains about 33 000 vascular plants (being 30 000 of these angiosperms, 250 gymnosperms, and 2 600 pteridophytes), there is a extraordinary ecosystem diversity. In addition, China also contains a large pool of both wild and cultivated germplasm; one of the eight original centers of crop plants in the world was located there. China is also con- sidered one of the main centers of origin and diversification for seed plants on Earth, and it is specially profuse in phylogenetically primitive taxa and/or paleoendemics due to the glaciation refuge role played by this area in the Quaternary. The collision of Indian sub- continent enriched significantly the Chinese flora and produced the formation of many neoen- demisms. However, the distribution of the flora is uneven, and some local floristic hotspots can be found across China, such as Yunnan, Sichuan and Taiwan. Unfortunately, threats to this biodiversity are huge and have increased substantially in the last 50 years. -
A Synoptical Classification of the Lamiales
Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 A Synoptical Classification of the Lamiales Version 2.0 (in progress) Compiled by Richard Olmstead With the help of: D. Albach, B. Bremer, P. Cantino, C. dePamphilis, P. Garnock-Jones, R. Harley, L. McDade, E. Norman, B. Oxelman, J. Reveal, R. Scotland, J. Smith, E. Wallander, A. Weber, A. Wolfe, N. Young, M. Zjhra, and others [estimated # species in Lamiales = 22,000] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near-term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 Acanthaceae (~201/3510) Durande, Notions Elém. Bot.: 265. 1782, nom. cons. – Synopsis compiled by R. Scotland & K. Vollesen (Kew Bull. 55: 513-589. 2000); probably should include Avicenniaceae. Nelsonioideae (7/ ) Lindl. ex Pfeiff., Nomencl. -
Yak Production in Central Asian Highlands
Yak production in central Asian highlands Proceedings of the Third International Congress on Yak held in Lhasa, P.R. China, 4–9 September 2000 ILRI Proceedings Yak production in central Asian highlands Proceedings of the third international congress on yak held in Lhasa, P.R. China, 4–9 September 2000 Edited by H. Jianlin, C. Richard, O. Hanotte, C. McVeigh and J.E.O. Rege Tibetan Academy of Agriculture and Animal Sciences Lhasa 850000, Tibet, P.R. China International Yak Information Centre Gansu Agricultural University Lanzhou 730070, Gansu, P.R. China International Centre for Integrated Mountain Development GPO 3226, Kathmandu, Nepal Yak and Camel Foundation of Germany P.O. Box 10, D-25359 Krempe, Federal Republic of Germany Yak Congress International Livestock Research Institute P.O. Box 30709, Nairobi, Kenya © 2002 ILRI (International Livestock Research Institute) All rights reserved. Parts of this publication may be reproduced for non-commercial use provided that such reproduction shall be subject to acknowledgment of ILRI as holder of copyright. ISBN 92–9146–102–0 Correct citation: Jianlin H., Richard C., Hanotte O., McVeigh C. and Rege J.E.O. (eds). 2002. Yak production in central Asian highlands. Proceedings of the third international congress on yak held in Lhasa, P.R. China, 4–9 September 2000. ILRI (International Livestock Research Institute), Nairobi, Kenya. 572 pp. Table of Contents Preface ...............................................................1 Special session Towards a global approach to the study of yak research and development .............5 C. Jest and J. Bonnemaire The potential for rangeland development in yak-rearing areas of the Tibetan Plateau . 11 C. -
Pollinator Adaptation and the Evolution of Floral Nectar Sugar
doi: 10.1111/jeb.12991 Pollinator adaptation and the evolution of floral nectar sugar composition S. ABRAHAMCZYK*, M. KESSLER†,D.HANLEY‡,D.N.KARGER†,M.P.J.MULLER€ †, A. C. KNAUER†,F.KELLER§, M. SCHWERDTFEGER¶ &A.M.HUMPHREYS**†† *Nees Institute for Plant Biodiversity, University of Bonn, Bonn, Germany †Institute of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland ‡Department of Biology, Long Island University - Post, Brookville, NY, USA §Institute of Plant Science, University of Zurich, Zurich, Switzerland ¶Albrecht-v.-Haller Institute of Plant Science, University of Goettingen, Goettingen, Germany **Department of Life Sciences, Imperial College London, Berkshire, UK ††Department of Ecology, Environment and Plant Sciences, University of Stockholm, Stockholm, Sweden Keywords: Abstract asterids; A long-standing debate concerns whether nectar sugar composition evolves fructose; as an adaptation to pollinator dietary requirements or whether it is ‘phylo- glucose; genetically constrained’. Here, we use a modelling approach to evaluate the phylogenetic conservatism; hypothesis that nectar sucrose proportion (NSP) is an adaptation to pollina- phylogenetic constraint; tors. We analyse ~ 2100 species of asterids, spanning several plant families pollination syndrome; and pollinator groups (PGs), and show that the hypothesis of adaptation sucrose. cannot be rejected: NSP evolves towards two optimal values, high NSP for specialist-pollinated and low NSP for generalist-pollinated plants. However, the inferred adaptive process is weak, suggesting that adaptation to PG only provides a partial explanation for how nectar evolves. Additional factors are therefore needed to fully explain nectar evolution, and we suggest that future studies might incorporate floral shape and size and the abiotic envi- ronment into the analytical framework. -
Bignoniaceae) Honglian Ai1†, Wei Zhou1,2†, Kun Xu3, Hong Wang1* and Dezhu Li1,2*
Ai et al. BMC Plant Biology 2013, 13:195 http://www.biomedcentral.com/1471-2229/13/195 RESEARCH ARTICLE Open Access The reproductive strategy of a pollinator-limited Himalayan plant, Incarvillea mairei (Bignoniaceae) Honglian Ai1†, Wei Zhou1,2†, Kun Xu3, Hong Wang1* and Dezhu Li1,2* Abstract Background: Plants may adapt to alpine habitats by specialization in the reproductive strategy and functional aspects of their flowers and pollination systems. Alpine habitats reduce the opportunities for cross-pollination in a relatively high proportion of alpine plant species, and self-pollination may be favored in these adverse conditions. Here, we investigated the mating system and pollination of Incarvillea mairei, a perennial Himalayan herb typically found at altitudes between 3000 and 4500 m. Results: Analyses of floral morphology, observation of plant-pollinator interactions, and hand pollination experiments were conducted in three natural populations. Outcrossing rates and effective numbers of pollen donors were assessed in 45 open-pollinated families by using progeny analysis based on seven microsatellite markers. Incarvillea mairei displayed a set of apparently specialized floral traits, the stigma is sensitive to touch and close immediately and its reopening allows a second opportunity for the receipt of pollen. The species is fully self-compatible but employs a predominantly outcrossing mating system according to parentage analysis (tm >0.9).Fruitsetwas low (26.3%), whereas seed set was high (67.2%), indicating that this species suffers pollinator limitation. Its main effective pollinator was Halictus sp., and visitation frequency was low. Conclusions: Floral features such as having a sensitive stigma and anther-prongs, in conjunction with pollinator behavior, function together contributing to a set of unique reproductive adaptations that enhance outcrossing success. -
Proposed Authorized Plant List by Genus
DRAFT Greenhouse Certification Program Authorized Plant List Plants must be propagated from seed, Genus Plants must be tissue culture, contains exclusively or other low CITES greenhouse- risk plant Not for export regulated Genus Common Names Family grown material to Hawaii species Comments Artificially propagated specimens of *** All genera of the some hybrids and/or cultivars are Cactaceae (except Cactus Cactaceae 000X not subject to the provisions of the Opuntia aurantiaca) CITES Convention Many orchids are subject to CITES requirements. Artificially propagated *** All genera of hybrids of Cymbidium, Dendrobium, ORCHIDS Orchidaceae 000X Orchidaceae Phalaenopsis and Vanda may be exempted if particular conditions are met. ABROMEITIELLA BROMELIA Bromeliaciae 00X 00 FLOWERING ABUTILON Malvaceae 00000 MAPLE CHENILLE PLANT, ACALYPHA FOXTAIL, JACOB'S Euphorbiaceae 00000 COAT ACANTHOSTACHYS BROMELIA Bromeliaciae 00X 00 ACANTHUS 0 Acanthaceae 00000 ACHILLEA YARROW Asteraceae X X 000 ACHIMENES HOT WATER PLANT Gesneriaceae 00000 TOOTHACHE ACMELLA (SPILANTHES) PLANT, Asteraceae X X 000 SPILANTHES MONKSHOOD, ACONITUM Ranunculaceae X X 000 WOLFBANE ACTAEA (CIMICIFUGA) BANEBERRY Ranunculaceae X X 000 ACTINIOPTERIS 0 Actinopteridaceae 00000 ADENIA 0 Passifloraceae 00000 ADENIUM DESERT ROSE Apocyanaceae 00000 ADIANTUM MAIDENHAIR FERNAdiantaceae 00000 DRAFT GCP Authorized Plant List (09/2010) Page 1 of 40 Plants must be propagated from seed, Genus Plants must be tissue culture, contains exclusively or other low CITES greenhouse- risk plant Not for export -
Molecular Phylogeny of Incarvillea (Bignoniaceae) Based on Its and Trnl-F Sequences1
American Journal of Botany 92(4): 625±633. 2005. MOLECULAR PHYLOGENY OF INCARVILLEA (BIGNONIACEAE) BASED ON ITS AND TRNL-F SEQUENCES1 SHAOTIAN CHEN,2 KAIYUN GUAN,2 ZHEKUN ZHOU,2,3 RICHARD OLMSTEAD,4 AND QUENTIN CRONK5 2Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Kunming, Yunnan, 650204, P. R. China; 4Department of Biology, University of Washington, Hitchcock Hall Rm 423, Seattle, Washington 98195 USA; 5UBC Botanical Garden & Centre for Plant Research, Faculty of Agricultural Sciences, University of British Columbia, 6804 Southwest Marine Drive, Vancouver, British Columbia V6T 1Z4 Canada Incarvillea is a herbaceous and temperate member of Bignoniaceae, previously divided into four subgenera, Niedzwedzkia, Amphi- come, Incarvillea, and Pteroscleris. Niedzwedzkia and Amphicome have in the past been treated as independent genera. Different relationships have been proposed for the four subgenera. Here, maximum parsimony analysis using ITS and trnL-F sequences resulted in similar trees and showed that the genus is monophyletic. Analysis of the combined data resulted in a single tree with ®ve major clades highly supported and well resolved. The relationships of the ®ve major clades are (subgenus Niedzwedzkia (Incarvillea olgae (subgenus Amphicome (subgenus Incarvillea, subgenus Pteroscleris)))). All four subgenera are well supported for monophyly, with the exception of subgenus Incarvillea, represented here by I. sinensis and I. olgae. Incarvillea olgae is not closely related to I. sinensis, a conclusion supported by morphology. The two basal monotypic subgenera are found in Central Asia. The most species-rich subgenus, Pteroscleris, has 10 species in the Himalaya-Hengduan Mountains and may have dispersed early from central Asia to eastern Asia. -
Seed Germination Theory and Practice
993 SEED GERMINATION THEORY AND PRACTICE SECOND EDITION Norman C. Deno, Professor Emeritus of Chemistry Published June 1, 1993 (Second Printing November 1, 1993) Based on Experiments on 145 Families, 805 Genera, and about 2500 Species Every species has some mechanism for delaying germination until after the seed has been dispersed. The Science of Seed Germination is the discovery and description of such mechanisms and the development of procedures for removing them so that the seeds can germinate. To Plant a Seed Is a Noble Deed Propagation Is Conservation • •.•• USDA National Agricufturaj Library HAL Builthng 10301 Baltimore Blvd. 8eitsvde. MD 20705.2351 to SEED GERMINATION, THEORY AND PRACTICE Norman C. Deno, Prof. Emeritus of Chemistry, (Pennsylvania State University) Address all inquiries and orders to Norman C. Deno, 139 Lenor Drive, State College PA 16801, USA Table of Contents by Chapters Page 1 (A) Introduction and (B) Principles 1 2 Germination, Definition and Description 7 3 Design of the Experiments 9 4 Rates of Germination. 18 5 Inhibitor Destruction by Dry Storage 21 6 Inhibitor Destruction by Moist Conditions 24 7 Two or More Inhibiting Systems 30 8 Seeds Embedded in Fruits 33 9 Physical Mechanisms for Inhibiting Germination 37 10 Outdoor Exposure and Oscillating Temperatures- 41 11 Photoeffects 43 12 Exogenous Chemical Effects and the Stimulation of 47 Germination by Gibberelins 13 Dry Storage and Longevity of Seeds 53 14 Growing Plants from Seeds 55 15 Collection of Seeds 62 16 Plant Nomenclature 64 17 Endangered Species and Conservation 67 18 Lists of Genera Studied Arranged by Their Plant Families 68 19 Rate Theory In More Detail 75 20 Data On Germination Arranged by Genera 81 21 The Orchids (Orchidaceae) 234 22 The Grasses (Poaceae) 236 23 List of Seed Donors and Other Contributors 237 24 List of References 240 25 Digest of Symbols and Abbreviations 242 .5.