Vitamin C and Human Health

Total Page:16

File Type:pdf, Size:1020Kb

Vitamin C and Human Health Vitamin C and Human Health Edited by Anitra C. Carr and Margreet M.C. Vissers Printed Edition of the Special Issue Published in Nutrients www.mdpi.com/journal/nutrients Anitra C. Carr and Margreet M.C. Vissers (Eds.) Vitamin C and Human Health This book is a reprint of the special issue that appeared in the online open access journal Nutrients (ISSN 2072-6643) in 2013 (available at: http://www.mdpi.com/journal/nutrients/special_issues/vitamin_C_and_human_health). Guest Editors Anitra C. Carr Research Fellow & Centre Co-ordinator, Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch 8140, New Zealand Margreet C. M. Vissers Professor & Associate Dean (Research), Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch 8140, New Zealand Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Production Editor Martyn Rittman 1. Edition 2014 MDPI • Basel • Beijing ISBN 978-3-906980-62-1 © 2014 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents Anitra C. Carr and Margreet M.C. Vissers Preface Guest Editors ................................................................................................................ V 1. Methodology Overview Alexander J. Michels and Balz Frei Myths, Artifacts, and Fatal Flaws: Identifying Limitations and Opportunities in Vitamin C Research Nutrients 2013, 5(12), 5161-5192 .............................................................................................. 1 http://www.mdpi.com/2072-6643/5/12/5161 2. Cancer & Inflammation Seyeon Park The Effects of High Concentrations of Vitamin C on Cancer Cells Nutrients 2013, 5(9), 3496-3505 .............................................................................................. 33 http://www.mdpi.com/2072-6643/5/9/3496 Amaya Azqueta, Solange Costa, Yolanda Lorenzo, Nasser E. Bastani and Andrew R. Collins Vitamin C in Cultured Human (HeLa) Cells: Lack of Effect on DNA Protection and Repair Nutrients 2013, 5(4), 1200-1217 .............................................................................................. 43 http://www.mdpi.com/2072-6643/5/4/1200 Bassem M. Mohammed, Bernard J. Fisher, Donatas Kraskauskas, Daniela Farkas, Donald F. Brophy, Alpha A. Fowler and Ramesh Natarajan Vitamin C: A Novel Regulator of Neutrophil Extracellular Trap Formation Nutrients 2013, 5(8), 3131-3150 .............................................................................................. 61 http://www.mdpi.com/2072-6643/5/8/3131 3. Neurological Effects Fiona E. Harrison, Gene L. Bowman and Maria Cristina Polidori Ascorbic Acid and the Brain: Rationale for the Use against Cognitive Decline Nutrients 2014, 6(4), 1752-1781 .............................................................................................. 81 http://www.mdpi.com/2072-6643/6/4/1752 IV Naohiro Iwata, Mari Okazaki, Meiyan Xuan, Shinya Kamiuchi, Hirokazu Matsuzaki and Yasuhide Hibino Orally Administrated Ascorbic Acid Suppresses Neuronal Damage and Modifies Expression of SVCT2 and GLUT1 in the Brain of Diabetic Rats with Cerebral Ischemia-Reperfusion Nutrients 2014, 6(4), 1554-1577 ............................................................................................ 111 http://www.mdpi.com/2072-6643/6/4/1554 4. Bioavailability Anitra C. Carr and Margreet C. M. Vissers Synthetic or Food-Derived Vitamin C—Are They Equally Bioavailable? Nutrients 2013, 5(11), 4284-4304 .......................................................................................... 134 http://www.mdpi.com/2072-6643/5/11/4284 Anitra C. Carr, Stephanie M. Bozonet, Juliet M. Pullar, Jeremy W. Simcock and Margreet C. M. Vissers A Randomized Steady-State Bioavailability Study of Synthetic versus Natural (Kiwifruit- Derived) Vitamin C Nutrients 2013, 5(9), 3684-3695 ............................................................................................ 155 http://www.mdpi.com/2072-6643/5/9/3684 Anitra C. Carr, Stephanie M. Bozonet and Margreet C. M. Vissers A Randomised Cross-Over Pharmacokinetic Bioavailability Study of Synthetic versus Kiwifruit-Derived Vitamin C Nutrients 2013, 5(11), 4451-4461 .......................................................................................... 166 http://www.mdpi.com/2072-6643/5/11/4451 5. Human Requirements Joris R. Delanghe, Marc L. De Buyzere, Marijn M. Speeckaert and Michel R. Langlois Genetic Aspects of Scurvy and the European Famine of 1845–1848 Nutrients 2013, 5(9), 3582-3588 ............................................................................................ 177 http://www.mdpi.com/2072-6643/5/9/3582 Maiken Lindblad, Pernille Tveden-Nyborg and Jens Lykkesfeldt Regulation of Vitamin C Homeostasis during Deficiency Nutrients 2013, 5(8), 2860-2879 ............................................................................................ 183 http://www.mdpi.com/2072-6643/5/8/2860 Daniel R. Gallie Increasing Vitamin C Content in Plant Foods to Improve Their Nutritional Value—Successes and Challenges Nutrients 2013, 5(9), 3424-3446 ............................................................................................ 203 http://www.mdpi.com/2072-6643/5/9/3424 V Preface Ascorbic acid is a small, simple, water soluble molecule, synthesised by most plants and animals, with the exception of humans and some animal species due to mutations in the gene encoding the terminal enzyme in the biosynthetic pathway. For humans, it is thus a vitamin (vitamin C) that must be obtained from the diet, with complete deficiency resulting in the fatal disease scurvy. Many functions have been attributed to this fascinating molecule and, despite nearly 90 years of research since its discovery, new roles are still being uncovered, including recent discoveries that it acts as a regulator of epigenetic marks and transcription factors (1). In this volume we begin with a review by Michels and Frei on specific factors that need to be taken into consideration when carrying out vitamin C research. Translational research normally comprises a progression from in vitro/cell culture studies to animal models and finally to clinical trials. At each of these stages, there are requirements specific to vitamin C research that need to be integrated into study designs and this review describes these in detail. Although normal vitamin C intake in humans is via ingestion, in the past decades there has been a surge of interest in the effects of intravenous administration of supra-physiological doses of vitamin C. This is particularly common in the treatment of cancer, and is an area of great controversy (2), most of which can be attributed to the lack of an agreed mechanism of action and numerous issues around study design, including a lack of understanding of vitamin C pharmacokinetics (3). Vitamin C administered intravenously bypasses the regulated intestinal uptake mechanism and results in significantly higher plasma concentrations than are obtained through oral intake. It is proposed that, at these high doses, vitamin C acts as a pro- drug via metal ion-dependent generation of cytotoxic hydrogen peroxide, although other potential anticancer mechanisms are also possible (1). In the contribution by Park, pharmacologic studies of the effects of high dose vitamin C on cancer cells are reviewed. In addition, Azqueta et al. have investigated the pro- and anti-oxidant effects of vitamin C on DNA damage and repair in cultured cervical cancer cells. High dose vitamin C has also been shown to improve the outcomes of patients with sepsis (4). In their contribution, Mohammed et al. used a knockout murine model to investigate the effect of parenteral vitamin C on neutrophil extracellular trap formation, autophagy and apoptosis, in experimentally induced sepsis. The highest levels of vitamin C in the body are found in the brain and neuroendocrine tissue. The brain is also relatively resistant to vitamin C depletion, indicating a vital role for the vitamin. Vitamin C likely has many functions in the brain (5), including acting as a cofactor for monooxygenase-dependent synthesis of neurotransmitters and neuropeptide hormones, as well as recycling of the enzyme cofactor tetrahydrobiopterin. In their contribution, Harrison et al. review the role for vitamin C in the aging brain, covering vitamin C transport, animal studies, and human studies that suggest potential usefulness of vitamin C against cognitive decline. Iwata et al. have investigated the anti-inflammatory and anti- apoptotic effects of vitamin C in the brains of diabetic rats with cerebral ischemia-reperfusion. They also reported vitamin C-dependent regulation of the vitamin C transporter SVCT2, the transporter isoform responsible for vitamin C uptake in neuronal tissue (5). Early vitamin C research, particularly in animal models, indicated that food-derived vitamin C may have enhanced bioavailability compared with synthetic vitamin C. This was attributed to the presence of plant-derived bio-flavonoids. We recently
Recommended publications
  • University of Birmingham the Potential Impact of Essential
    University of Birmingham The Potential Impact of Essential Nutrients Vitamins C and D upon Periodontal Disease Pathogenesis and Therapeutic Outcomes Brock, Gareth; Chapple, Iain DOI: 10.1007/s40496-016-0116-9 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Brock, G & Chapple, I 2016, 'The Potential Impact of Essential Nutrients Vitamins C and D upon Periodontal Disease Pathogenesis and Therapeutic Outcomes', Current Oral Health Reports, vol. 3, no. 4, pp. 337-346. https://doi.org/10.1007/s40496-016-0116-9 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
    [Show full text]
  • Synergistic Antitumor Activity of Vitamins C and K3 on Human Bladder Cancer Cell Lines
    Journal of Cancer Therapy, 2013, 4, 7-19 http://dx.doi.org/10.4236/jct.2013.46A3002 Published Online February 2013 (http://www.scirp.org/journal/jct) Synergistic Antitumor Activity of Vitamins C and K3 on Human Bladder Cancer Cell Lines Karen McGuire1, James M. Jamison1*, Jacques Gilloteaux2, Jack L. Summers1 1The Apatone Development Center, St. Thomas Hospital, Summa Health System, Akron, USA; 2Department of Anatomical Sciences, St Georges’ University International School of Medicine, K B Taylor Scholar’s Programme, Newcastle upon Tyne, UK. Email: *[email protected] Received April 24th, 2013; revised May 26th, 2013; accepted June 3rd, 2013 Copyright © 2013 Karen McGuire et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Exponentially growing cultures of human bladder tumor cells (RT4 and T24) were treated with Vitamin C (VC) alone, Vitamin K3 (VK3) alone, or with a VC:VK3 combination continuously for 5 days or treated with vitamins for 1 h, washed with PBS and then incubated in culture medium for 5 days. Co-administration of the vitamins enhanced the antitumor activity 12- to 24-fold for the RT-4 cells and 6- to 41-fold for the T24 cells. Flow cytometry of RT4 cells ex- posed to the vitamins revealed a growth arrested population and a population undergoing cell death. Growth arrested cells were blocked near the G0/G1-S-phase interface, while cell death was due to autoschizis. Catalase treatment abro- gated both cell cycle arrest and cell death which implicated hydrogen peroxide (H2O2) in these processes.
    [Show full text]
  • Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone
    International Journal of Molecular Sciences Article Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone Viktor A. Timoshnikov 1,*, Tatyana V. Kobzeva 1, Nikolay E. Polyakov 1 and George J. Kontoghiorghes 2,* 1 Institute of Chemical Kinetics & Combustion, 630090 Novosibirsk, Russia; [email protected] (T.V.K.); [email protected] (N.E.P.) 2 Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus * Correspondence: [email protected] (V.A.T.); [email protected] (G.J.K.); Tel./Fax: +7-383-3332947 (V.A.T.); +357-2627-2076 (G.J.K.) Received: 21 February 2020; Accepted: 28 May 2020; Published: 31 May 2020 Abstract: Ascorbic acid (AscH2) is one of the most important vitamins found in the human diet, with many biological functions including antioxidant, chelating, and coenzyme activities. Ascorbic acid is also widely used in medical practice especially for increasing iron absorption and as an adjuvant therapeutic in iron chelation therapy, but its mode of action and implications in iron metabolism and toxicity are not yet clear. In this study, we used UV–Vis spectrophotometry, NMR spectroscopy, and EPR spin trapping spectroscopy to investigate the antioxidant/pro-oxidant effects of ascorbic acid in reactions involving iron and the iron chelator deferiprone (L1). The experiments were carried out in a weak acidic (pH from 3 to 5) and neutral (pH 7.4) medium. Ascorbic acid exhibits predominantly pro-oxidant activity by reducing Fe3+ to Fe2+, followed by the formation of dehydroascorbic acid. As a result, ascorbic acid accelerates the redox cycle Fe3+ Fe2+ in the Fenton reaction, which leads $ to a significant increase in the yield of toxic hydroxyl radicals.
    [Show full text]
  • A Simple and Sensitive Assay for Ascorbate Using a Plate Reader
    ANALYTICAL BIOCHEMISTRY Analytical Biochemistry 365 (2007) 31–39 www.elsevier.com/locate/yabio A simple and sensitive assay for ascorbate using a plate reader Jesse M. Vislisel, Freya Q. Schafer, Garry R. Buettner * ESR Facility and Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA Received 7 December 2006 Available online 7 March 2007 Abstract We have developed a rapid, inexpensive, and reliable assay for the determination of ascorbate using a plate reader. In this assay, ascorbic acid is oxidized to dehydroascorbic acid using Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy) and then reacted with o-phenylenediamine to form the condensation product, 3-(dihydroxyethyl)furo[3,4-b]quinoxaline-1-one. The rate of appearance of this product is monitored over time using fluorescence. With this method, it is possible to analyze 96 wells in less than 10 min. This permits the analysis of 20 samples with a full set of standards and blanks, all in triplicate. The assay is robust for a variety of samples, including orange juice, swine plasma, dog plasma, and cultured cells. To demonstrate the usefulness of the assay for the rapid determination of experimental parameters, we investigated the uptake of ascorbate and two different ascorbate derivatives in U937 cells. We found similar plateau levels of intracellular ascorbate at 24 h for ascorbate and ascorbate phosphate. However, the intracellular accumulation of ascor- bate via the phosphate ester had an initial rate that was three to five times slower than that via the palmitate ester. Only lower concen- trations of the palmitate ester could be examined because the ethanol needed as solvent decreased cell viability; it behaved similarly to the other two compounds at lower concentrations.
    [Show full text]
  • Orthomolecular Psychiatry & RANZCP
    SENATE SELECT COMMITTEE ON MENTAL HEALTH INQUIRY SUBMISSION of Douglas L. McIver ATTACHMENT B Background: Orthomolecular Psychiatry & RANZCP The full text of RANZCP Position Statement #24, titled “Orthomolecular Psychiatry”, is available on the RANZCP website <www.ranzcp.org> in pdf format <http://www.ranzcp.org/publicarea/posstate.asp>. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ There has been much controversy surrounding the issues which led to the formulation of a statement by the RANZCP General Council. The catalyst for the issues was in the context of the Medicare Benefits Schedule when rebates were sought in 1980 by clients of Dr Chris Reading BSc., Dip. Ag.Sc., M.B., B.S., F.R.A.N.Z.C.P. (a Sydney physician and psychiatrist) for some pathology screening tests requested by Dr Reading. Issues arose about orthomolecular medicine and orthomolecular psychiatry in the context of the requirement for the pathology screening tests requested. Issues about the screening tests and orthomolecular psychiatry were raised in Federal Parliament between 1982-84. Note, for instance, the House of Representatives (HoR) Hansard, 18 August 1982 (p550), Answer to Question No 4112; HoR Hansard, 6 March 1984 (pp600/601), Answer to Question 387; Senate Hansard, 22 October 1984 (2099/2100), Questions without Notice, ‘Orthomolecular Medicine’; Senate Hansard 24 October 1984 (p2286), Speech by Senator Haines in debate on Appropriation (Parliamentary Departments) Bill. I encourage the Select Committee to inform themselves of a seven page document prepared by the SOMA Health Association of Australia Ltd titled ‘The saga of the altered definition of orthomolecular psychiatry and the consequences which ensued therefrom’. SOMA Health <http://www.soma-health.com.au> is an independent body and all work is voluntary.
    [Show full text]
  • All There Is to C • Vitamin C and Health the Vitamin C Essentials • Getting Your Vitamin C
    Overview • Journey at C: Vitamin C in the Body All There is to C • Vitamin C and Health The vitamin C essentials • Getting Your Vitamin C Alexander Michels PhD • Vitamin C Myths Linus Pauling Institute Oregon State University May 11th, 2015 Journey at C Journey at C Vitamin C is Ascorbic Acid Vitamin C in the Small Intestine Ascorbic acid is vitamin C by definition: Only sources of ascorbic acid can cure scurvy. Image Source: Wikimedia Commons Extra vitamin C beyond the transport capacity passes through to the large intestine and may be lost Sodium-dependent Vitamin C Journey at C Transporters (SVCTs) Journey at C Vitamin C Intestinal Absorption Absorption and Vitamin C Transporters Ascorbic Acid Dehydroascorbic Acid (Oxidized form of Ascorbic Acid) Glucose Transporters (GLUTs) Remember: There is a limit to vitamin C absorption! 1 Note: Tissue ascorbic acid levels on this slide are hypothetical, but are driven by plasma vitamin C levels. As plasma levels increase, different tissues increase vitamin C Journey at C levels at different rates. The brain is given priority at low Journey at C vitamin C levels, while less essential organs are saturated Vitamin C in Tissues with vitamin C only at higher blood ascorbic acid levels. Vitamin C from Circulation to Tissues Plasma levels peak about 2 hours after a single dose. Vitamin C is transported into tissues when plasma levels rise. From Michels et al. Ann Rev Nutr 33 (2013) Vitamin C levels decline in the Journey at C plasma once kidney reuptake is Journey at C saturated, which also means that Vitamin C Urinary Excretion more passes through to the urine.
    [Show full text]
  • 03-232 Biochemistry Exam II – 2012 -Key Name:______Instructions: This Exam Consists of 100 Points on 6 Pages
    03-232 Biochemistry Exam II – 2012 -Key Name:________________________ Instructions: This exam consists of 100 points on 6 pages. Please use the space provided to answer the question or the back of the preceding page. In questions with choices, all your answers will be graded and you will receive the best grade. Allot 1 min/2 points. A B 1. (10 pts) One protein (protein A) binds naphthalene (ligand) by sandwiching it between two tryptophan residues. Another protein Trp L Trp Tyr L Tyr (protein B) also binds naphthalene by sandwiching it between two OH tyrosine residues, however the binding is weaker. The structure of the H protein-ligand complex is shown on the right (side view), the structures N of tryptophan, naphthalene (ligand), and tyrosine are shown as well. i) What are the principal energetic factor(s) that are responsible for binding of naphthalene to these proteins? (4 pts) Tryptophan(Trp) naphthalene (L) Tyrosine (Tyr) ii) Why does the tyrosine containing protein show weaker binding? (4 pts) ii) Which kinetic rate constant, the off-rate (kOFF) or the on-rate (kON), would be most different between the two proteins? In what way would it differ? Why? (2 pts) i) van der waals (H) and the hydrophobic effect (S) (3 pts for one, 4 points for two). ii) van der waals is reduce because the contact between the tyrosine and the ligand will be smaller. There will be a smaller hydrophobic effect as well because the non-polar surface area of tyrosine is smaller than tryptophan. Therefore in protein B, a smaller number of ordered water molecules will be released.
    [Show full text]
  • Discovery of Oxidative Enzymes for Food Engineering. Tyrosinase and Sulfhydryl Oxi- Dase
    Dissertation VTT PUBLICATIONS 763 1,0 0,5 Activity 0,0 2 4 6 8 10 pH Greta Faccio Discovery of oxidative enzymes for food engineering Tyrosinase and sulfhydryl oxidase VTT PUBLICATIONS 763 Discovery of oxidative enzymes for food engineering Tyrosinase and sulfhydryl oxidase Greta Faccio Faculty of Biological and Environmental Sciences Department of Biosciences – Division of Genetics ACADEMIC DISSERTATION University of Helsinki Helsinki, Finland To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki in Auditorium XII at the University of Helsinki, Main Building, Fabianinkatu 33, on the 31st of May 2011 at 12 o’clock noon. ISBN 978-951-38-7736-1 (soft back ed.) ISSN 1235-0621 (soft back ed.) ISBN 978-951-38-7737-8 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2011 JULKAISIJA – UTGIVARE – PUBLISHER VTT, Vuorimiehentie 5, PL 1000, 02044 VTT puh. vaihde 020 722 111, faksi 020 722 4374 VTT, Bergsmansvägen 5, PB 1000, 02044 VTT tel. växel 020 722 111, fax 020 722 4374 VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland phone internat. +358 20 722 111, fax + 358 20 722 4374 Edita Prima Oy, Helsinki 2011 2 Greta Faccio. Discovery of oxidative enzymes for food engineering. Tyrosinase and sulfhydryl oxi- dase. Espoo 2011. VTT Publications 763. 101 p. + app. 67 p. Keywords genome mining, heterologous expression, Trichoderma reesei, Aspergillus oryzae, sulfhydryl oxidase, tyrosinase, catechol oxidase, wheat dough, ascorbic acid Abstract Enzymes offer many advantages in industrial processes, such as high specificity, mild treatment conditions and low energy requirements.
    [Show full text]
  • Nano-Evolution and Protein-Based Enzymatic Evolution Predicts the Novel
    View Article Online View Journal Nanoscale Advances Accepted Manuscript This article can be cited before page numbers have been issued, to do this please use: G. Nazarbek, A. Kutzhanova, L. Nurtay , C. Mu, B. Kazybay, X. Li, C. Ma, A. Amin and Y. Xie, Nanoscale Adv., 2021, DOI: 10.1039/D1NA00475A. Volume 1 Number 1 This is an Accepted Manuscript, which has been through the January 2018 Pages 1-200 Royal Society of Chemistry peer review process and has been accepted Nanoscale for publication. Advances Accepted Manuscripts are published online shortly after acceptance, rsc.li/nanoscale-advances before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard ISSN 2516-0230 Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. rsc.li/nanoscale-advances Page 1 of 25 Nanoscale Advances 1 Nano-evolution and protein-based enzymatic evolution predicts the novel View Article Online
    [Show full text]
  • This Exam Contains 8 Pages and Consists of 90 Points
    Biochemistry I Exam 2 – 2007 Name:_____________________________ This exam contains 8 pages and consists of 90 points. Allot 2 pts/min. 1. (15 pts) Provide a brief and general description of allosteric effects in biochemical systems (10 pts). Your answer should clearly define tense and relaxed states as well as homotropic and heterotropic compounds. Use either oxygen transport to the tissues or the adaptation of oxygen transport at high altitudes to illustrate your answer (5 pts). 1. ____________/15 2. ____________/12 3. ____________/ 8 4. ____________/12 5. ____________/ 5 6. ____________/10 7. ____________/10 8. ____________/18 Total___________/90 1 Biochemistry I Exam 2 – 2007 Name:_____________________________ 2. (12 pts) Please answer one of the following three choices. Please indicate your choice Choice A: Briefly describe in general terms, using the framework of transition state theory, how enzymes increase the rate of reactions. Choice B: Most proteins (enzymes) are highly specific for their ligands (substrates). Briefly discuss why this is the case and illustrate your answer using any protein or enzyme that we have discussed in the course so far. Choice C: Most enzymes utilize specific residues to accomplish chemical catalysis. Discuss the role of such residues in either the mechanism of serine proteases or HIV protease. 3. (8 pts) Please do one of the following two choices. Choice A: Enzyme kinetic measurements are usually performed under conditions of “steady-state”. Briefly describe what “steady-state” means. Choice B: In enzyme kinetic measurements it is customary to measure the initial rate of the reaction. Why is this important? 2 Biochemistry I Exam 2 – 2007 Name:_____________________________ 4.
    [Show full text]
  • An Overview of Ascorbic Acid Biochemistry
    Ankara Ecz. Fak. Derg. J. Fac. Pharm, Ankara 38 (3) 233-255, 2009 38 (3) 233-255, 2009 AN OVERVIEW OF ASCORBIC ACID BIOCHEMISTRY ASKORBĐK ASĐT BĐYOKĐMYASINA BĐR BAKIŞ Aysun HACIŞEVKĐ Gazi University, Faculty of Pharmacy, Department of Biochemistry, 06330 Etiler-Ankara, TURKEY ABSTRACT Ascorbic acid (vitamin C) is a water-soluble micronutrient required for multiple biological functions. Ascorbic acid is a cofactor for several enzymes participating in the post-translational hydroxylation of collagen, in the biosynthesis of carnitine, in the conversion of the neurotransmitter dopamine to norepinephrine, in peptide amidation and in tyrosine metabolism. In addition, vitamin C is an important regulator of iron uptake, It reduces ferric Fe 3+ to ferrous Fe 2+ ions, thus promoting dietary non-haem iron absorption from the gastrointestinal tract, and stabilizes iron-binding proteins. Most animals are able to synthesise vitamin C from glucose, but humans, other primates, guinea pigs and fruit bats lack the last enzyme involved in the synthesis of vitamin C (gulonolactone oxidase) and so require the presence of the vitamin in their diet. Thus the prolonged deprivation of vitamin C generates defects in the post-translational modification of collagen that cause scurvy and eventually death. In addition to its antiscorbutic action, vitamin C is a potent reducing agent and scavenger of free radicals in biological systems. Key words: Ascorbic acid, Vitamin C, Antioxidant, Oxidative stress ÖZET Askorbik asit, suda çözünen çoklu biyolojik fonksiyonları olan bir mikrobesindir. Kollajen hidroksilasyonu, karnitin biyosentezi, dopaminin norepinefrine çevrimi, peptid amidasyonu ve tirozin metabolizmasına katılan çeşitli enzimler için bir kofaktördür. Ayrıca vitamin C demir alımında önemli bir regülatördür, ferrik demiri ferro formuna redükler ve böylece gastrointestinal sistemden diyet nonhem demir absorbsiyonunu sağlar ve demir bağlı proteinleri stabilize eder.
    [Show full text]
  • Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms Cite This: RSC Adv.,2015,5, 27986 Satish Balasaheb Nimse*A and Dilipkumar Palb
    RSC Advances REVIEW View Article Online View Journal | View Issue Free radicals, natural antioxidants, and their reaction mechanisms Cite this: RSC Adv.,2015,5, 27986 Satish Balasaheb Nimse*a and Dilipkumar Palb The normal biochemical reactions in our body, increased exposure to the environment, and higher levels of dietary xenobiotic's result in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS create oxidative stress in different pathophysiological conditions. The reported chemical evidence suggests that dietary antioxidants help in disease prevention. The antioxidant compounds react in one-electron reactions with free radicals in vivo/in vitro and prevent oxidative damage. Therefore, it is very important to understand the reaction mechanism of antioxidants with the free radicals. This review elaborates the mechanism of action of the natural antioxidant compounds and Received 28th October 2014 assays for the evaluation of their antioxidant activities. The reaction mechanisms of the antioxidant Accepted 12th March 2015 assays are briefly discussed (165 references). Practical applications: understanding the reaction DOI: 10.1039/c4ra13315c mechanisms can help in evaluating the antioxidant activity of various antioxidant compounds as well as Creative Commons Attribution 3.0 Unported Licence. www.rsc.org/advances in the development of novel antioxidants. 1. Introduction and background enzymes convert dangerous oxidative products to hydrogen peroxide (H2O2) and then to water, in a multi-step process in Antioxidants are molecules that inhibit or quench free radical presence of cofactors such as copper, zinc, manganese, and reactions and delay or inhibit cellular damage.1 Though the iron. Non-enzymatic antioxidants work by interrupting free antioxidant defenses are different from species to species, the radical chain reactions.
    [Show full text]