<<

UvA-DARE (Digital Academic Repository)

Design and fabrication through additive manufacturing of devices for multidimensional LC based on computational insights

Adamopoulou, T.

Publication date 2020 Document Version Other version License Other Link to publication

Citation for published version (APA): Adamopoulou, T. (2020). Design and fabrication through additive manufacturing of devices for multidimensional LC based on computational insights.

General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:25 Sep 2021

Symbols and Abbreviations

PFHDA 1H,1H,6H,6H-Perfluoro-1,6-hexyl diacrylate 1 D first dimension 1D one-dimensional 2 D second dimension 2DLC two-dimensional LC 2D-PAGE 2D – poly(acryl amide) gel electrophoresis 2DTLC two-dimensional thin layer chromatography 2PP two-photon polymerization 3 D third dimension 3DLC three-dimensional LC ABS acrylonitrile− butadiene−styrene CAD computer aided design CE capillary electrophoresis CFD computational CGE capillary gel electrophoresis COC cyclic olefin copolymer COSMIC channel of separation with many individual controls DIGE difference gel electrophoresis DLP digital-light-processing EPDM ethylene propylene diene monomer FD flow-distributor FDM finite difference method FEM finite element method FFKM perfluoroelastomer FVM finite volume method HPLC high performance liquid chromatography HPTLC high-performance thin-layer chromatography

- 135 -

Symbols and abbreviations IEF iso-electric focusing IMER immobilized enzyme reactor LC Liquid-Chromatography LC×LC two-dimensional liquid chromatography LIF -induced fluorescence MALDI-MS matrix-assisted laser-desorption/ionization mass spectrometry OPLC overpressured layer chromatography PDE partial differential equations PDMS poly(dimethylsiloxane) PEG-DA polyethylene glycol diacrylate RPLC Reverse-phase Liquid Chromatography SDS-PAGE Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis SIMPLE Semi-Implicit Method for Pressure Linked Equations SLIT Simple Liquid Transfer SLM Selective laser melting STAMP Separation Technology for A Million Peaks TDMA tri-diagonal matrix algorithm TLC thin-layer chromatography t LC temporal liquid chromatography t t LC× LC temporal two-dimensional liquid chromatography t t t LC× LC× LC temporal three-dimensional liquid chromatography TWIST TWo-dimensional Insertable Separation Tool UHPLC ultra high performance liquid chromatography UNC unified coarse thread UV ultraviolet x LC spatial liquid chromatography xLC×tLC two-dimensional liquid chromatography with spatial first- dimension and temporal as a second x x LC× LC spatial two-dimensional liquid chromatography xLC×xLC×tLC three-dimensional liquid chromatography with spatial the first two dimensions and temporal as a third x x x LC× LC× LC spatial three-dimensional liquid chromatography

- 136 -

Symbols and abbreviations n peak capacity N number of theoretical plates L length H plate height

spatial variance in length units tR retention time of the analyte

peak variance in time units 3Dn peak capacity of 3D-LC 1n peak capacity of the first dimension 2n peak capacity of the second dimension 3n peak capacity of the third dimension 3D tω analysis time of 3D-LC 1 tω analysis time of the first dimension 2 tω analysis time of the second dimension 3 tω analysis time of the third dimension zf development distance t development time u velocity (x-direction) ρ density

body force τ stress force p pressure µ(0) zeroth moment µ’(1) first moment µ’(2) second moment c(x) concentration x spatial in the direction of the development σ2 variance

Kfdb permeability value of the flow-distributor barriers 2 K2 D separation zone 3 K3 D Cube permeability 3 K3DFD permeability of the imposed porous zone in the top part of the D flow distributor φ mass fraction V cell volume w width - 137 -

Symbols and abbreviations D diffusion coefficient

εe external porosity K permeability dp particle diameter

niso peak capacity (isocratic mode)

Rs resolution between two consecutive peaks

kw retention factor of the most-retained compound

ka retention factor of the least-retained compound

ngrd peak capacity (gradient mode)

tG gradient time

σpeak peak dispersion under gradient conditions

tm dead time

ke retention factor at the moment of the elution S slope of the line that describes retention (ln k) as a function of the mobile-phase composition Δφ range in composition covered by the gradient z distance along the separation medium 4σ width of the spot 2 σi initial variance of the spot γ tortuosity D diffusion coefficient of the analyte t development time v velocity (y-direction) w velocity (z-direction) p pressure

mean value of velocity u' fluctuating value of velocity

external force

Reynolds stress U quantity F flux Q source A surface

- 138 -

Summary

One-dimensional column-based liquid-chromatography systems do not provide the necessary separation power for the analysis of complex samples. Column-based two- dimensional systems offer higher selectivity and peak capacity. However, they suffer from longer analysis times. Spatial two-dimensional liquid chromatography (xLCxLC) may prove to be an efficient solution, as the peak capacity of the system is ideally the product of the peak capacities of the two dimensions, while the analysis time remains relatively short due to separations performed in parallel. Adding a third dimension can potentially peak capacities in the order of one million, even at modest pressures. The main aspects we need to investigate to create devices for this purpose include flow distribution to enhance uniformity, analyte transfer between dimensions, band broadening, and confinement of the flow in each dimension.

The aim of this thesis is to investigate various designs and arrangements for spatial two- and three-dimensional liquid chromatography, considering band-broadening, analyte-transfer and flow-confinement aspects. Synergies between computational and experimental work were exploited. Computational-fluid-dynamics simulations were conducted to provide insights, which would have been extremely time-consuming or difficult and, in some cases, even impossible to obtain experimentally. For the fabrication of the devices 3D-printing was employed. Different 3D-printing methods were used, with playing a dominant role.

In Chapter 1 a refresher of planar chromatography is provided, as the suggested two- dimensional devices in this thesis are a continuation of such methods. Additionally, an introduction to computational fluid dynamics is included.

- 139 -

Summary In Chapter 2 band-broadening and analyte-transfer aspects of devices for xLCxLC were investigated. First, effects of the type of geometry of the second dimension, viz. flat bed or channels, as well as the presence or absence of stationary-phase material in the first dimension were examined computationally. It was observed that a second dimension in the form of a flat bed performed best in terms of band-broadening. The stationary-phase material in the first-dimension (1D) channel significantly affected both band-broadening and analyte transfer. In the most-favourable case porous zones were present in both the 1D and 2D regions. The devices were fabricated using 3D-printing, more specifically stereolithography. The devices were then tested in terms of flow and pressure.

In Chapter 3 the importance of flow confinement for xLCxLC devices is highlighted with the aid of CFD simulations. A modular active-flow-confinement mechanism is introduced, the so-called TWIST (Two-dimensional Insertable Separation Tool). The valve mechanism is based on an assembly of two parts, an internal and an external one. Both parts have through-holes at the same coordinates. When the through-holes of the two parts are not aligned leakage is prevented and the 1D injection – and eventually separation – can take place. Then, for the analytes separated in the 1D channel to be transferred to the second dimension and for the 2D separation to take place, the through- holes of the two parts are aligned. Stereolithography was employed for the fabrication of the device described in this chapter. The patent that covers both the TWIST device described in this chapter and the SLIT device described in Chapter 5 is appended to this chapter.

In Chapter 4 aspects of flow confinement are discussed in more detail. The feasibility of a passive-flow-confinement mechanism based on porous barriers and differences in permeability between dimensions is examined for devices for spatial two- and three- dimensional liquid chromatography. The necessary permeability values are determined through computational fluid dynamics simulations. Additionally, the impact of the design and operation of the 3D flow distributor is discussed.

- 140 -

Summary In Chapter 5 the potential value of 3D-printing for analytical separations and other fields is demonstrated by various applications. Stereolithography was used for creating housings for devices containing stationary-phase materials, a device for iso-electric focusing, an immobilized-enzyme reactor and a mould for agarose gel to be incorporated in a biocatalytic flow reactor. Selective laser melting was used for the fabrication of modular devices for xLCxLC in .

Chapter 6 describes considerations for the improvement and miniaturization of devices for spatial two- and three-dimensional liquid chromatography.

- 141 -

Samenvatting

Eendimensionale vloeistofchromatografie kolommen leveren onvoldoende scheidend vermogen om complexe mengsels te scheiden. Tweedimensionale systemen gebaseerd op twee kolommen bieden meer selectiviteit en een hogere piekcapaciteit, maar vereisen langere analysetijden. Plaatsbepaalde (“spatial”) tweedimensionale vloeistofchromatografie (xLCxLC) kan een efficiente oplossing bieden, omdat de peakcapaciteit idealiter het product is van die van de twee afzonderlijke dimensies, terwijl de analysetijd relatief kort blijft, omdat alle tweedimensionale scheidingen tegelijkertijd worden uitgevoerd. Door een derde dimensie toe te voegen kunnen peakcapaciteiten in de orde van een miljoen worden bereikt, zelfs met een beperkte druk. De belangrijkste aspecten die onderzocht moeten worden om apparaten voor dit doel te ontwikkelen omvatten verdelers om een uniforme stroom vloeistof te realiseren, overdracht van analieten tussen de dimensies, bandverbreding en inperking van de vloeistofstroom binnen de gewenste dimensie.

Het doel van dit proefschrift is om verschillende ontwerpen en uitvoeringen te onderzoeken voor twee- en driedimensionale spatial vloeistofchromatografie, waarbij aandacht wordt besteed aan bandverbreding, analietoverdracht en inperking van de stroom. Hierbij wordt gebruik gemaakt van de synergie tussen rekenkundige en experimentele benaderingen. Simulaties met computational-fluid-dynamics (CFD) zijn uitgevoerd om inzichten te verkrijgen, die langs experimentele weg slechts ten koste van veel tijd en moeite – of soms helemaal niet – kunnen worden verkregen. Voor de fabricage van de apparaten is 3D-printing gebruikt. Verscheidene 3D-printing methoden zijn toegepast, waarbij stereolithografie een dominante rol vervulde.

- 142 -

Samenvatting In Hoofdstuk 1 wordt kennis op het gebied van dunnelaagchromatografie samengevat, omdat de voorgestelde tweedimensionale apparaten in dit proefschrift voortbouwen op dergelijke methoden. Daarnaast geeft dit hoofdstuk een inleiding in computational fluid dynamics.

In Hoofdstuk 2 worden aspecten van bandverbreding en analietoverdracht van apparaten voor xLCxLC onderzocht. Eerst worden de effecten van de tweede-dimensie (2D) geometrie, d.w.z. een vlak bed of afzonderlijke kanalen, en van de aan- of afwezigheid van stationaire-fase materiaal in de eerste dimensie (1D) rekenkundig onderzocht. Een vlak bed blijkt de beste 2D configuratie in termen van bandverbreding. De aanwezigheid van stationaire-fase materiaal in het 1D kanaal blijkt een aanzienlijk effect te hebben op zowel de bandverbreding als op de overdracht van analieten van de eerste naar de tweed dimensie. In de gunstigste situatie bevinden zich poreuze materialen in zowel het 1D als het 2D domein. De apparaten zijn vervaardigd met behulp van 3D-printing, i.h.b. stereolithografie en zijn getest in termen van stroming en druk.

In Hoofdstuk 3 wordt het belang van de inperking van de stroming in xLCxLC apparaten benadrukt met behulp van CFD simulaties. Een modulair mechanisme wordt geïntroduceerd voor de actieve inperking van de vloeistofstroom, de zogenaamde TWIST (Two-dimensional Insertable Separation Tool). Het schakelmechanisme is gebaseerd op een samenstelling van twee onderdelen, één intern en één extern. Beide onderdelen zijn voorzien van gaten op overeenkomstige locaties. Als de gaten niet tegenover elkaar staan wordt lekkage voorkomen en kunnen de 1D injectie – en uiteindelijk de 1D scheiding – plaatsvinden. Om de analieten, die in het 1D kanaal gescheiden zijn, over te kunnen brengen naar de tweede dimensie en om de 2D scheiding te realiseren, worden de gaten daarna tegenover elkaar geplaatst. Stereolithografie is gebruikt om het in dit hoofdstuk beschreven apparaat te fabriceren. Het patent, waarmee zowel de TWIST als het daaropvolgende in hoofdstuk beschreven SLIT worden afgedekt, is aan dit hoofdstuk toegevoegd.

- 143 -

Samenvatting In Hoofdstuk 4 worden aspecten van de inperking van de stroming in meer detail besproken. De haalbaarheid wordt onderzocht van apparaten voor twee- en driedimensionale spatial vloeistofchromatografie met een passief mechanisme voor de inperking van de vloeistofstroom, gebaseerd op poreuze barrières en verschillen in permeabiliteit tussen de verschillende dimensies. De daarvoor vereiste permeabiliteitswaarden zijn bepaald m.b.v. CFD-simulaties. Bovendien wordt de invloed van het ontwerp en het gebruik van de 3D stroomverdeler besproken.

In Hoofdstuk 5 wordt het potentiele belang van 3D-printing voor analytische scheidingen en voor andere gebieden gedemonstreerd aan de hand van verscheidene toepassingen. Stereolithografie is gebruikt om de apparaten te vervaardigen, waaronder omhulsels voor apparaten die stationaire fasen bevatten, een apparaat voor iso- electrische focussering, een reactor met geïmmobiliseerde enzymen en een biokatalytische doorstroomreactor waarin agarose-gel is aangebracht. Selective laser melting (SLM) is gebruikt als 3D-printing techniek om modulaire xLCxLC apparaten te vervaardigen in titanium.

In Hoofdstuk 6 worden overwegingen beschreven voor verbetering en verkleining van apparaten voor twee- en driedimensionale spatial vloeistofchromatografie.

- 144 -

List of publications

T. Adamopoulou, S. Deridder, G. Desmet, P.J. Schoenmakers. Two-dimensional insertable separation tool (TWIST) for flow confinement in spatial separations. J. Chromatography A, 1577 (2018), pp. 120-123

T. Adamopoulou, S. Nawada, S. Deridder, G. Desmet, P.J. Schoenmakers. Experimental and numerical study of band-broadening effects associated with analyte transfer in microfluidic devices for spatial two-dimensional liquid chromatography created by additive manufacturing. J. Chromatography A, 1598 (2019), pp. 77-84

T. Adamopoulou, S. Deridder, T.S. Bos, S. Nawada, G. Desmet, P.J. Schoenmakers. Optimizing design and employing permeability differences to achieve flow confinement in devices for spatial multidimensional liquid chromatography, Journal of Chromatography A, 1612 (2020)

N. Abdulhussain, T. Adamopoulou, S. Nawada, A. Gargano, P.J. Schoenmakers. 3D- printed device for Spatial Two-dimensional Liquid Chromatography with Iso-electric Focusing as the first dimension and Reverse-phase as the second dimension. In preparation.

L.S. Roca, T. Adamopoulou, S. Nawada, P.J. Schoenmakers. Packing of 3D-Printed Microfluidic Devices with Arbitrary Geometries for LC Separations. In preparation.

M. Passamonti, T. Adamopoulou, S. Nawada, D. Giesen, S. Koot, P.J. Schoenmakers. Titanium 3D-Printed Modular Tools to Confine the Flow in Devices for Spatial Multi- Dimensional Liquid Chromatography. In preparation.

N. Abdulhussain, T. Adamopoulou, B.W.J. Pirok, P. Camoiras Gonzalez, P.J. Schoenmakers. Integration of 3D-printed Immobilized Enzyme Reactor in Two- dimensional Liquid Chromatography. In preparation.

F. Croci, J. Vilím, T. Adamopoulou, V. Tseliou, P.J. Schoenmakers, T. Knaus, F.G. Mutti. Reductive Amination in Flow Utilizing an Amine-Dehydrogenase-based Agarose Reactor. In preparation.

- 145 -

List of publications Oral presentations: HPLC2019 Conference, Milan, Italy, June 2019. “Flow Control and Confinement Considerations for Spatial Multi-Dimensional Liquid-Chromatography Devices”.

SCM-9 Symposium, Amsterdam, The Netherlands, January 2019. “Creating 3D- Printed Devices for Spatial Two-Dimensional Liquid Chromatography”

CHAINS, Veldhoven, The Netherlands, December 2018, “TWo-dimensional Insertable Separation Tool (TWIST)”.

HPLC2018 Conference, Washington DC, US, July 2018. “Creating devices for multidimensional separations based on computational insights”.

CADFEM Conference, Koblenz, Germany, November 2017. “3D Printed microfluidic devices for Spatial two-dimensional Separations: Design through Computational Fluid Dynamics”.

Poster presentations (as first author): FAST, Veldhoven, The Netherlands, May 2019. “Fabrication considerations of 3D- printed devices for Liquid Chromatography”.

CHAINS, Veldhoven, The Netherlands, December2019. “Design and Operation Aspects of Devices for Spatial Multi-Dimensional Liquid Chromatography”.

Patent: T. Adamopoulou, P.J. Schoenmakers, G. Desmet, S. Deridder. Device for multi-dimensional liquid analysis. EP3598125A1;WO2020016426A1.

- 146 -

Overview of authors’ contributions

Chapter 1 General Introduction T. Adamopoulou Wrote the introduction including the necessity of higher peak capacities, planar chromatography and computational fluid dynamics P.J. Schoenmakers Reviewed the manuscript G. Desmet Reviewed the manuscript

Chapter 2 Band-broadening and analyte transfer in 3D-printed devices for spatial two- dimensional liquid chromatography T. Adamopoulou Designed geometries, performed CFD simulations, 3D- printed and tested the devices S. Nawada Supervised the 3D-printing and helped with the data analysis part of the project S. Deridder Supervised the CFD part of the project B. Wouters Supervised the project G. Desmet Supervisor of the project P.J. Schoenmakers Supervisor of the project

- 147 -

Overview of authors’ contributions Chapter 3 Active flow-confinement - Two-Dimensional Insertable Separation Tool (TWIST) T. Adamopoulou Designed geometries, performed CFD simulations, 3D- printed and tested the device, co-inventor S. Deridder Co-inventor G. Desmet Supervisor of the project, co-inventor P.J. Schoenmakers Supervisor of the project, co-inventor

Chapter 4 Passive flow-confinement in devices for spatial multi-dimensional liquid chromatography T. Adamopoulou Designed geometries and performed CFD simulations S. Deridder Supervised the CFD simulations and helped develop ideas T.S. Bos Performed preliminary CFD simulations S. Nawada Supervised the project G. Desmet Supervisor of the project P.J. Schoenmakers Supervisor of the project

Chapter 5 Emerging applications for 3D-printed devices in Analytical Sciences T. Adamopoulou Designed, 3D-printed and post-processed the devices S. Nawada Helped develop ideas and arranged for the parts made by SLM D. Giesen Helped develop ideas for manufacturing of modular devices S. Koot Helped develop ideas for manufacturing of modular devices G. Desmet Reviewed the chapter P.J. Schoenmakers Supervisor of the project

- 148 -

Overview of authors’ contributions End users of the devices described in this chapter: N. Abdulhussain End user of the columns, IEF devices and IMER F. Croci End user of the biocatalytic flow-reactor M. Passamonti End user of the titanium modular devices for xLC×xLC L. Roca End user of the 3D cube J. Vilím End user of the biocatalytic flow-reactor

Chapter 6 Future Outlook T. Adamopoulou Wrote the chapter including the current challenges and conclusions and a discussion on future challenges and perspectives regarding the CFD simulations and 3D-printing P.J. Schoenmakers Reviewed the manuscript G. Desmet Reviewed the manuscript

- 149 -

Acknowledgements

Five years ago I decided to move to the Netherlands to find a PhD position. I can say that it was the craziest and best decision of my life. After a lot of searching, I found a position which was exactly what I wanted and I was lucky enough to get it. This led to an amazing four-year trip, which ends with the completion of this book. But nothing would have happened without the support of many many people.

I would like to start with my supervisors, Peter Schoenmakers and Gert Desmet. Thank you for your guidance, advice and all the direct and indirect valuable lessons. I was really lucky to have both of you as my supervisors. I would also like to thank Sander Deridder, Suhas Nawada, Bert Wouters, Sven Koot and Daan Giesen for the helpful brainstorming sessions, feedback and help. Emalisa Antonioli, Tijmen Bos, Emma Carels, Florine Joosten, Amelia van Limburg Stirum, Julia Moeller, Leon Niezen and Sharene Veelders, thank you for choosing to have a project or literature study with me. It was fun working with you. Also, I would like to express my gratitude to Petra Aarnoutse for her support and help during my first year of the PhD.

The past four years were challenging, but also fun and it wouldn’t have been that way without my friends and colleagues. Alan, Liana, Marta, Iro, Elena, Noor, thank you for being there for me in good and in bad. Also Liana, thanks for being the best roommate ever! Gino and Mimi, thanks for always bringing positive energy. It was really nice and necessary some days. Pascal, thanks for the nice discussions. Bob, I really enjoyed the una/games workshop breaks. It was fun! Andrei thanks for the duck, it actually worked!

- 150 -

Acknowledgements And in general, I am thankful to all the people from the UvA and VUB, whom I had the pleasure to meet during this time.

I would also like to thank my family (and godmothers) for always being there for me and believing in me, even on the long-shot ideas.

Alex, thank you for your support, especially in the stressful moments of the last few months.

Και τέλος, Μαμά σ’ευχαριστώ για όλα. Κάνατε το καλύτερο που μπορούσατε κι’αυτό είναι που μ’έφερε ως εδώ. Σ’αγαπώ πολύ.

- 151 -

Design and fabrication through additive manufacturing of devices for multidimensional LC based on computational insights

One-dimensional column-based liquid chromatography systems do not offer sufficient separation power for the analysis of complex samples. Two-dimensional systems are more powerful. However, they suffer from longer analysis times. Spatial multi- dimensional liquid chromatography may prove an efficient solution, as the peak capacity of the system is ideally the product of those of the individual dimensions, yet the analysis time remains relatively short due to parallel separations. The main aspects we need to investigate for such devices include flow uniformity, analyte transfer between dimensions, band broadening, and confinement of the flow in each dimension. The objectives of this thesis were to study the effects of design, fabrication and operation factors on the performance of the device. For this purpose, both simulations and experiments were conducted. Three-dimensional computational fluid dynamics (CFD) was employed to calculate flow and mass transfer and injections of a mixture of dye and water were simulated. Prototypes were fabricated using 3D-printing, more specifically, stereolithography. Flow confinement, analyte transfer, band broadening and pressure resistance of devices were studied. Feasible designs were proposed for two- and three-dimensional spatial LC devices, using either passive flow confinement based on permeability differences or active flow confinement based on an approach that was patented during this work. Various other applications of 3D-printing in analytical sciences were also studied.