Mouse Cyfip1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Cyfip1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Cyfip1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Cyfip1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cyfip1 gene (NCBI Reference Sequence: NM_011370 ; Ensembl: ENSMUSG00000030447 ) is located on Mouse chromosome 7. 31 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 31 (Transcript: ENSMUST00000032629). Exon 4~6 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Cyfip1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-7P16 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mutations at this locus result in embryonic lethality before the turning stage in homozygotes. Heterozygotes exhibit abnormal synaptic transmission. Parental origin of the mutant allele in heterozygotes has an effect on long term depression, cued fear conditioning, anxiety, and activity. Exon 4 starts from about 5.53% of the coding region. The knockout of Exon 4~6 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 1289 bp, and the size of intron 6 for 3'-loxP site insertion: 2602 bp. The size of effective cKO region: ~2143 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 31 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Cyfip1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(8643bp) | A(24.98% 2159) | C(22.23% 1921) | T(30.26% 2615) | G(22.54% 1948) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr7 + 55870197 55873196 3000 browser details YourSeq 197 1118 1450 3000 88.2% chr8 + 119316009 119316368 360 browser details YourSeq 164 1094 1450 3000 83.2% chr1 - 192067073 192067448 376 browser details YourSeq 156 1134 1450 3000 89.2% chr5 - 147622340 147622681 342 browser details YourSeq 156 1112 1449 3000 85.3% chr14 + 19863423 19863791 369 browser details YourSeq 153 1116 1457 3000 85.8% chr13 - 92192886 92193233 348 browser details YourSeq 152 1134 1446 3000 81.7% chr10 + 61556665 61556958 294 browser details YourSeq 151 1135 1456 3000 87.7% chr7 + 36682983 36683334 352 browser details YourSeq 150 1158 1447 3000 81.1% chr15 + 36941353 36941664 312 browser details YourSeq 146 1093 1447 3000 87.3% chr6 + 37710160 37710572 413 browser details YourSeq 144 1134 1450 3000 88.3% chr8 - 28326024 28326358 335 browser details YourSeq 139 1191 1450 3000 81.3% chr7 - 56024551 56024814 264 browser details YourSeq 138 1134 1450 3000 85.7% chr9 - 22235364 22235700 337 browser details YourSeq 137 1134 1450 3000 88.6% chr6 - 5427163 5427500 338 browser details YourSeq 136 1136 1447 3000 87.8% chr16 - 55624853 55625178 326 browser details YourSeq 136 1107 1451 3000 89.1% chr17 + 64857073 64857447 375 browser details YourSeq 135 1112 1446 3000 83.7% chr18 + 74700872 74701207 336 browser details YourSeq 135 1188 1450 3000 85.7% chr16 + 34617024 34617293 270 browser details YourSeq 133 1188 1450 3000 81.5% chr9 + 21861375 21861644 270 browser details YourSeq 131 1100 1443 3000 88.9% chr2 - 69595775 69637156 41382 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr7 + 55875340 55878339 3000 browser details YourSeq 163 11 236 3000 90.6% chr11 + 97851270 98046378 195109 browser details YourSeq 157 23 236 3000 91.1% chr11 - 59128639 59128857 219 browser details YourSeq 150 11 236 3000 90.9% chr7 - 49499280 49499527 248 browser details YourSeq 148 62 245 3000 92.0% chr5 - 134164180 134164379 200 browser details YourSeq 146 18 228 3000 94.6% chr16 - 32354857 32692253 337397 browser details YourSeq 146 60 251 3000 90.7% chr13 - 54853014 54853221 208 browser details YourSeq 145 60 248 3000 91.5% chr8 - 3559002 3559196 195 browser details YourSeq 144 60 236 3000 89.4% chr2 - 168656162 168656333 172 browser details YourSeq 144 60 239 3000 89.2% chr12 - 78830244 78830416 173 browser details YourSeq 139 60 238 3000 90.7% chr5 - 143496450 143496860 411 browser details YourSeq 139 60 237 3000 88.8% chr2 - 39088098 39088272 175 browser details YourSeq 139 60 237 3000 86.4% chr1 - 118262532 118262701 170 browser details YourSeq 139 56 234 3000 89.5% chr18 + 9713669 9713842 174 browser details YourSeq 139 69 236 3000 92.7% chr12 + 105736961 105737490 530 browser details YourSeq 139 60 235 3000 88.7% chr1 + 37637196 37637366 171 browser details YourSeq 138 58 235 3000 90.6% chr2 - 92959336 92959520 185 browser details YourSeq 138 60 249 3000 89.3% chr17 + 45499621 45499823 203 browser details YourSeq 138 60 236 3000 87.0% chr11 + 106758662 106758832 171 browser details YourSeq 137 72 236 3000 90.8% chr15 + 85881247 85881410 164 Note: The 3000 bp section downstream of Exon 6 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Cyfip1 cytoplasmic FMR1 interacting protein 1 [ Mus musculus (house mouse) ] Gene ID: 20430, updated on 22-Oct-2019 Gene summary Official Symbol Cyfip1 provided by MGI Official Full Name cytoplasmic FMR1 interacting protein 1 provided by MGI Primary source MGI:MGI:1338801 See related Ensembl:ENSMUSG00000030447 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Shyc; Sra1; pl-1; Sra-1; l71Rl; l7Rl1; l(7)1Rl; P140sra1; P140SRA-1; mKIAA0068; E030028J09Rik Expression Ubiquitous expression in bladder adult (RPKM 10.5), limb E14.5 (RPKM 10.3) and 28 other tissues See more Orthologs human all Genomic context Location: 7; 7 B5 See Cyfip1 in Genome Data Viewer Exon count: 33 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 7 NC_000073.6 (55842022..55932633) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 7 NC_000073.5 (63097441..63188003) Chromosome 7 - NC_000073.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 12 transcripts Gene: Cyfip1 ENSMUSG00000030447 Description cytoplasmic FMR1 interacting protein 1 [Source:MGI Symbol;Acc:MGI:1338801] Gene Synonyms E030028J09Rik, P140SRA-1, Shyc, Sra-1, l(7)1Rl, l7Rl1, pl-1 Location Chromosome 7: 55,841,745-55,932,602 forward strand. GRCm38:CM001000.2 About this gene This gene has 12 transcripts (splice variants), 201 orthologues, 1 paralogue, is a member of 1 Ensembl protein family and is associated with 8 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Cyfip1-201 ENSMUST00000032629.15 6440 1253aa ENSMUSP00000032629.9 Protein coding CCDS21315 Q7TMB8 TSL:1 GENCODE basic APPRIS P1 Cyfip1-202 ENSMUST00000085255.10 4195 1251aa ENSMUSP00000082353.4 Protein coding CCDS52262 A0A0R4J119 TSL:1 GENCODE basic Cyfip1-203 ENSMUST00000163845.3 4178 1253aa ENSMUSP00000127717.2 Protein coding CCDS21315 Q7TMB8 TSL:1 GENCODE basic APPRIS P1 Cyfip1-212 ENSMUST00000206862.1 2908 969aa ENSMUSP00000146194.1 Protein coding - A0A0U1RQ05 CDS 3' incomplete TSL:5 Cyfip1-208 ENSMUST00000173783.7 926 229aa ENSMUSP00000134509.1 Protein coding - G3UZI5 CDS 3' incomplete TSL:3 Cyfip1-205 ENSMUST00000173267.7 5111 No protein - Retained intron - - TSL:1 Cyfip1-207 ENSMUST00000173497.7 3849 No protein - Retained intron - - TSL:1 Cyfip1-204 ENSMUST00000168271.8 1876 No protein - Retained intron - - TSL:1 Cyfip1-211 ENSMUST00000205656.1 1588 No protein - Retained intron - - TSL:NA Cyfip1-209 ENSMUST00000174660.7 719 No protein - Retained intron - - TSL:2 Cyfip1-206 ENSMUST00000173384.1 629 No protein - Retained intron - - TSL:3 Cyfip1-210 ENSMUST00000174793.1 466 No protein - Retained intron - - TSL:2 Page 6 of 8 https://www.alphaknockout.com 110.86 kb Forward strand 55.84Mb 55.86Mb 55.88Mb 55.90Mb 55.92Mb 55.94Mb Genes (Comprehensive set... Cyfip1-204 >retained intron Cyfip1-209 >retained intron Cyfip1-211 >retained intron Cyfip1-201 >protein coding Cyfip1-208 >protein coding Cyfip1-205 >retained intron Cyfip1-202 >protein
Recommended publications
  • Systems Analysis Implicates WAVE2&Nbsp
    JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.5,NO.4,2020 ª 2020 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects a b b b Jonathan J. Edwards, MD, Andrew D. Rouillard, PHD, Nicolas F. Fernandez, PHD, Zichen Wang, PHD, b c d d Alexander Lachmann, PHD, Sunita S. Shankaran, PHD, Brent W. Bisgrove, PHD, Bradley Demarest, MS, e f g h Nahid Turan, PHD, Deepak Srivastava, MD, Daniel Bernstein, MD, John Deanfield, MD, h i j k Alessandro Giardini, MD, PHD, George Porter, MD, PHD, Richard Kim, MD, Amy E. Roberts, MD, k l m m,n Jane W. Newburger, MD, MPH, Elizabeth Goldmuntz, MD, Martina Brueckner, MD, Richard P. Lifton, MD, PHD, o,p,q r,s t d Christine E. Seidman, MD, Wendy K. Chung, MD, PHD, Martin Tristani-Firouzi, MD, H. Joseph Yost, PHD, b u,v Avi Ma’ayan, PHD, Bruce D. Gelb, MD VISUAL ABSTRACT Edwards, J.J. et al. J Am Coll Cardiol Basic Trans Science. 2020;5(4):376–86. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2020.01.012 JACC: BASIC TO TRANSLATIONALSCIENCEVOL.5,NO.4,2020 Edwards et al. 377 APRIL 2020:376– 86 WAVE2 Complex in LVOTO HIGHLIGHTS ABBREVIATIONS AND ACRONYMS Combining CHD phenotype–driven gene set enrichment and CRISPR knockdown screening in zebrafish is an effective approach to identifying novel CHD genes.
    [Show full text]
  • Genomic Selection Signatures in Autism Spectrum Disorder Identifies
    www.nature.com/scientificreports OPEN Genomic selection signatures in autism spectrum disorder identifes cognitive genomic tradeof and its relevance in paradoxical phenotypes of defcits versus potentialities Anil Prakash1,2 & Moinak Banerjee1* Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by paradoxical phenotypes of defcits as well as gain in brain function. To address this a genomic tradeof hypothesis was tested and followed up with the biological interaction and evolutionary signifcance of positively selected ASD risk genes. SFARI database was used to retrieve the ASD risk genes while for population datasets 1000 genome data was used. Common risk SNPs were subjected to machine learning as well as independent tests for selection, followed by Bayesian analysis to identify the cumulative efect of selection on risk SNPs. Functional implication of these positively selected risk SNPs was assessed and subjected to ontology analysis, pertaining to their interaction and enrichment of biological and cellular functions. This was followed by comparative analysis with the ancient genomes to identify their evolutionary patterns. Our results identifed signifcant positive selection signals in 18 ASD risk SNPs. Functional and ontology analysis indicate the role of biological and cellular processes associated with various brain functions. The core of the biological interaction network constitutes genes for cognition and learning while genes in the periphery of the network had direct or indirect impact on brain function. Ancient genome analysis identifed de novo and conserved evolutionary selection clusters. The de-novo evolutionary cluster represented genes involved in cognitive function. Relative enrichment of the ASD risk SNPs from the respective evolutionary cluster or biological interaction networks may help in addressing the phenotypic diversity in ASD.
    [Show full text]
  • Increased CYFIP1 Dosage Alters Cellular and Dendritic Morphology and Dysregulates Mtor
    Molecular Psychiatry (2015) 20, 1069–1078 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp ORIGINAL ARTICLE Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR A Oguro-Ando1,2, C Rosensweig1,5, E Herman1,6, Y Nishimura1,7, D Werling1, BR Bill1, JM Berg1, F Gao1, G Coppola1,3, BS Abrahams1,8 and DH Geschwind1,4 Rare maternally inherited duplications at 15q11-13 are observed in ~ 1% of individuals with an autism spectrum disorder (ASD), making it among the most common causes of ASD. 15q11-13 comprises a complex region, and as this copy number variation encompasses many genes, it is important to explore individual genotype–phenotype relationships. Cytoplasmic FMR1-interacting protein 1 (CYFIP1) is of particular interest because of its interaction with Fragile X mental retardation protein (FMRP), its upregulation in transformed lymphoblastoid cell lines from patients with duplications at 15q11-13 and ASD and the presence of smaller overlapping deletions of CYFIP1 in patients with schizophrenia and intellectual disability. Here, we confirm that CYFIP1 is upregulated in transformed lymphoblastoid cell lines and demonstrate its upregulation in the post-mortem brain from 15q11-13 duplication patients for the first time. To investigate how increased CYFIP1 dosage might predispose to neurodevelopmental disease, we studied the consequence of its overexpression in multiple systems. We show that overexpression of CYFIP1 results in morphological abnormalities including cellular hypertrophy in SY5Y cells and differentiated mouse neuronal progenitors. We validate these results in vivo by generating a BAC transgenic mouse, which overexpresses Cyfip1 under the endogenous promotor, observing an increase in the proportion of mature dendritic spines and dendritic spine density.
    [Show full text]
  • CYFIP1 Overexpression Increases Fear Response In
    Fricano-Kugler et al. Molecular Autism (2019) 10:25 https://doi.org/10.1186/s13229-019-0278-0 RESEARCH Open Access CYFIP1 overexpression increases fear response in mice but does not affect social or repetitive behavioral phenotypes Catherine Fricano-Kugler1, Aaron Gordon2, Grace Shin1, Kun Gao2, Jade Nguyen1, Jamee Berg1, Mary Starks2 and Daniel H. Geschwind3,4,5* Abstract Background: CYFIP1, a protein that interacts with FMRP and regulates protein synthesis and actin dynamics, is overexpressed in Dup15q syndrome as well as autism spectrum disorder (ASD). While CYFIP1 heterozygosity has been rigorously studied due to its loss in 15q11.2 deletion, Prader-Willi and Angelman syndrome, the effects of CYFIP1 overexpression, as is observed in patients with CYFIP1 duplication, are less well understood. Methods: We developed and validated a mouse model of human CYFIP1 overexpression (CYFIP1 OE) using qPCR and western blot analysis. We performed a large battery of behavior testing on these mice, including ultrasonic vocalizations, three-chamber social assay, home-cage behavior, Y-maze, elevated plus maze, open field test, Morris water maze, fear conditioning, prepulse inhibition, and the hot plate assay. We also performed RNA sequencing and analysis on the basolateral amygdala. Results: Extensive behavioral testing in CYFIP1 OE mice reveals no changes in the core behaviors related to ASD: social interactions and repetitive behaviors. However, we did observe mild learning deficits and an exaggerated fear response. Using RNA sequencing of the basolateral amygdala, a region associated with fear response, we observed changes in pathways related to cytoskeletal regulation, oligodendrocytes, and myelination. We also identified GABA-A subunit composition changes in basolateral amygdala neurons, which are essential components of the neural fear conditioning circuit.
    [Show full text]
  • BMC Genomics Biomed Central
    BMC Genomics BioMed Central Research article Open Access Genomic analysis of the chromosome 15q11-q13 Prader-Willi syndrome region and characterization of transcripts for GOLGA8E and WHCD1L1 from the proximal breakpoint region Yong-hui Jiang*1, Kekio Wauki1,3, Qian Liu1, Jan Bressler1, Yanzhen Pan1, Catherine D Kashork1,2, Lisa G Shaffer1,2 and Arthur L Beaudet1 Address: 1Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA, 2Signature Genomics Laboratories, LLC, 120 North Pine Street, Suite 242C, Spokane, WA 99202, USA and 3Shinshu University School of Medicine, Dept of Medical Genetics, 3-1-1 Asahi, Nagano, Matsumoto 390-8621, Japan Email: Yong-hui Jiang* - [email protected]; Kekio Wauki - [email protected]; Qian Liu - [email protected]; Jan Bressler - [email protected]; Yanzhen Pan - [email protected]; Catherine D Kashork - [email protected]; Lisa G Shaffer - [email protected]; Arthur L Beaudet - [email protected] * Corresponding author Published: 28 January 2008 Received: 20 September 2007 Accepted: 28 January 2008 BMC Genomics 2008, 9:50 doi:10.1186/1471-2164-9-50 This article is available from: http://www.biomedcentral.com/1471-2164/9/50 © 2008 Jiang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Prader-Willi syndrome (PWS) is a neurobehavioral disorder characterized by neonatal hypotonia, childhood obesity, dysmorphic features, hypogonadism, mental retardation, and behavioral problems.
    [Show full text]
  • Picturing the Whole Genome
    G C A T T A C G G C A T genes Article A Reassessment of Copy Number Variations in Congenital Heart Defects: Picturing the Whole Genome Ilse Meerschaut 1,2 , Sarah Vergult 1 , Annelies Dheedene 1, Björn Menten 1 , Katya De Groote 2 , Hans De Wilde 2, Laura Muiño Mosquera 1,2 , Joseph Panzer 2, Kristof Vandekerckhove 2, Paul J. Coucke 1, Daniël De Wolf 2,3 and Bert Callewaert 1,* 1 Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; [email protected] (I.M.); [email protected] (S.V.); [email protected] (A.D.); [email protected] (B.M.); [email protected] (L.M.M.); [email protected] (P.J.C.) 2 Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; [email protected] (K.D.G.); [email protected] (H.D.W.); [email protected] (J.P.); [email protected] (K.V.); [email protected] (D.D.W.) 3 Department of Pediatric Cardiology, Brussels University Hospital, 1090 Brussels, Belgium * Correspondence: [email protected]; Tel.: +32-9-332-3603 Abstract: Copy number variations (CNVs) can modulate phenotypes by affecting protein-coding sequences directly or through interference of gene expression. Recent studies in cancer and limb defects pinpointed the relevance of non-coding gene regulatory elements such as long non-coding Citation: Meerschaut, I.; Vergult, S.; RNAs (lncRNAs) and topologically associated domain (TAD)-related gene-enhancer interactions. Dheedene, A.; Menten, B.; De Groote, The contribution of such non-coding elements is largely unexplored in congenital heart defects K.; De Wilde, H.; Muiño Mosquera, L.; (CHD).
    [Show full text]
  • A Common CYFIP1 Variant at the 15Q11.2 Disease Locus Is Associated with Structural Variation at the Language-Related Left Supramarginal Gyrus
    RESEARCH ARTICLE A Common CYFIP1 Variant at the 15q11.2 Disease Locus Is Associated with Structural Variation at the Language-Related Left Supramarginal Gyrus Young Jae Woo1, Tao Wang2, Tulio Guadalupe3, Rebecca A. Nebel1, Arianna Vino3, Victor A. Del Bene4,5,8, Sophie Molholm4,5,8, Lars A. Ross4,5,8, Marcel P. Zwiers3, Simon E. Fisher3,6, John J. Foxe4,5,7,8, Brett S. Abrahams1,8* a11111 1 Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America, 2 Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, United States of America, 3 Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 4 The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Albert Einstein College of Medicine, Bronx, United States of America, 5 Department of Pediatrics, Albert Einstein College of Medicine, Bronx, United States of America, 6 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands, 7 The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric OPEN ACCESS Research, Orangeburg, United States of America, 8 Dominick P. Purpura Department of Neuroscience, Citation: Woo YJ, Wang T, Guadalupe T, Nebel RA, Albert Einstein College of Medicine, Bronx, United States of America Vino A, Del Bene VA, et al. (2016) A Common * [email protected] CYFIP1 Variant at the 15q11.2 Disease Locus Is Associated with Structural Variation at the Language- Related Left Supramarginal Gyrus. PLoS ONE 11(6): e0158036. doi:10.1371/journal.pone.0158036 Abstract Editor: Peter John McKenna, Benito Menni Complejo Asistencial en Salud Mental, SPAIN Copy number variants (CNVs) at the Breakpoint 1 to Breakpoint 2 region at 15q11.2 (BP1- 2) are associated with language-related difficulties and increased risk for developmental Received: December 10, 2015 disorders in which language is compromised.
    [Show full text]
  • FXR2P Exerts a Positive Translational Control and Is Required for the Activity-Dependent Increase of PSD95 Expression
    9402 • The Journal of Neuroscience, June 24, 2015 • 35(25):9402–9408 Cellular/Molecular FXR2P Exerts a Positive Translational Control and Is Required for the Activity-Dependent Increase of PSD95 Expression Esperanza Fernández,1,2 Ka Wan Li,3 Nicholas Rajan,1,2 Silvia De Rubeis,1,2 XMark Fiers,1,2 August B. Smit,3 Tilmann Achsel,1,2 and XClaudia Bagni1,2,4 1KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease, Leuven, Belgium, 2VIB Center for the Biology of Disease, 3000 Leuven, Belgium, 3Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands, and 4University of Rome Tor Vergata, Department of Biomedicine and Prevention, 00133 Rome, Italy In brain, specific RNA-binding proteins (RBPs) associate with localized mRNAs and function as regulators of protein synthesis at synapses exerting an indirect control on neuronal activity. Thus, the Fragile X Mental Retardation protein (FMRP) regulates expression of the scaffolding postsynaptic density protein PSD95, but the mode of control appears to be different from other FMRP target mRNAs. Here, we show that the fragile X mental retardation-related protein 2 (FXR2P) cooperates with FMRP in binding to the 3Ј-UTR of mouse PSD95/Dlg4 mRNA. Absence of FXR2P leads to decreased translation of PSD95/Dlg4 mRNA in the hippocampus, implying a role for FXR2P as translation activator. Remarkably, mGluR-dependent increase of PSD95 synthesis is abolished in neurons lacking Fxr2. Together, these findings show a coordinated regulation of PSD95/Dlg4 mRNA by FMRP and FXR2P that ultimately affects its fine-tuning during synaptic activity.
    [Show full text]
  • (Burnside-Butler) Syndrome in Five Families
    International Journal of Molecular Sciences Article Genomic, Clinical, and Behavioral Characterization of 15q11.2 BP1-BP2 Deletion (Burnside-Butler) Syndrome in Five Families Isaac Baldwin 1,2,† , Robin L. Shafer 3,† , Waheeda A. Hossain 1,2, Sumedha Gunewardena 4, Olivia J. Veatch 1,4, Matthew W. Mosconi 3,5 and Merlin G. Butler 1,2,* 1 Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; [email protected] (I.B.); [email protected] (W.A.H.); [email protected] (O.J.V.) 2 Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA 3 Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training, University of Kansas, Lawrence, KS 66045, USA; [email protected] (R.L.S.); [email protected] (M.W.M.) 4 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; [email protected] 5 Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA * Correspondence: [email protected] † Represents co-first authorship. Abstract: The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most com- mon cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral problems, and Citation: Baldwin, I.; Shafer, R.L.; abnormal brain findings. To better define symptom presentation, we performed comprehensive cog- Hossain, W.A.; Gunewardena, S.; Veatch, O.J.; Mosconi, M.W.; Butler, nitive and behavioral testing, collected medical and family histories, and conducted clinical genetic M.G.
    [Show full text]
  • Cyfip1 Haploinsufficiency Is Associated with White Matter Changes, Myelin Thinning, Reduction of Mature Oligodendrocytes and Behavioural Inflexibility
    bioRxiv preprint doi: https://doi.org/10.1101/477786; this version posted November 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Cyfip1 haploinsufficiency is associated with white matter changes, myelin thinning, reduction of mature oligodendrocytes and behavioural inflexibility Authors: Ana I. Silva1,2,3, Josephine E. Haddon1,2,4, Simon Trent1,2, Yasir Ahmed Syed1,5, Tzu-Ching E.Lin1,2, Yateen Patel1,2, Jenny Carter1,2, Niels Haan1,2, Rob C. Honey4, Trevor Humby1,4, Yaniv Assaf 6, David E. J. Linden1,2,3, Michael J. Owen1,2, Jeremy Hall1,2*, Lawrence S. Wilkinson1,2,4* 1 Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ. 2 Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK. 3 Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ. 4 School of Psychology, Cardiff University, Cardiff, Park Place, CF10 3AT 5 School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff CF10 3AX 6 Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 6997801, Israel; *Corresponding authors: Lawrence S. Wilkinson & Jeremy Hall E-mail address: [email protected]; [email protected] Phone number: 029020870357 Address: Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ.
    [Show full text]
  • MD and Docking Studies Reveal That the Functional Switch of CYFIP1 Is
    MD and docking studies reveal that the functional switch of CYFIP1 is mediated by a supported, in a cooperative manner, by binding to phospholipids, binding to a WIRS motif found in several butterfly-like motion membrane proteins, or by WAVE phosphorylation [10-14]. In summary, CYFIP1 interacts with numerous Daniele Di Marinoa b c, Giovanni Chillemic, Silvia De Rubeis , proteins, serving as a platform for the assembly of two independent complexes (see Scheme 1 for a Anna Tramontanob, Tilmann Achsela f and Claudia Bagnia f summary of the interactions relevant for this study). a VIB/Center for the Biology of Disease, KU Leuven, 3000, Belgium. Importantly, the planar conformation of CYFIP1, based on the published structure of the WRC, does not b Department of Physics, Sapienza University of Rome, Rome, Italy. allow an easy access to the eIF4E-binding region [6, 9] : CYFIP1 can only associate with one complex at a c Università della Svizzera Italiana (USI), Department of Informatics, Institute of Computational Science, via G. Buffi 13, CH-6900, Lugano, Switzerland. time, either the WRC or the translation-inhibiting complex, thus creating a homeostasis between the two dCineca, via dei Tizii 3, 00166 Roma, Italy. complexes6. We hypothesized that a conformational switch in CYFIP1 allows access of either eIF4E or the eSeaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, 10029, USA. WRC components and therefore dictates its partitioning between the two complexes [6]. fDepartment of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy. Here, we used molecular dynamics (MD) simulations of 135 ns each to study possible conformational e-mail: [email protected] changes in CYFIP1, following the free protein and the NCKAP1 complex.
    [Show full text]
  • Cyfip1 Regulates Presynaptic Activity During Development
    1564 • The Journal of Neuroscience, February 3, 2016 • 36(5):1564–1576 Cellular/Molecular Cyfip1 Regulates Presynaptic Activity during Development Kuangfu Hsiao,1,5 Hala Harony-Nicolas,2,3 Joseph D. Buxbaum,2,3,4,5 Ozlem Bozdagi-Gunal,2,3 and Deanna L. Benson1,5 1Department of Neuroscience, 2Department of Psychiatry, 3Seaver Autism Center for Treatment and Research, 4Department of Genetics and Genomic Sciences, and 5Friedman Brain Institute, Icahn School of Medicine and Graduate School of Biomedical Sciences at Mount Sinai, New York, New York 10029 Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein trans- lation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normallyfunctioningsynapsesandsuggestameansbywhichchangesinCyfip1levelscouldimpactthegenerationofneuralnetworksand contribute to abnormal and maladaptive behaviors. Key words: 15q11.2; F-actin; Sra1; synaptogenesis; WAVE1; WRC Significance Statement Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or de- crease levels of encoded proteins.
    [Show full text]