Chemosystematics in the Opiliones (Arachnida): a Comment on the Evolutionary History of Alkylphenols and Benzoquinones in the Scent Gland Secretions of Laniatores

Total Page:16

File Type:pdf, Size:1020Kb

Chemosystematics in the Opiliones (Arachnida): a Comment on the Evolutionary History of Alkylphenols and Benzoquinones in the Scent Gland Secretions of Laniatores Cladistics Cladistics (2014) 1–8 10.1111/cla.12079 Chemosystematics in the Opiliones (Arachnida): a comment on the evolutionary history of alkylphenols and benzoquinones in the scent gland secretions of Laniatores Gunther€ Raspotniga,b,*, Michaela Bodnera, Sylvia Schaffer€ a, Stephan Koblmuller€ a, Axel Schonhofer€ c and Ivo Karamand aInstitute of Zoology, Karl-Franzens-University, Universitatsplatz€ 2, 8010, Graz, Austria; bResearch Unit of Osteology and Analytical Mass Spectrometry, Medical University, University Children’s Hospital, Auenbruggerplatz 30, 8036, Graz, Austria; cInstitute of Zoology, Johannes Gutenberg University, Johannes-von-Muller-Weg€ 6, 55128, Mainz, Germany; dDepartment of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovica 2, 2100, Novi Sad, Serbia Accepted 2 April 2014 Abstract Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands pro- duce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best-studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phy- logeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best-fitting explanation of the distribution of scent-gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well-founded opilionid chemosystematics. © The Willi Hennig Society 2014. Introduction Opilionid scent-gland chemistry A recently published chemosystematic approach by Chemical characters from exocrine secretions of Caetano and Machado (2013) to explain the homologous glands offer the opportunity of chemosys- taxonomic distribution of chemical classes of secre- tematic studies based on the principles of cladistics, tion compounds in the large laniatorean family hence introducing an independent set of characters for Gonyleptidae considers benzoquinones ancestral in phylogeny reconstruction in addition to traditional sets this family, vinyl-ketones synapomorphic for one of morphological and molecular data. So far, only a gonyleptid subgroup and alkylphenols as derived few studies have focused on secretion-based chemo- from benzoquinones, having evolved several times systematics along with chemical character evolution in independently. Here, we provide an alternative view the Arthropoda, and only a few arthropod taxa pro- arising from a more adequate ancestral character- vide a promising basis for successful chemosystematic state reconstruction method for secretion chemistry, studies at all. For instance, basic chemosystematic and we furnish evidence for a common ancestry of studies have been conducted for insect groups rich in alkylphenols and the derived status of benzoquinones exocrine glands such as beetles (e.g. Dettner, 1987), in grassatorean secretions. termites (e.g. Prestwich, 1983) and diverse hymenopter- ans (e.g. Cane, 1983), as well as arachnids such as Corresponding author: glandulate oribatid mites (Sakata and Norton, 2001; E-mail address: [email protected] Heethoff et al., 2011; Raspotnig et al., 2011a) and © 2014 The Authors Cladistics published by John Wiley & Sons Ltd on behalf of Willi Hennig Society This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. 2 G. Raspotnig et al. / Cladistics (2014) 1–8 millipedes (e.g. Bodner and Raspotnig, 2012). How- alkylphenols from the ancestral state of benzoquinones ever, another group particularly well suited for chemo- and cited this particular situation as given (Rocha systematics is certainly the Opiliones, the third largest et al., 2013a,b; Wouters et al., 2013). We consider this order of arachnids, comprising about 6500 described proposed evolutionary scenario as rather problematic, species. and show that a few (in our opinion necessary) All opilionids possess large prosomal scent glands, changes in the original data set of Caetano and and the chemistry of scent-gland secretions is stun- Machado as well as in the evaluation method lead to ningly diverse in extant taxa. As opilionids are an completely different results. ancient group of arachnids with fossils known from the Lower Devonian (Dunlop et al., 2004), scent glands represent a well-suited model for studying the Alternative approaches to explain the evolution of evolution of exocrine secretion chemistry in a homolo- laniatorean secretion chemistry gous gland system across hundreds of millions of years. So far, the secretion chemistry in all four We propose to use a more representative selection of opilionid suborders has been exemplarily investigated, gonyleptid outgroups, including also those from which revealing sets of naphthoquinones and methyl ketones alkylphenols have already been reported (“outgroup in the Cyphophthalmi (Raspotnig et al., 2005, 2012), rooting”): in our opinion, outgroup-taxa selection by naphthoquinones in phalangiid Eupnoi (Wiemer et al., Caetano and Machado (2013) was extremely biased, 1978) and in Dyspnoi (Raspotnig et al., 2010), various choosing the only hitherto known non-alkylphenol acycles, including ethyl ketones in sclerosomatid producing manaosbiid as an outgroup. In fact, all Eupnoi (Ekpa et al., 1985), and volatile ketones in chemically investigated grassatorean species outside several Dyspnoi (Raspotnig et al., 2014). The the Gonyleptoidea as well as most basal gonyleptoids chemically best-studied group, however, is certainly exclusively and characteristically produce alkylphenols, the Laniatores, from which at least four major chemi- as outlined below. cal classes of secretion components have been Ancestral character-state reconstruction (ASR) is a reported: (1) nitrogen-containing compounds including frequently used method to test hypotheses regarding various tobacco alkaloids from travunioid Insidiatores character evolution, mainly by mapping characters on (Raspotnig et al., 2011b), and an array of (2) alkyl- given phylogenies, with approaches relying on maxi- phenols, (3) benzoquinones and (4) vinyl-ketones from mum parsimony methods still being most common. As the Grassatores (Roach et al., 1980; Duffield et al., ASR by means of parsimony appears to suffer from 1981; Eisner et al., 2004; Hara et al., 2005; Wouters several limitations (Cunningham, 1999; Ekman et al., et al., 2013). Several authors have hypothesized 2008; Skinner, 2010), many authors have emphasized about the evolutionary history of these compounds, the importance of adapting ASR methods to specific including Hara et al. (2005), Raspotnig et al. (2011b), demands as well as the advantages of comparing Raspotnig (2012) and, recently, Caetano and Machado different ASR approaches for obtaining more differen- (2013). tiated pictures about the evolutionary traits under consideration (e.g. Royer-Carenzi et al., 2013). For instance, the inclusion of likelihood methods may add Evolutionary history of laniatorean secretion chemistry: alternative views of character evolution (e.g. Pagel, current opinions 1999), but requires branch-length information for reli- able ASR and is thus not applicable to analyses that In their recent paper, Caetano and Machado (2013) rely on cladograms. Regarding maximum parsimony- reconstructed the phylogeny of the large laniatorean based ASR, the default approach is often the assign- family Gonyleptidae by combining ecological, behavio- ment of equal costs to character state changes. In ural and chemical characters of 28 species, prior to many cases, however, such an assumption does not mapping the main classes of scent-gland-derived reflect the real situation. How to deal with asymmetric compounds—benzoquinones, alkylphenols and vinyl transformation probabilities, that is, non-equal ketones—onto their phylogenetic tree, by means of probabilities of gains and losses in binary characters, ancestral character-state reconstruction (ASR) under a has been addressed in many studies and may be met parsimony regime of unordered, equal weighted char- by introducing step matrices, making certain transfor- acters. Their results implied benzoquinones to be the mations less likely than others (e.g. Cunningham et al., ancestral state in gonyleptid secretions, vinyl ketones 1998; Ree and Donoghue, 1998; Cunningham, 1999; to be a synapomorphy of gonyleptids of clade “K92,” Omland, 1999). Especially when dealing with chemical and alkylphenols to have evolved five times indepen- compounds in exocrine secretions, it is clear that the dently in the Gonyleptidae. Several authors have acted gain of a compound (its biosynthesis) is much more on the proposal of a multiple independent evolution of difficult, and thus more unlikely, than its loss. The G. Raspotnig et al. / Cladistics (2014) 1–8 3 particular situation of chemosystematics and ASR has Alkylphenols in the Gonyleptoidea been emphasized by, for example, Barkman (2001). In brief, the evolution of a chemical compound requires Chemical data are available for a few representatives an elaborate biosynthetic machinery, which typically of four (of the seven) gonyleptoid families, namely comprises a cascade
Recommended publications
  • The Short-Legged Andean Cosmetids Revisited: the Genus Libitia Simon
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2020 Band/Volume: 0634 Autor(en)/Author(s): Medrano Miguel, Azara Ludson Neves de, Kury Adriano Brilhante Artikel/Article: The short-legged Andean cosmetids revisited: the genus Libitia Simon, 1879 with description of two new species (Opiliones, Cosmetidae) 1-25 European Journal of Taxonomy 634: 1–25 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.634 www.europeanjournaloftaxonomy.eu 2020 · Medrano M. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:66AEE1D7-51BF-4583-9A19-947F61ECC7DE The short-legged Andean cosmetids revisited: the genus Libitia Simon, 1879 with description of two new species (Opiliones, Cosmetidae) Miguel MEDRANO 1,*, Ludson Neves de ÁZARA 2 & Adriano Brilhante KURY 3 1,2,3 Laboratório de Aracnologia, Departamento de Invertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, São Cristóvão, 20.940-040, Rio de Janeiro – RJ, Brazil. 1 Corresponding author: [email protected] 2 [email protected] 3 [email protected] 1 urn:lsid:zoobank.org:author:C7F7D4CF-F9B2-44AF-9F03-86278ADBD4F2 2 urn:lsid:zoobank.org:author:4ECF193A-694C-43CE-8EE6-F197EDDA4414 3 urn:lsid:zoobank.org:author:60FAE1F8-87F7-4A5F-BE78-BEB25BC4F898 Abstract. The old genus Libitia Simon, 1879 of small Andean harvestmen is revisited. The monotypic genus Libitiella Roewer, 1947 is herein considered a junior subjective synonym of Libitia. Accordingly, Libitiella bipunctata (Sørensen, 1932) is restored to the combination Libitia bipunctata. The species Libitia cordata and Libitia bipunctata comb.
    [Show full text]
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • 2017 AAS Abstracts
    2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found.
    [Show full text]
  • Arachnida: Opiliones) Release Contact Pheromones During Mating?
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 184–191, 2016 http://www.eje.cz doi: 10.14411/eje.2016.022 ORIGINAL ARTICLE Do sexually dimorphic glands in the harvestman Gryne perlata (Arachnida: Opiliones) release contact pheromones during mating? JÉSSICA M. DIAS 1, 2 and RODRIGO H. WILLEMART 1, 2, 3, * 1 Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo – SP, 03828-000 Brazil; e-mails: [email protected], [email protected] 2 Programa de Pós Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, Cidade Universitária, São Paulo – SP, 05508-090 Brazil 3 Programa de Pós Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel, 275, Jardim Eldorado, Diadema – SP, 09972-270 Brazil Key words. Arachnida, Opiliones, Laniatores, Cosmetidae, Gryne perlata, Gonyleptidae, Discocyrtus pectinifemur, chemical communication, copulation, sexually dimorphic glands Abstract. There are records of glands that produce sexual pheromones that are released into the environment or applied directly on sexual partners. Within Opiliones (Arachnida), several harvestmen in the suborder Laniatores have sexually dimorphic glands on legs I and IV, the mode of use of which is recorded only in two species but their function is unknown: while walking, males rub the glands against the substrate or against their body. Here we test an alternative and non-exclusive hypothesis that the glands present on the legs of male Gryne perlata (Cosmetidae) produce contact pheromones used in mating.
    [Show full text]
  • Three New Species of Eusarcus Perty, 1833 (Opiliones, Gonyleptidae) from Brazilian Caves
    European Journal of Taxonomy 740: 36–54 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.740.1279 www.europeanjournaloftaxonomy.eu 2021 · Santos Júnior G.A. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:BCC18DC2-7B6B-4F20-BF87-D94C4214A824 Three new species of Eusarcus Perty, 1833 (Opiliones, Gonyleptidae) from Brazilian caves Gilson Argolo dos SANTOS JÚNIOR 1, Ludson Neves de ÁZARA 2,* & Rodrigo Lopes FERREIRA 3 1,3 Centro de Estudos em Biologia Subterrânea, Setor de Biodiversidade Subterrânea, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Campus Universitário, 37200-900, Minas Gerais, Brazil. 2 Laboratório de Aracnologia, Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, Brazil. * Corresponding author: [email protected] 1 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:DB6382CF-CDB5-4EB1-8E59-C32AA8D8B1FD 2 urn:lsid:zoobank.org:author:4ECF193A-694C-43CE-8EE6-F197EDDA4414 3 urn:lsid:zoobank.org:author:DAADEEBA-4DE9-44B4-8FD0-A9EAF410420A Abstract. Three new species of Eusarcus Perty, 1833 are described from Brazilian caves, increasing the number of species of the genus to 40, eight of which have occurrences in caves. Eusarcus capixaba sp. nov. is described from Lapa do Sítio Paraíso Cave, municipality of Ecoporanga, state of Espírito Santo. Eusarcus marmoreus sp. nov. is described from Caverna Archimides Panssini Cave, municipality of Vargem Alta, state of Espírito Santo. Finally, Eusarcus xambioa sp. nov. is described from Caverna da Explosão Cave, municipality of Xambioá, state of Tocantins.
    [Show full text]
  • Arachnida, Opiliones, Gonyleptidae)
    Zootaxa 2698: 1–136 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2698 Systematic review and cladistic analysis of the genus Eusarcus Perty 1833 (Arachnida, Opiliones, Gonyleptidae) MARCOS RYOTARO HARA1 & RICARDO PINTO-DA-ROCHA2 1Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio, no 1000, Ermelino Matarazzo, 03828-000, São Paulo, SP, Brazil. E-mail: [email protected] 2Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461, 05422-970, São Paulo, SP, Brazil. E-mail:[email protected] Magnolia Press Auckland, New Zealand Accepted by P. Schwendinger: 19 Aug. 2010; published: 3 Dec. 2010 MARCOS RYOTARO HARA & RICARDO PINTO-DA-ROCHA Systematic review and cladistic analysis of the genus Eusarcus Perty 1833 (Arachnida, Opiliones, Gonyleptidae) (Zootaxa 2698) 136 pp.; 30 cm. 3 December 2010 ISBN 978-1-86977-613-8 (paperback) ISBN 978-1-86977-614-5 (Online edition) FIRST PUBLISHED IN 2010 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2010 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 2698 © 2010 Magnolia Press HARA & PINTO-DA-ROCHA Table of contents Abstract ..............................................................................................................................................................................
    [Show full text]
  • The Role of Microhabitats in Structuring Cave Invertebrate Communities in Guatemala Gabrielle S.M
    International Journal of Speleology 49 (2) 161-169 Tampa, FL (USA) May 2020 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie The role of microhabitats in structuring cave invertebrate communities in Guatemala Gabrielle S.M. Pacheco 1*, Marconi Souza Silva 1, Enio Cano 2, and Rodrigo L. Ferreira 1 1Universidade Federal de Lavras, Departamento de Ecologia e Conservação, Setor de Biodiversidade Subterrânea, Centro de Estudos em Biologia Subterrânea, Caixa Postal 3037, CEP 37200-900, Lavras, Minas Gerais, Brasil 2Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Ciudad Universitaria, Zona 12, 01012, Guatemala City, Guatemala Abstract: Several studies have tried to elucidate the main environmental features driving invertebrate community structure in cave environments. They found that many factors influence the community structure, but rarely focused on how substrate types and heterogeneity might shape these communities. Therefore, the objective of this study was to assess which substrate features and whether or not substrate heterogeneity determines the invertebrate community structure (species richness and composition) in a set of limestone caves in Guatemala. We hypothesized that the troglobitic fauna responds differently to habitat structure regarding species richness and composition than non-troglobitic fauna because they are more specialized to live in subterranean habitats. Using 30 m2 transects, the invertebrate fauna was collected and the substrate features were measured. The results showed that community responded to the presence of guano, cobbles, boulders, and substrate heterogeneity. The positive relationship between non-troglobitic species composition with the presence of guano reinforces the importance of food resources for structuring invertebrate cave communities in Guatemalan caves.
    [Show full text]
  • IV. the Oribatid Mites (Acari: Cryptostigmata)
    This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. United States Department of Invertebrates of the H.J. Agriculture Andrews Experimental Forest Service Pacific Northwest Forest, Western Cascade Research Station General Technical Report Mountains, Oregon: IV. PNW-217 August 1988 The Oribatid Mites (Acari: Cryptostigmata) Andrew R. Moldenke and Becky L. Fichter I ANDREW MOLDENKE and BECKY FICHTER are Research Associates, Department of Entomology, Oregon State University, Corvallis, Oregon 97331. TAXONOMIC LISTING OF PACIFIC NORTHWEST GENERA * - indicates definite records from the Pacific Northwest *Maerkelotritia 39-40, figs. 83-84 PALAEOSOMATA (=BIFEMORATINA) (=Oribotritia sensu Walker) Archeonothroidea *Mesotritia 40 *Acaronychus 32, fig. 64 *Microtritia 40-41, fig. 85 *Zachvatkinella 32, fig. 63 *Oribotritia 39, figs. 81-82 Palaeacaroidea Palaeacarus 32, fig. 61 (=Plesiotritia) *Rhysotritia 40 Ctenacaroidea *Aphelacarus 32, fig. 59 *Synichotritia 41 Beklemishevia 32, fig. 62 Perlohmannioidea *Perlohmannia 65, figs. 164-166, 188 *Ctenacarus 32, fig. 60 ENARTHRONOTA (=ARTHRONOTINA) Epilohmannioidea *Epilohmannia 65-66, figs. 167-169, Brachychthonioidea 187 *Brachychthonius 29-30, fig. 53 Eulohmannioidea *Eobrachychthonius 29 *Eulohmannia 35, figs. 67-68 *Liochthonius 29, figs. 54,55,306 DESMONOMATA Mixochthonius 29 Crotonioidea (=Nothroidea) Neobrachychthonius 29 *Camisia 36, 68. figs. 70-71, Neoliochthonius 29 73, 177-178, 308 (=Paraliochthonius) Heminothrus 71 Poecilochthonius 29 *Malaconothrus 36, fig. 74 *Sellnickochthonius 29, figs. 56-57 Mucronothrus 36 (=Brachychochthonius) Neonothrus 71 *Synchthonius 29 *Nothrus 69, fig. 179-182, Verachthonius 29 186, 310 Hypochthonioidea *Platynothrus 71, figs. 183-185 *Eniochthonius 28, figs. 51-52 309 (=Hypochthoniella) *Trhypochthonius 35, fig. 69 *Eohypochthonius 27-28, figs. 44-45 *Hypochthonius 28, figs.
    [Show full text]
  • Arachnida, Opiliones) at Juruti River Plateau, State of Pará, Brazil Ricardo Pinto-Da-Rocha & Alexandre B
    ARTÍCULO: A structured inventory of harvestmen (Arachnida, Opiliones) at Juruti River plateau, State of Pará, Brazil Ricardo Pinto-da-Rocha & Alexandre B. Bonaldo Abstract: The first structured inventory of harvestmen in the Brazilian Amazon Rain Forest was carried out at Juruti municipality, Pará State. The sampling protocol was done in three plots of (1 ha each) non-flooded upland forest, on the Juruti River plateau, nearly 60 km from the right margin of the Amazon river, and one plot in a floodplain forest area, at the Amazon river margin. To ensure assessment of the majority of potential habitats, seven collecting techniques were used, resulting in 466 individuals from 28 species. Each ARTÍCULO: upland site provided 16-18 species. Flooded forest habitat was A structured inventory of undersampled, and only five species were recorded. From the seven harvestmen (Arachnida: Opiliones) collecting methods employed, litter manual sorting resulted in the highest at Juruti River plateau, State of Pará, number of species per sample, and beating tray the highest ratio of Brazil individuals per sample. These two collection techniques, along with nocturnal ground search, were the most effective sampling techniques for a protocol for Ricardo Pinto da Rocha collecting harvestmen in this site. Departamento de Zoologia, Key words: Amazonian Rain Forest, Diversity, Inventory, Opiliones, Sampling protocol Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 321, Un inventario estructurado de los Opiliones (Arachnida) del altiplano 05508-900 São Paulo SP, Brazil; [email protected] del Río Juruti, Estado de Pará, Brasil Alexandre B. Bonaldo Resumen: Museu Paraense Emílio Goeldi, El primer inventario estructurado de Opiliones en la Selva Amazónica fue Coordenação de Zoologia, realizado en Juruti, Estado de Pará, Brazil.
    [Show full text]
  • Opiliones, Gonyleptidae) with Description of a New and Independently Evolved Case of Paternal Care in Harvestmen
    2009. The Journal of Arachnology 37:127–134 Reproductive behavior of Chavesincola inexpectabilis (Opiliones, Gonyleptidae) with description of a new and independently evolved case of paternal care in harvestmen Taı´s M. Nazareth: Programa de Po´s-graduac¸a˜o em Ecologia e Conservac¸a˜o de Recursos Naturais, Universidade Federal de Uberlaˆndia, CP 593, 38400-902 Uberlaˆndia, MG, Brazil Glauco Machado1: Departamento de Ecologia, Instituto de Biocieˆncias, Rua do Mata˜o, trav. 14, nu 321, 05508-900, Sa˜o Paulo, SP, Brazil Abstract. In this paper, we investigate the reproductive behavior of the gonyleptid Chavesincola inexpectabilis Soares & Soares 1946 (Heteropachylinae) and provide basic descriptive information about courtship, copulation, oviposition, and paternal care. Like most gonyleptids, males of C. inexpectabilis have a strong armature on the fourth pair of legs and use their spines and apophyses to fight other males and to repel them from their nesting sites. The mating pair interacts briefly before copulation, but the male touches the female both during and after penetration while she oviposits. The oviposition behavior differs markedly from that of other Laniatores: females hold the eggs on the chelicerae before depositing them on the substrate. After oviposition, the eggs are left under the guard of the male to defend against attack from cannibalistic conspecifics. Mapping the available data on reproductive biology of the Gonyleptidae on the phylogeny of the family, it is possible to infer that paternal care has evolved at least three times independently: once in the clade Progonyleptoidellinae + Caelopyginae, once in the Gonyleptinae, and once in the Heteropachylinae, which occupies a basal position within the group.
    [Show full text]
  • Acari: Oribatida) of Canada and Alaska
    Zootaxa 4666 (1): 001–180 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4666.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BA01E30E-7F64-49AB-910A-7EE6E597A4A4 ZOOTAXA 4666 Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska VALERIE M. BEHAN-PELLETIER1,3 & ZOË LINDO1 1Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, K1A0C6, Canada. 2Department of Biology, University of Western Ontario, London, Canada 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by T. Pfingstl: 26 Jul. 2019; published: 6 Sept. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 VALERIE M. BEHAN-PELLETIER & ZOË LINDO Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska (Zootaxa 4666) 180 pp.; 30 cm. 6 Sept. 2019 ISBN 978-1-77670-761-4 (paperback) ISBN 978-1-77670-762-1 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2019 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4666 (1) © 2019 Magnolia Press BEHAN-PELLETIER & LINDO Table of Contents Abstract ...................................................................................................4 Introduction ................................................................................................5
    [Show full text]
  • Comal County Regional Habitat Conservation Plan Environmental Impact Statement
    Draft Comal County Regional Habitat Conservation Plan Environmental Impact Statement Prepared for: Comal County, Texas Comal County Commissioners Court Prepared by: SWCA Environmental Consultants Smith, Robertson, Elliott, Glen, Klein & Bell, L.L.P. Prime Strategies, Inc. Texas Perspectives, Inc. Capital Market Research, Inc. April 2010 SWCA Project Number 12659-139-AUS DRAFT COMAL COUNTY REGIONAL HABITAT CONSERVATION PLAN ENVIRONMENTAL IMPACT STATEMENT April 2010 Type of Action: Administrative Lead Agency: U.S. Department of the Interior Fish and Wildlife Service Responsible Official: Adam Zerrenner Field Supervisor U.S. Fish and Wildlife Service 10711 Burnet Road, Suite 200 Austin, Texas For Information: Bill Seawell Fish and Wildlife Biologist U.S. Fish and Wildlife Service 10711 Burnet Road, Suite 200 Austin, Texas Tele: 512-490-0057 Abstract: Comal County, Texas, is applying for an incidental take permit (Permit) under section 10(a)(1)(B) of the Endangered Species Act of 1973, as amended 16 U.S.C. § 1531, et seq. (ESA), to authorize the incidental take of two endangered species, the golden-cheeked warbler (Dendroica chrysoparia) and the black-capped vireo (Vireo atricapilla), referred to collectively as the “Covered Species.” In support of the Permit application, the County has prepared a regional habitat conservation plan (Proposed RHCP), covering a 30-year period from 2010 to 2040. The Permit Area for the Proposed RHCP and the area of potential effect for this Environmental Impact Statement (EIS) is Comal County in central Texas. The requested Permit would authorize the following incidental take and mitigation for the golden-cheeked warbler: Take: As conservation credits are created through habitat preservation, authorize up to 5,238 acres (2,120 hectares) of golden-cheeked warbler habitat to be impacted over the 30-year life of the Proposed RHCP.
    [Show full text]