<<

Estimations of Octanol , Vapor Pressure, Octanol- air , and Air-water Partition Coefficient

Item Type text; Electronic Dissertation

Authors Sepassi, Kia

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Download date 28/09/2021 06:55:37

Link to Item http://hdl.handle.net/10150/194699 ESTIMATIONS OF OCTANOL SOLUBILITY, VAPOR PRESSURE, OCTANOL -AIR

PARTITION COEFFICIENT, AND AIR -WATER PARTITION COEFFICIENT

By

Kia Sepassi

______

Copyright © Kia Sepassi 2007

A Dissertation Submitted to the Faculty of the

DEPARTMEN T OF PHARMACEUTICAL SCIENCES

In Partial Fulfillment of the Requirements

For the degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2007 2

THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE

As members of the Dissertation Committe e, we certify that we have read the dissertation prepared by Kia Sepassi entitled Estimations of Octanol Solubility, Vapor Pressure, Octanol -air

Partition Coefficient, and Air -water Partition Coefficient and recommend that it be accepted as fulfill ing the dissertation requirement for the

Degree of Doctor of Philosophy

______Date: 01 -23 -2007 Samuel H. Yalkowsky, Ph.D.

______Date: 01 -23 -2007 Michael Mayersohn, Ph.D.

______Date: 01 -23 -2007 Paul B. Myrdal, Ph.D.

______Date:

______Date:

Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate Colle ge.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

______Date: 01 -23 -2007 Dissertation Director: Samuel H. Yalkowsky, Ph.D. 3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at The University of Arizona and is deposited in the University Library

to be made available to borrowe rs under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manusc ript in whole or in part may be granted by the copyright holder.

Kia Sepassi 4

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor and mentor Dr. Samuel

Yalkowsky for his guidance, commitment, and encouragement. I will always remember

and cherish my time spent discussing scientific matters and philosophic issues.

I would also like to thank my dissertation committee members, Dr. Michael Mayersohn

and Dr. Paul Myrdal, for their many countless hours of time and advice. I would als o like

to express my gratitude to my minor committee members, Dr. Scott Saavedra and Dr.

James Farrell, for dedicating their time to serve on my committee.

I would also like to thank my many colleagues past and present at the The University of

Arizona, esp ecially Dr. Marc Tesconi for teaching me the art of dedication.

Finally, I would like to thank my parents, sister, and brother for their love and continuous

support. This accomplishment belongs to us all, it is especially symbolic of the sacrifices

made by Mom and Dad. 5

DEDICATION

To My Parents 6

TABLE OF CONTENTS

LIST OF FIGURES ...... 10

LIST OF TABLES ...... 11

ABSTRACT ...... 12

CHAPTER 1: INTRODUCTION ...... 13

1.1 Overview ...... 13

1.2 Aims of This Study ...... 15

CHAPTER 2: MOLAR OCTANOL SOLUBILITY OF ORGANIC SOLUTES ...... 17

2.1 Introduction ...... 17

2.2 Background ...... 17

2.2.1 Regular Solution Theory ...... 17

2.2.2 Scatchard -Hildebrand Activity Coefficient ...... 18

2.2.3 Miscibility of Liquid Solutes with Octanol ...... 19

2.2.4 Ideal Crystalline Solubility ...... 22

2.2.5 Entropy of Mel ting ...... 22

2.2.6 Molar Octanol Solubility ...... 24

2.3 Experimental ...... 25

2.3.1 Miscibility Range ...... 25

2.3.2 Molar Solubility ...... 25 7

TABLE OF CONTENTS - CONTINUED

2.4 Results and Discussion ...... 26

2.4.1 Miscibility Range ...... 26

2.4.2 Molar Solubility ...... 28

2.5 Conclusion ...... 30

CHAPTER 3: SATURATED VAPOR PRESSURE ...... 31

3.1 Introduction ...... 31

3.2 Background ...... 32

3.2.1 Entropy of Melting ...... 34

3.2.2 Entropy of Boiling ...... 34

3.2.3 Heat Capacity Change on Melting ...... 35

3.2.4 Heat Capacity Change on Boi ling ...... 35

3.3 Experimental ...... 36

3.4 Results and Discussion ...... 37

3.4.1 Effect of the Heat Capacity Change on Boiling ...... 37

3.4.2 Effect of the Heat Capacity Change on Melting ...... 38

3.4.3 Final Vapor Pressure Equation ...... 39

3.4.4 Temperature Depende nce of Vapor Pressure ...... 41

3.5 Conclusion ...... 43

CHAPTER 4: OCTANOL -AIR PARTITION COEFFICIENT ...... 44 8

TABLE OF CONTENTS - CONTINUED

4.1 Introduction ...... 44

4.2 Background ...... 44

4.2.1 Octanol Solubility ...... 45

4.2.2 Saturated Vapor Pressure ...... 46

4.2.3 Octanol -air Partition Coefficient ...... 46

4.3 Experimental ...... 47

4.4 Results and Discussion ...... 47

4.4.1 Final Octanol -air Partition Coefficient Equation ...... 47

4.4 Conclusion ...... 51

CHAPTER 5: AIR -WATER PARTITION COEFFICIENT ...... 52

5.1 Introduction ...... 52

5.2 Background ...... 52

5.2.1 Saturated Vapor Pressure ...... 53

5.2.2 Aqueous Solubility ...... 54

5.2.3 Final Air -water Partition Coefficient Equation ...... 54

5.3 Experimental ...... 55

5.4 Results and Discussion ...... 57

5.4.1 Non -ionizable Compounds and Those with Less than 50% ...... 57

5.4.2 Ionizable Compounds and Those with Solubilities Greater than 50% ...... 58 9

TABLE OF CONTENTS - CONTINUED

5.5 Conclusion ...... 60

APPENDIX A: ESTIMATION OF OCTANOL SOLUBILITY ...... 61

APPENDIX B: RESULTS OF VAPOR PRESSURE ES TIMATIONS ...... 64

APPENDIX C: RESULTS OF THE OCTANOL -AIR PARTITION COEFFICIENT

ESTIMATIONS ...... 87

APPENDIX D: RESULTS OF THE AIR -WATER PARTITION COEFFICIENT

ESTIMATIONS FOR NON -IONIZABLE COMPOUNDS AND THOSE WITH

AQUEOUS SOLUBILITIES OF LESS THAN 50%……………………………………94

APPENDIX E: RESULTS OF THE AIR -WATER PARTITION COEFFICIENT

ESTIMATIONS FOR IONIZABLE COMPOUNDS AND THOSE WITH AQUEOUS

SOLUBILITIES OF GREATER THAN 50% ...... 108

REFERENCES ...... 112 10

LIST OF FIGURES

Figur e 1.1 Flow diagram illustrating measures of partitioning and volatility...... 14 Figure 2.1 Dependence of octanol solubility on melting points...... 29 Figure 3.1 Log of the experimental and predicted vapor pressures in atmospheres...... 40 Figure 3.2 Vapor pressure of as a function of temperature...... 42 Figure 4.1 Log of the experimental and predicted octanol -air partition coefficients...... 48 Figure 4.2 Error distribution as a function of reported octan ol -air partition coefficients. 49 Figure 5.1 Experimental and predicted air -water partition coefficients for non -ionizable compounds and those with aqueous solubilities less than 50%...... 57 Figure 5.2 Experimental and predicted air -water partition coefficients for ionizable compounds and those with aqueous solubilities greater than 50%...... 59 11

LIST OF TABL ES

Table 2.1 Liquid molar volumes and corresponding ranges of complete miscibility with octanol...... 21 Table 2.2 Miscibility data of 32 common organic liquid solutes in octanol...... 27 Table 3.1 Log of the average absolute errors and average errors for the estimation of the ambient temperature vapor pressure of 680 liquid organ ic compounds...... 37 Table 3.2 Log of the average absolute errors and average errors for the estimation of the ambient temperature vapor pressures of 135 solid organic compounds...... 38 Table 3.3 Log of the average absolute errors and average errors for the estimation of the ambient temperature vapor pressures of 815 organic compounds...... 39 Table 4.1 Octanol -ai r Partition Coefficient of Chlorobenzenes at 298K………………...50 12

ABSTRACT

The United States Environmental Protection Agency was established in 1970 to control, limit, and regulate pollutant entry into the environment. The primary sources of pollutants are m otor vehicle emissions, chemical plants, production factories, land fills, and natural or man -made catastrophes . Persistent organic pollutants have been known to cause such aliments as cancer, respiratory disease, and birth defects. These compounds can also cause irreversible environmental effects such as ozone depletion.

The amounts of pollutants in air, water, soil, and organic matter can be correlated with the octanol solubility, vapor pressure, octanol -air partition coefficient, and air -water partiti on coefficient. The estimation of physical properties plays an important role in understanding the fate of organic pollutants. Although it is more desirable to measure such properties, their estimations can be of great importance in conserving resources an d minimizing exposure.

In this dissertation new equations for the estimation of these properties are generated.

This is accomplished without the use of fitted parameters or regression analysis. The only experimental input parameters are the transition tem peratures. The transition properties were estimated from molecular structure. The average absolute errors for the estimated properties are less than one log unit from the experimental values. 13

CHAPTER 1: INTRODUCTION

1.1 Overview

Physical properties such a s the molar octanol solubility, saturated vapor pressure,

octanol -air partition coefficient, and the air -water partition coefficient are important

descriptors used in assessing the fate of pollutants and establishing environmental

exposure guidelines. Var ious estimation methods exist for these properties, with some

being restricted to specific chemical classes. These methods provide reliable estimates

for the given structural group of compounds. However, their application to different

classes of compounds may lead to erroneous estimations and their use is further restricted

with the advent of new compounds or functional groups. Thus, it becomes increasingly

desirable to develop a unified estimation approach with wide applicability.

Figure 1.1 is an adapt ation of the scheme presented by Yalkowsky et al. (1994) and it depicts the relationship between the various measures of partitioning and volatility. It can be seen that knowledge of any two parameters will aid in the estimation of a third parameter. 14

Soct VP Swat

Koa Kaw

Figure 1.1 Flow diagram illustrating measures of partitioning and volatility.

For example, developing empirical equations for the molar octanol solubility ( Soct ) and saturated vapor pressure (VP) will allow for the estimation of the octanol -air partition coefficient ( Koa ) since it represents the equilibrium concentration ratio between air and

octanol. Similarly, the air -water partition coefficient (K aw ), which is the equilibrium

concentration ratio between air and water, can be estimated from empirical equ ations for

the molar aqueous solubility (S w) and saturated vapor pressure.

The accuracy of any broadly applicable method relies on the number of assumption made

and the availability of accurately measured data. Boethling et al. (2004) noted that for bro adly applicable estimation methods accuracies of +0.5 to 1 log units, corresponding to

factors of 3 -10, are common. This was used as the standard allowable error in estimating

the properties mentioned in the specific aims of this dissertation. 15

1.2 Aims of This Study

The specific aims of this dissertation are to generate empirical equations for:

 The molar octanol solubility (Chapter 2)

 Saturated vapor pressure (Chapter 3)

 Octanol -air partition coefficient (Chapter 4)

 Air -water partition coefficient (Chapt er 5)

In Chapter 2 an expression for the molar octanol solubility of organic compounds is

generated from the principles of regular solution theory. Theoretical ranges of complete

miscibility for liquid solutes in octanol are proposed. These ranges are v erified using

organic liquids with various degrees of polarity. The molar octanol solubility of a

structurally diverse data set is then estimated from a constant for complete miscibility and

the ideal crystalline term.

The ambient temperature saturated va por pressures of organic compounds are estimated

in Chapter 3 using the Clausius -Clapeyron equation. The transition properties are

estimated from empirical equations. Previously published equations for the entropies of

melting and boiling are presented. Two new equations are introduced for the estimation

of the heat capacity change on boiling. The estimations regarding the heat capacity

change on melting is revisited. The new vapor pressure equation provides reliable 16

estimations at room temperature. The applicability of the new equation is extended

further by estimating the temperature dependence of vapor pressure for anthracene.

In Chapter 4 the octanol -air partition coefficient is estimated by combing equations for the molar octanol solubility (Chapter 2) and saturated vapor pressure (Chapter 3). This new equation is applicable to all organic compounds with solubility parameters in the range of complete miscibility with octanol.

The air -water partition coefficient is estimated in Chapter 5 by combing equations for the

molar aqueous solubility and saturated vapor pressure (Chapter 3). Since the air -water partition coefficient estimations are based on dilute solute concentrations in water, the experimental data set is broken into two categories: ioniz able compounds and those with solubilities of greater than 50%, non -ionizable compounds and those with solubilities of less than 50%. Finally, the new equation is used to estimate the air -water partition coefficients of these two data sets. 17

CHAPTER 2: M OLAR OCTANOL SOLUBILITY OF ORGANIC SOLUTES

2.1 Introduction

The purpose of this section is to derive and validate an empirical equation for the estimation of the molar octanol solubility of organic compounds. The octanol solubility plays an important role in determining the partitioning and absorption behavior of environmental and pharmaceutical compounds. Its accurate estimation will allow for

better modeling and understanding the environmental fate of these compounds.

Quantitative structure -property relati onships (QSPR) schemes for the prediction of octanol solubility have been developed, however their applications are limited to specific classes of compounds (Cousins and Mackay, 2000). Thus, it becomes increasingly desirable to have an equation that is ap plicable to all organic compounds.

2.2 Background

2.2.1 Regular Solution Theory

When two liquids are mixed, the resultant solution can be classified as an ideal, solvated, or regular solution. The principles of regular solution theory are employed here to derive an empirical equation for the estimation of octanol solubility. According to Hildebrand and Scott (1950), a regular solution is defined as having an ideal entropy and volume of 18

mixing. Depending on the molecular interactions, the enthalpy of mixing can be positive

(endothermic) or negative (exothermic). The total enthalpy of mixing for a binary system

is given by

∆H mix = ∆H xx + ∆H yy − ∆H xy (2.1)

where a positive enthalpy of mixing occurs when the individual component interactions

(xx or yy) are greater than the interaction between the components (xy). This leads to

positive deviations from ideality since the enthalpy of mixing is zero for an ideal

solution. Positive deviation occurs when one component interacts strongly with itself

than with the other components. If the interaction between the two is stronger and more

favored than the individual interactions, the enthalpy of mixing will be negative, leading

to negative deviations from ideali ty.

2.2.2 Scatchard -Hildebrand Activity Coefficient

While the assumptions regarding regular solution theory are generally useful, they are not

applicable to strongly hydrogen bonded compounds like water. The Scatchard -

Hildebrand equation, which is based on t he principals of regular solution theory and

positive deviations from ideality, can be used to estimate an octanol activity coefficient of

solutes. As a first approximation, the use of this equation for a weakly hydrogen bonding

liquid such as octanol is valid. The Scatchard -Hildebrand activity coefficient ( γoct ) of a solute in octanol is given by 19

V φ2 (δ − δ )2 log γ = 2 oct oct 2 (2.2) oct 2.3 ⋅ R ⋅ T where V 2 and δ2 are the molar volume and solubility paramete r of the solute, respectively.

δoct and φoct denote the solubility parameter and volume fraction of octanol, respectively.

2.2.3 Miscibility of Liquid Solutes with Octanol

The mole fraction (X oct ) solubility of a crystalline compound in oct anol is given by

c log X oct = log X ideal − log γ oct (2.3)

c where X ideal and γoct are the ideal crystalline solubility and octanol activity coefficient of

a solute, respectively. In the case of liquid compounds at ambient temperature (i.e.

less than 25 °C), the above equation is simplified to

log X oct = −log γ oct (2.4) where the extent of solubilization of a liquid solute in octanol is limited by its activity coefficient. Combining Equations 2.2 and 2.4 leads to

V φ2 (δ − δ )2 log X L = − 2 oct oct 2 (2.5) oct 2.3 ⋅ R ⋅ T where the extent of solubiliza tion is limited by the molar volume, octanol volume fraction, and solubility parameter difference. Complete miscibility will generally occur

for solutes with solubility parameters near that of octanol (i.e., δoct = δ2). Thus it becomes important to derive a range of complete miscibility for liquid solutes in octanol. In order

to estimate their solubility in octanol the following generalization is made. Complete 20

miscibility of liquid solutes in octanol occurs when X oct =X 2= 0.5. This assumption was used by Hildebrand and Scott (1950) in the determination of the upper critical solution temperature for the mixture of two liquids. For a solute with a molar volume near that of

octanol, a mole fraction solute solubility of 0.5 corresponds to an octanol volume f raction

( φoct ) of 0.5. For complete miscibility at 298 K Equation 2.5 becomes

V ⋅ (0.5 )2 (21.1− δ )2 log ()0.5 = − 2 2 (2.6) 5709

where 21.1 (J/cm 3)0.5 is the solubility parameter of octanol, simplif ying to

82 .9 ≥ V2 ⋅ 21.1 −δ 2 (2.7)

Thus, from the molar volume of a liquid solute its theoretical range of complete

miscibility in octanol can be obtained from the above equa tion. For liquid solutes having

solubility parameters outside the calculated range, phase separation occurs upon mixing with octanol. For a binary system, Hildebrand and Scott (1950) rationalized that it is more appropriate to use the average molar volume of the two components. Table 2.1 lists several hypothetical liquid molar volumes along with the calculated ranges of complete

miscibility with octanol. The ranges are calculated from averaging the molar volumes of

the solute and octanol. 21

Table 2.1 Liqu id molar volumes and corresponding ranges of complete miscibility with octanol.

Liquid Molar Range of Complete Volume (cm 3/Mol) Miscibility (J/cm 3)0.5 50 13.0 - 29.2 100 13.8 - 28.4 158 14.5 - 27.7 200 14.9 - 27.3 300 15.6 - 26.6 400 16.1 - 26.1 500 16.5 - 25.7

As the molar volumes increase in Table 2.1, the range of complete miscibility with octanol decreases. If a liquid solute has a molar volume near that of octanol, i.e., 158 cm 3/Mol, Equation 2.7 becomes

6.60 ≥ 21.1 −δ 2 (2.8) which leads to a solubility parameter range of 15 to 28 (J/cm 3)0.5 for liquid solutes that are completely miscible with octanol. Interestingly, the solubility parameters of most common environmental and pharmaceutical compounds fall within this range.

Since the molarity of pure dry octanol is 6.33 Mol/L, a mole fraction solubility of 0.5 corresponds to a molar solubility of 3.17 Mol/L. Coincidentally the logarithm of 3.17 is

0.5. If a liquid solute has a solubility parameter in the above range its solubility in

L octanol ( Soct ) can be approximated on a molar scale by

L log Soct = 0.5 (2.9) 22

2.2.4 Ideal Crystalline Solubility

For crystalline compounds at ambient temperature, the extent of solubilization is limited by the ideal crystalline solubility and activity coefficient. The first part of Equation 2.3 account s for the ideal crystalline solubility, which is the crystal contribution to solubility.

The ideal crystalline solubility is given by

c ∆H m (Tm − T) ∆Cp m Tm − T Tm  log X ideal = − +  − ln  (2.10) 2.3 ⋅ R ⋅ T ⋅ Tm 2.3⋅ R  T T  where ∆Hm, T m, T are the enthalpy of melting, melting point, a nd reference temperature, respectively. ∆Cp m is the heat capacity change on melting. Some workers assume ∆Cp m is negligible (Liu, 2000), while others assume it is better approximated by the entropy of melting (Neau and Flynn, 1990). Neither assumption ha s been shown to be superior. For simplicity the heat capacity change on melting is assumed negligible and using Gibbs relationship at the transition temperature leads to

∆S (T − T) log X c = − m m (2.11) ideal 2.3 ⋅ R ⋅ T where the ideal crystalline solubility is determined from the entropy of melting, melting point, and reference temperature.

2.2.5 Entropy of Melting

Equation 2.11 can be further simplified by the use of Walden’s rule. Walden’s rule states tha t the entropy of melting for coal tar derivatives, which are primarily rigid organic 23 compounds, can be approximated by a constant value of 56.5 J/mol·K (Walden, 1908).

Thus

56.5 ⋅ (T − 298 ) log X c = − m = −0.01 ⋅ ()MP − 25 (2.12) ideal 5709 where MP denote s the melting point of a compound in Celsius and 25 °C represents the experimental temperature of interest. MP -25 is used in place of T m-298 because melting point data are normally reported in Celsius.

Recently, Jain et al. (2004) demonstrated that the entropy of melting can be more accurately approximated by

∆Sm = 50 −19.1 ⋅ log σ + 7.4 ⋅ τ (J/Mol·K) (2.13) where the σ and τ represent the molecular symmetry and flexibility numbers, respectively. The molecular symm etry number is defined as the number of ways a molecule could be superimposed on itself resulting in an identical structure with respect to a reference position. The molecular flexibility number is given by

τ = SP3 + 0.5 ⋅ SP2 + 0.5 ⋅ RING −1 (2.14) where SP3, SP2, and RING denote the number of non -ring non -terminal sp3 and sp2 atoms, and RING denotes the number of independent single fused ring systems in a molecule (Jain et al., 2004). Therefore, the ideal cry stalline solubility can be more accurately estimated by

(50 -19.1 ⋅ log σ + 7.4 ⋅ τ)⋅ (MP − 25 ) log X c = − (2.15) ideal 5709 24

2.2.6 Molar Octanol Solubility

C The molar octanol solubility of a crystalline solute ( Soct ) can be determined from the product of the solubility it would have if it were a liquid and its ideal crystalline solubility. This expression is given by

C L c Soct = Soct ⋅ X ideal (2.16)

The two terms on the right hand side of the equation are independent of one another.

Taking the logarithm of both sides and substituting Equations 2.9 and 2.15 into the above equation leads to

(50 −19.1 ⋅ log σ + 7.4 ⋅ τ)⋅ (MP − 25 ) log SC = 0.5 − (2.17) oct 5709

Th us for crystalline solutes with molar volumes near that of octanol and solubility parameters in the range of 15 to 28 (J/cm 3)0.5 , the molar octanol solubility can be estimated by the melting point, symmetry and flexibility numbers. For those crystalline solutes that obey Walden’s rule for the entropy of melting and have solubility parameters in the range of complete miscibility with octanol, the equation becomes

C log Soct = 0.5 − 0.01 ⋅ (MP − 25 ) (2.18) where the molar octanol solubility can be predicted by the melting point alone. It should be noted that the term in the parentheses cannot be less than zero. Therefore for all compounds that melt below ambient temperature, the melting point is set to 25 °C and the

(MP – 25) term vanishes. 25

2.3 Experimental

2.3.1 Miscibility Range

The miscibility of 32 common organic liquids at room temperature with octanol was determined by mixing equal volumes and visual evaluation for phase separation over a three day period. All liquid solutes were of high purity (>98%) and used as received without further modification or purification from the following companies: Sigma -

Aldrich, St. Louis, MO; Burdick and Jackson, Morristown, NJ; and AAER Alcohol and

Chemical Co, Shelbyville , Ky.

2.3.2 Molar Solubility

The reported octanol solubility of 123 compounds were taken from the literature

(Yalkowsky et al., 1983; Miller et al., 1985; Kosanovic et al., 1988; Nimi, 1991;

Pinsuwan et al., 1995; Powell et al., 1996; Fletcher et al., 1997; Sh iu et al., 1997;

Abraham et al., 2001; Treszczanowicz et al., 2001; Gracin et al., 2002). The melting points ranged from below room temperature to 485 °C and included environmentally prevalent compounds such as polycyclic aromatic , polychlori nated biphenyls, and polychlorinated , as well as steroids and nonsteroidal anti - inflammatory drugs. Multiple solubility values obtained for several compounds from various sources were used independently without averaging. The molar volumes and 26 solubility parameters of the liquid solutes were determined by the Bondi group contribution method (Barton, 1979).

2.4 Results and Discussion

2.4.1 Miscibility Range

Table 2.2 summarizes the results of the observed and predicted miscibility data of 32 common organ ic liquids with octanol. Predicted miscibility data were obtained by use of

Equation 2.7 . 27

Table 2.2 Miscibility data of 32 common organic liquid solutes in octanol.

Molar Volume Solubility Parameter Miscibility Liquid Solute (cm 3/mol) (J/cm 3)0.5 Ob s. Pred. 101 14.7 Y Y 130 14.9 Y Y 52 15.2 Y Y 162 15.6 Y Y Ether 105 15.7 Y Y Hexadecane 131 15.7 Y Y 108 16.8 Y Y p- 123 17.3 Y Y Isopropyl Myristate 319 17.5 Y Y tetrachloride 96 17.8 Y Y 106 18.2 Y Y Ethyl acetate 99 18.2 Y Y 89 18.6 Y Y 81 18.7 Y Y 73 20.1 Y Y chloride 65 20.2 Y Y 58 21.4 Y Y Nitrobenzene 102 22.3 Y Y PEG 600 350 22.5 Y Y Butanol 91 23.1 Y Y PEG 400 525 23.1 Y Y Benzyl alcohol 104 23.8 Y Y Propanol 75 24.6 Y Y PEG 200 175 26.1 Y Y DMSO 73 26.6 Y Y 58 26.6 Y Y 40 29.7 Y Y Propylene glycol 74 30.7 Y Y glycol 56 32.7 Y Y Glycerin 73 36.1 N N Formamide 40 36.7 N N Water 18 48.0 N N *Obs, indicates observed miscibility; Pred, predicted miscibility; PEG, polyethylene glycol; and DMSO, dimethyl sulfoxide.

From the table it can be seen that complete miscibility with octanol occurs for solutes with solubility parameters ra nging from 14 to 32 (J/cm 3)0.5 . This includes the range of 15 28 to 28 (J/cm 3)0.5 , which is based on the assumption that a liquid solute has a molar volume near that of octanol.

Glycerin, formamide, and water have solubility parameters outside their calcul ated ranges of complete miscibility and are thus predicted not to be completely miscible with octanol.

This was validated by the presence of two phases when equal volumes of these solutes were mixed with octanol.

2.4.2 Molar Solubility

Figure 2.1 represents t he relationship between the experimental molar solubilities in octanol and melting point (MP – 25°C). The figure shows that melting point is the primary determinant of octanol solubility. As the melting point increases, a corresponding decrease in octano l solubility occurs. The line in the figure is the theoretical relationship described by Equation 2.18. 29

1.0

0.0

-1.0

-2.0 l o

g -3.0 S o c t -4.0

-5.0 0 100 200 300 400 500

MP( oC) - 25

Figure 2.1 Dependence of octanol solubility on melting points.

Linear regression analysis was performed with SPSS version 10.0. Regression analy sis was based on 149 solubilities, corresponding to 123 reported solubilities and 26 miscible liquid solutes from Table 2.3 that lie in the theoretical range of complete miscibility. The experimental and predicted octanol solubilities are presented in App endix A.

Mirex, the square point in Figure 2.1 was deemed a statistical outliner and not included in

C the regression analysis, which resulted in logS oct = 0.378 − 0.0099 ⋅ (MP − 25 ). This is in agreement with Equation 2.18. The average absolute error for the predictio ns for the entire data set was determined to be 0.39 logarithmic units.

The accuracy in predicting octanol solubility will be limited to the availability of reliable experimental data and the compounds having solubility parameters in the range of 30 complet e miscibility. The equation also does not account for the self -association of solutes in octanol.

2.5 Conclusion

A theoretical range of complete miscibility of liquid solutes with octanol was derived from the Scatchard -Hildebrand equation and validated wit h a group of common organic solvents. Molar octanol solubilities ranging over four orders of magnitude were predicted with a non -regression based equation utilizing melting point as the only molecular descriptor. The use of experimental entropies of melt ing resulted in only a slight improvement in predicting octanol solubilities for 68 compounds having melting points above ambient temperature. The equation in its current form is unable to account for strongly hydrogen bonding compounds. 31

CHAPTER 3: SATU RATED VAPOR PRESSURE

3.1 Introduction

The aim of this section is to develop an equation for the estimation of the saturated vapor pressures of organic compounds. The tendency for an environmental contaminant or pesticide to partition into the atmosphere is determined largely by its vapor pressure

(Mackay et al., 1982). Thus, knowledge of vapor pressure will allow for a better understanding of the environmental fate of organic compounds.

Recently, Voutsas et al. (2002) demonstrated the successful estimation of saturated vapor pressures from knowledge of the normal . This method is based on the

Clausius -Clapeyron equation and the use of an empirically fitted parameter obtained from regressing vapor pressure data from the melting point up to the n ormal boiling point for each compound. Coutsikos et al. (2003) estimated the saturated vapor pressure of organic compounds from the hypothetical liquid vapor pressure and the entropy of melting. The latter was estimated from a group contribution approach. Both of these methods are based on approximations of the Clausius -Clapeyron equation. However they are only applicable to specific chemical classes and are not applicable to a wide range of compounds.

Myrdal and Yalkowsky (1997) used the integrated form of the Clausius -Clapeyron equation to estimate the saturated vapor pressure of a wide range of organic compounds with reasonable accuracy. This approach requires the melting point, boiling point, and 32 four transition properties: entropy of melting, entro py of boiling, heat capacity change on melting, and heat capacity change on boiling. Using four empirical relationships for the estimation of these transition properties for each compound, they estimated the saturated vapor pressures of 297 organic compou nds with a root mean square error of 0.21 log units, corresponding to a factor of 1.61 (Myrdal and Yalkowsky, 1997). In this work the equations for the transition properties are reevaluated and a new equation for the estimation of the saturated vapor press ures is generated and validated using a larger data set containing over 800 compounds.

3.2 Background

The integrated form of the Clausius -Clapeyron equation permits the estimation of saturated vapor pressures (VP) in atmospheres at any temperature (T) in Kelvin units and is given by

∆Sm (Tm − T) ∆Cp m Tm − T Tm  log VP = − +  − ln  2.3⋅ R ⋅ T 2.3⋅ R  T T 

∆Sb (Tb − T) ∆Cp b Tb − T Tb  − +  − ln  (3.1) 2.3⋅ R ⋅ T 2.3⋅ R  T T  where the saturated vapor pressure is estimated from the melting point (T m), boiling point

(T b), entropy of melting ( ∆Sm), entropy of boiling ( ∆Sb), heat capacity change on melting

(∆Cp m), and heat capacity change on boiling ( ∆Cp b). For liquid compounds at ambient temperature this equation is simplified to 33

∆Sb (Tb − T) ∆Cp b Tb − T Tb  log VP = − +  − ln  (3.2) 2.3⋅ R ⋅ T 2.3⋅ R  T T  where the saturated vapor pressure is estimated from the boiling point, entropy of boiling, and heat capacity change on boiling.

Mackay et al. (1982) simplified Equation 3.1 by assuming the heat capacity change on melting and boiling are negligible. These ass umptions lead to

∆S (T − T) ∆S (T − T) log VP = − m m − b b (3.3) 2.3⋅ R ⋅ T 2.3⋅ R ⋅ T

This equation was further simplified by assuming the entropies of melting and boiling were constant and given by Walden’s (56.5 J/Mol·K) and Trouton’s rule ( 88 J/Mol·K)

(Mackay et al., 1982). These assumptions along with the universal constant (8.314

J/Mol·K) resulted in

2.95 (T − T) 4.60 (T − T) log VP = − m − b (3.4) T T where the saturated vapor pressure was estimated from t he melting point, boiling point, and reference temperature. Although this equation is a simplification of the Clausius -

Clapeyron equation, it is not very accurate for the estimation of saturated vapor pressures.

The assumptions made by Mackay were reevalu ated by Mishra & Yalkowsky (1991) and

Myrdal & Yalkowsky (1997). These authors improved the estimation of saturated vapor pressures by using empirical structure based equations for the entropies of melting and boiling as well as the heat capacity change o n boiling in Equation 3.1. 34

3.2.1 Entropy of Melting

In the previous chapter the method of Jain et al. (2004) was introduced and used to estimate the entropy of melting (Equation 2.13) and is used here in the estimation of solid vapor pressures.

3.2.2 En tropy of Boiling

As a first hand approximation the entropy of boiling can be approximated by Trouton’s rule. This rule states that the entropy of boiling for non -hydrogen bonded organic compounds is a constant value of 88 J/Mol·K. Myrdal et al. (1996) p roposed the following modification of Trouton’s rule for complex and hydrogen bonded compounds

∆Sb = 86 + 0.4 ⋅ τ +1421 ⋅ HBN (J/Mol·K) (3.5) where the entropy of boiling is estimated from the molecular flexibility (τ) and hydrogen bond density number (HBN). The hydrogen bond density number is determined from

OH + COOH + 0.33 ⋅ NH 2 HBN = (3.6) MW where OH, COOH, NH2 are the number of hydroxyl, carboxylic acid, and amine g roups on a compound and MW is the molecular weight of the compound. The square root accounts for competition among multiple hydrogen bonding groups on the same molecule. 35

3.2.3 Heat Capacity Change on Melting

For simplicity, Hildebrand (1935), Mackay et al. (1982), Mishra & Yalkowsky (1991), and Myrdal & Yalkowsky (1997) assumed the heat capacity change on melting to be negligible and approximated by

∆Cp m = 0 (J/Mol·K) (3.7)

Several other works, Neau et al. (1989) and Neau & Flynn (1990), suggested that it was more appropriate to assume the heat capacity change on melting is better approximated by the entropy of melting, i.e.

∆Cp m = ∆Sm (J/Mol·K) (3.8)

3.2.4 Heat Capacity Change on Boiling

Experimental data for the heat capacity change on boiling are scarce due to the difficulty in obtaining gas phase heat capacities over l arge temperature ranges. Sanghvi and

Yalkowsky (2006) generated an empirical equation for the estimation of the heat capacity change on boiling from the enthalpy of vaporization at 298 K and at the boiling point, and Kirchoff’s equation. Their equation st ates

∆Cp b = −56 − 4 ⋅ τ − 40 ⋅ HBP (J/Mol·K) (3.9) where HBP is the hydrogen bonding parameter and is determined from

HBP = OH + CO 2 H + 0.0628 ⋅ NH (3.10) 36

where O H, CO 2H, and NH are the number of hydroxyl, carboxyl, and amine groups on a compound (Sanghvi and Yalkowsky, 2006).

Recently, Sepassi et al. (2006) generated two new empirical equations for the estimation of the heat capacity change on boiling using the experimental data comprising 291 liquid organic compounds. The first equation was based on a proposed ratio of the heat capacity change on boiling to the entropy of vaporization. For the estimation of vapor pressure, Mackay et al. (1982) found -0.76 [i. e. ∆Cp b = -0.76· ∆Sb] to be the best value for small non -hydrogen bonding compounds with boiling points above 100 °C. From the experimental entropies of boiling the authors generated the following

∆Cp b = −68 − 0.31 ⋅ τ (J/Mol·K) (3.11)

The second equation was obtained from back calculating the heat capacity change on boiling from Equation 3.2 using the experimental boiling points, entropies of boiling, and room temperature vapor pressures of t he 291 liquid organic compounds. This resulted in

∆Cp b = −91 −1.2 ⋅ τ (J/Mol·K) (3.12)

3.3 Experimental

The experimental melting points, boiling points, and vapor pressures were obta ined from

MPBWIN version 1.41 provided by the United Stated Environmental Protection Agency.

A total of 815 organic compounds (680 liquid and 135 solid) with reported vapor pressures ranging from 10 -15 to 2.16 atmospheres at 298 K were retained. The boil ing 37 points of these compounds ranged from 299 to 809 Kelvin and the melting points ranged from below ambient temperature to 603 K.

3.4 Results and Discussion

3.4.1 Effect of the Heat Capacity Change on Boiling

Table 3.1 summarizes the estimation of satu rated vapor pressures of 680 liquid organic compounds at ambient temperature from Equation 3.2 by using the empirical equation for the entropy of boiling and the three different equations for the heat capacity change on boiling.

Table 3.1 Log of the avera ge absolute errors and average errors for the estimation of the ambient temperature vapor pressure of 680 liquid organic compounds.

Heat Capacity Equation AAE AE Equation 3.9 0.16 -0.11 Equation 3.11 0.18 -0.15 Equation 3.12 0.13 -0.03

The error in th e estimation of the liquid vapor pressures is the lowest with the use of

Equation 3.12. Although all three equations estimate the heat capacity change on boiling from molecular flexibility, the constant in Equation 3.12 is significantly higher than those in Equation 3.9 and 3.11. 38

3.4.2 Effect of the Heat Capacity Change on Melting

Table 3.2 summarizes the average absolute error and average errors in estimating the ambient temperature vapor pressures of 135 solid organic compounds. The melting points o f these compounds ranged from 299 to 603 Kelvin. The vapor pressures were estimated from Equation 3.1 using the empirical equations for the entropies of boiling and melting along with the three different equations for the heat capacity change on boiling.

Table 3.2 Log of the average absolute errors and average errors for the estimation of the ambient temperature vapor pressures of 135 solid organic compounds.

Estimation ∆Cp m ∆Cp b AAE AE Est 1 Eq 3.7 Eq 3.9 0.56 -0.24 Est 2 Eq 3.7 Eq 3.11 0.53 -0.29 Est 3 Eq 3.7 Eq 3.12 0.43 0.02 Est 4 Eq 3.8 Eq 3.9 0.60 -0.32 Est 5 Eq 3.8 Eq 3.11 0.57 -0.37 Est 6 Eq 3.8 Eq 3.12 0.44 -0.06

In estimations 1 through 3 and 4 through 6 , the heat capacity change on melting was assumed negligible or equal to the entropy of melting, respectively. These estimations illustrated that both assumptions result in nearly identical errors. This is because of the small contribution of Tm − T Tm  in Equation 3.1 to the overall estimation of vapor  − ln   T T  pressure. The two terms in the bracket are similar in magnitude but have opposite signs. 39

The heat capacity change on melting assumption becomes significant for solid compounds with high melt ing points.

For the estimations in Table 3.2, the use of Equation 3.12 for the estimation of heat capacity change on boiling provides the most accuracy in the estimation of the room temperature solid vapor pressures. The results in this table further sh ow that Equations

3.9 and 3.11 do not estimate solid vapor pressures very well.

3.4.3 Final Vapor Pressure Equation

Table 3.3 presents the errors in the estimation of the ambient temperature vapor pressures for all compounds in the data set.

Table 3 .3 Log of the average absolute errors and average errors for the estimation of the ambient temperature vapor pressures of 815 organic compounds.

Estimation ∆Cp m ∆Cp b AAE AE Est 1 Eq 3.7 Eq 3.9 0.23 -0.13 Est 2 Eq 3.7 Eq 3.11 0.24 -0.17 Est 3 Eq 3.7 Eq 3 .12 0.18 -0.03 Est 4 Eq 3.8 Eq 3.9 0.23 -0.14 Est 5 Eq 3.8 Eq 3.11 0.24 -0.19 Est 6 Eq 3.8 Eq 3.12 0.18 -0.04

From the table it can be seen that the use of Equation 3.12 again provides the best overall estimation of ambient temperature vapor pressures . Thus the final vapor pressure equation can be illustrated by incorporating Equations 2.13, 3.5, 3.7, 3.12 into Equation

3.1, leading to 40

(50 −19.1 ⋅ log σ + 7.4 ⋅ τ)(T − T) log VP = − m 2.3 ⋅ R ⋅ T

(88 + 0.4 ⋅ τ +1421 ⋅ HBN )(T − T) − b 2.3⋅ R ⋅ T

(− 91 −1.2 ⋅ τ) Tb − T Tb  +  − ln  (3.13) 2.3 ⋅ R  T T 

Figure 3.1 depicts the logarithm of the experimental and predicted vapor pressures of all compounds in the data set. The line in the figure is the line of identity.

0.0 . e r u s s e r P

r -5.0 o p a V g o l l a t n

e -10.0 m i r e p x E

-15.0 -15.0 -10.0 -5.0 0.0 Predicted log Vapor Pressure

Figure 3.1 Log of the experimental and predicted vapor pressure s in atmospheres.

The data in the figure demonstrate estimation of saturated vapor pressures at room temperature over fifteen orders of magnitude with reasonable accuracy with the use of 41

Equation 3.13. The average absolute error is 0.18 log units, corres ponding to a factor of

1.5. These errors are well within the normal range of errors for vapor pressure measurements. According to Coutsikos et al. (2003) experimental vapor pressures for a compound can vary by as much as 30 to 100%. Spencer and Cliath (1983) noted that experimental vapor pressures obtained from various references and experimentalists can vary by a factor of 2 -3.

3.4.4 Temperature Dependence of Vapor Pressure

The applicability of Equation 3.13 was extended further by estimating the sa turated vapor pressure of anthracene as a function of temperature. These estimations are shown in

Figure 3.2. 42

0.00

-0.50

-1.00

P -1.50 V g o

L -2.00

-2.50

-3.00

Tm Tb -3.50 400 450 500 550 600 650 Temperature (K)

Figure 3.2 Vapor pressure of anthracene as a function of temperature.

The open squares denote the reported vapor pressures as a function of te mperature. The solid line in the figure represents the estimated values obtained from Equation 3.13 and the vertical dashed lines denote the experimental melting and boiling point of anthracene, respectively. It can be seen that the new equation is able to predict saturated vapor pressures up to the normal boiling point. 43

3.5 Conclusion

A new equation based on the integrated form of the Clausius -Clapeyron equation was used to estimate the room temperature saturated vapor pressures of 815 organic compoun ds. It was found to reliably estimate vapor pressures over fifteen orders of magnitude with an average absolute error of 0.18 logarithmic units, corresponding to a factor of 1.50. The applicability of the new equation was extended further by estimating the saturated vapor pressure of anthracene as a model compound as a function of temperature from values below its melting point up to its boiling point. 44

CHAPTER 4: OCTANOL -AIR PARTITION COEFFICIENT

4.1 Introduction

Inhalation is the most important route of unintentional entry of chemicals into the human body (Hau et al., 1999). According to the United States Environmental Protection Agency

(www.epa.gov), hazardous air pollutants may cause cancer or other serious health effects, as well as adverse environm ental and ecological effects. The octanol -air partition coefficient is useful in establishing health guidelines for volatile organic compounds

(Hau et al., 2000).

QSPR schemes have been developed for the estimation of this property but are limited to spec ific chemical classes (Chen et al., 2001; Chen et al., 2002a; Chen et al., 2002b; Chen et al., 2002c; Chen et al., 2003a; Chen et al., 2003b; Puzyn and Falandysz, 2005). The method of Abrahm et al. (2001) and Meylan & Howard (2005) are notable exceptions to the QSPR approaches. The aim of this chapter is to generate an equation for the estimation of the octanol -air partition coefficient. This will be accomplished by combining empirical relationships for the molar octanol solubility and saturated vapor pressures of organic compounds.

4.2 Background 45

The octanol -air partition coefficient is commonly used to describe the partitioning of a solute between the atmosphere and the organic matter in the environment. This relationship is given by

Coct K oa = (4.1) Cair where C oct and C air are the molar concentrations of the solute in octanol and air, respectively. At saturation, this value can be approximated b y the ratio of the molar octanol solubility (S oct ) to the saturated vapor pressure (VP). The latter is divided by RT, where R is the ideal gas constant in L·atm/mol·K and T is the experimental temperature in Kelvin units. Thus at saturation the unitless o ctanol -air partition coefficient can be estimated from the molar octanol solubility and saturated vapor pressure by

S K = oct (4.2) oa VP/RT

This equation illu strates that the octanol -air partition coefficient is simply estimated from the molar octanol solubility and saturated vapor pressure.

4.2.1 Octanol Solubility

In Chapter 2 the molar octanol solubility of organic compounds was s hown to be given by

∆S (T − T) log S = 0.5 − m m (4.3) oct 2.3 ⋅ R ⋅ T 46 this equation is applicable to solutes with molar volumes near that of octanol and solubility parameters ranging from 15 to 28 (J/cm 3)0.5 .

4.2.2 Saturated Vapor Pressure

The saturated vapor pressure of an organic compound was estimated in Chapter 3 using the integrated form of the Clausius -Clapeyron equation. Vapor pressure estimations confirmed that it is valid to assume that the heat capacity change on melting is negligible, leading to

∆Sm (Tm − T) ∆Sb (Tb − T) ∆Cp b Tb − T Tb  log VP = − − +  − ln  (4.4) 2.3⋅ R ⋅ T 2.3⋅ R ⋅ T 2.3⋅ R  T T  where the transition properties were estimated from empirical structure based equations.

4.2.3 Octanol -air Partition Coefficient

Equation 4.2 permits the estimatio n of the octanol -air partition coefficient from the molar octanol solubility and saturated vapor pressure. At 298 K this equation becomes

24.47 ⋅ S K = oct (4.5) oa VP

Taking the logarithm of both sides of this equation and substituting in Equations 4.3 and

4.4 leads to

∆Sb (Tb − T) ∆Cp b Tb − T Tb  log K oa =1.89 + −  − ln  (4.6) 2.3 ⋅ R ⋅ T 2.3⋅ R  T T  47 where the unitless octanol -air partition coefficient is simply estimated from th e boiling point, entropy of boiling, and heat capacity change on boiling. It should be noted that the melting point and entropy of melting terms in Equations 4.3 and 4.4 cancel each other.

4.3 Experimental

The experimental octanol -air partition coeffici ents of 236 organic compounds at ambient temperature extending over twelve orders of magnitude were obtained from the literature

(Hiatt, 1997; Hiatt, 1998; Weiss, 2000; Ferreira, 2001; Wania et al., 2002; Otvos et al.,

2004; Staikova et al., 2004; William and Howard, 2005). The boiling points of these compounds ranged from 305 to 808 K and were obtained from MPBPWIN version 1.41 provided by the United States Environmental Protection Agency.

4.4 Results and Discussion

4.4.1 Final Octanol -air Partition Coe fficient Equation

The final octanol -air partition coefficient can be illustrated by substituting in the equations for the entropy of vaporization (Equation 3.5) and heat capacity change on boiling (Equation 3.12) into Equation 4.6

(86 + 0.4 ⋅ τ +1421 ⋅ HBN )(T − T) logK = 1.89 + b oa 2.3 ⋅ R ⋅ T 48

(− 91 −1.2 ⋅ τ) Tb − T Tb  −  − ln  (4.7) 2.3⋅ R  T T 

This equation is applicable to organic compounds with solubility parameters in the range of complete miscibility with octanol, i.e. 15 to 28 (J/cm 3)0.5 . Fortuna tely this range includes the vast majority of pharmaceutical and environmentally important compounds.

Figure 4.1 demonstrates the estimation of the room temperature octanol -air partition coefficients over twelve orders of magnitude.

15.0 a o K g

o 10.0 l l a t n e m i

r 5.0 e p x E

0.0 0.0 5.0 10.0 15.0 Predicted log Koa

Figure 4.1 Log of the experimental and predicted octanol -air partition coefficients.

The solid line in the figure is the line of identity. The average absolute error is 0.34 log units, corresponding to a factor of 2.2. The complete list of compounds, experimental, and pr edicted values are provided in Appendix C. Figure 4.2 depicts the error 49 distribution in estimating the octanol -air partition coefficient as a function of the reported values.

2.0 1.5 1.0 d

e 0.5 r P

- 0.0 p x -0.5 E -1.0 -1.5 -2.0 0.0 5.0 10.0 15.0 Experimental log Koa

Figure 4.2 Error distribution as a function of reported octanol -air partitio n coefficients.

Note, from the total number of compounds, only 7 predicted values are more than one log unit from the experimental values. To illustrate the range of reported octanol -air partition coefficients, experimental values for the Chlorobenzenes obtained from various references are presented in Table 4.1. 50

Table 4.1 Octanol -air Partition Coefficient of Chlorobenzenes at 298 K.

a b c d Name log K oa log K oa log K oa Avg Std Dev log K oa AE CBZ 3.31 3.74 1,2 -D2CBZ 4.99 4.48 4.36 4.61 0.33 4.71 0.10 1,3 -D2CBZ 4.89 4.27 4.12 4.43 0.41 4.56 0.13 1,4 -D2CBZ 4.92 4.32 4.46 4.57 0.31 4.56 0.01 1,2,3 -T3CBZ 5.65 5.32 5.19 5.39 0.24 5.51 0.12 1,2,4 -T3CBZ 5.54 5.10 4.95 5.20 0.31 5.41 0.21 1,3,5 -T3CBZ 5.38 4.89 4.85 5.04 0.30 5.29 0.25 1,2,3,4 -T4CBZ 6.25 5.83 5.64 5.91 0.31 6.28 0.37 1,2,3,5 -T4CBZ 6.09 5.78 5.55 5.81 0.27 6.11 0.30 1,2,4,5 -T4CBZ 6.10 5.80 5.63 5.84 0.24 6.07 0.23 P5CBZ 6.75 6.50 6.49 6.58 0.15 6.79 0.21 H6CBZ 7.55 7.88 aReported values of Lei et al. b Reported values of Staikova et al. c Reported values of Meylan & Howard. dEstimated from Equation 4.7.

The average reported values and standard deviations were determined except for chlorobenzene and hexachlorobenzene in Table 4.1. For these two compounds multiple experimental valu es were not found in the literature. The absolute error was determined by taking the absolute difference between the average reported values and those estimated by Equation 4.7. For the majority of the compounds the absolute error is in agreement with the standard deviation of the experimental values. For example, the experimental log octanol -air partition coefficient of 1,3 -dichlorobenzene ranges from

4.12 to 4.89, this range corresponds to a six fold difference between the two values. The average experi mental value for this compound is 4.43 ± 0.41. The predicted value deviates from the average experimental value by only 0.13 log units, which is less than the standard deviation of the measurement. 51

4.4 Conclusion

A new non -regression based equation for the estimation of the octanol -air partition coefficient was developed and validated using a structurally diverse set of compounds.

This equation provides reasonable estimates of the octanol -air partition coefficients from the boiling point, entropy of boi ling, and heat capacity change on boiling. These transition properties were estimated from independently derived empirical equations.

From the total number of reported octanol -air partition coefficients 97% are estimated to within one log unit from the r eported value. 52

CHAPTER 5: AIR -WATER PARTITION COEFFICIENT

5.1 Introduction

The air -water partition coefficient (K aw ) or Henry’s law constant is a commonly used descriptor for the equilibrium partitioning of a solute between air and water. The distribution and accumulation of environmental pollutants are primarily determined from the air -water partition coefficient. Without the use of experimental methods the risk assessment of pollutants requires modeling. Current methods for the estimation of this propert y include but are not limited to group contributions (Lin & Sandler, 2002),

QSPR’s (Nirmalakhandan et al., 1997; Yao et al., 2002; Dearden & Schuumann, 2003;

Modarresi et al., 2005), LSER (Endo & Schmidt, 2006), neural networking (Taskinen &

Yliruusi, 2003 ), and bond contribution (Meylan & Howard, 1991). In this chapter an expression for the air -water partition coefficient is generated from combining empirical equations for the saturated vapor pressure and molar aqueous solubility.

5.2 Background

The ai r-water partition coefficient is the solute concentration ratio in air (C air ) and water

(C w) and is given by

Cair K aw = (5.1) C w 53

At saturation these c oncentrations can be approximated by the saturated vapor pressure

(VP) in atmospheres and molar aqueous solubility (S w)

VP/RT K aw = (5.2) Sw where VP, R, a nd T are the ideal gas constant and reference temperature. At ambient conditions (R = 0.0820578 L·atm/mol·K, T = 298 K) this equation becomes

VP K aw = (5. 3) 24.47 ⋅Sw

Note that the numerator has the same units as the denominator in the above equation.

5.2.1 Saturated Vapor Pressure

In Chapter 3 the saturated vapor pressure of organic compounds was estimated by assuming the heat capacity change on melting is negligible. This lead to the following simplified form of the Clausius -Clapeyron equation

∆Sm (Tm − T) ∆Sb (Tb − T) ∆Cp b Tb − T Tb  log VP = − − +  − ln  (5.4) 2.3⋅ R ⋅ T 2.3⋅ R ⋅ T 2.3⋅ R  T T 

The first part of this equation accounts for the ideal crystalline solubility whereas the remaining terms represent the ideal gas solubili ty. In other words the saturated vapor pressure in fractional atmosphere units can be expressed as the product of the ideal mole fraction crystalline and gas solubilities

c g VP = X ideal ⋅ X ideal (5.5) 54

5.2.2 Aqueous Solubility

The molar aqueous solubility (S w) of a crystalline compounds in water is given by

c X ideal Sw = (5.6 ) γ w ⋅ v w where γw and v w are the aqueous activity coefficient and molar volume of water, respectively. This equation is intended for dilute solute concentrations in water. For these solutions v w is the molar volume of water (0.0182 L/mol). For compounds that a re extensively solubilized in water the molar volume of water can not be used since the solute will be present in high concentrations.

5.2.3 Final Air -water Partition Coefficient Equation

Equation 5.3 demonstrates that the air -water partition coefficient c an be estimated from saturated vapor pressures and molar aqueous solubilities. Substituting in Equations 5.5 and 5.6 into this expression leads to

X g ⋅ γ ⋅ v K = ideal w w (5 .7) aw 24.47 the above equation illustrates that the air -water partition coefficient is proportional to the ideal gas solubility, aqueous activity coefficient, and molar volume of water. Note that the substitutions result in the elimination of the crystal terms. T he air -water partition coefficient can be estimated by Equation 5.7, substituting the ideal gas solubility, and assuming dilute solute solutions in water 55

∆Sb (Tb − T) ∆Cp b Tb − T Tb  log K aw = −3.13 + log γ w − +  − ln  (5.8) 2.3 ⋅ R ⋅ T 2.3 ⋅ T  T T  where the unitless air -water partition coefficient is estimate d from the boiling point, entropy of boiling, heat capacity change on boiling, and aqueous activity coefficient. The final air -water partition coefficient is obtained by incorporating the equations for the entropy of vaporization (Equation 3.5) and the he at capacity change on boiling (Equation

3.12) into Equation 5.8

(88 + 0.4 ⋅ τ +1421 ⋅ HBN )(T − T) log K = −3.13 + log γ − b + aw w 2.3 ⋅ R ⋅ T

(− 91 −1.2 ⋅ τ) Tb − T Tb   − ln  (5.9) 2.3 ⋅ R  T T 

5.3 Experimental

The experimental boiling points and Henry’s law constants were obtained from

HENRYWIN version 1.90 provided by the United Stated Environmental Protection

Agency. It should be noted that Equation 5.9 requires experimental boiling points as an input parameter. The equation is applicable to those compounds with kn own boiling points that are above 25 °C. This resulted in 658 Henry’s law constants ranging from 4.71 x 10 -12 to 12.6 atm·m 3/mol. These values were separated into two categories: non - ionizable compounds and those with aqueous solubilities less than 50% (n = 501), ionizable compounds and those with aqueous solubilities greater than 50% (n = 157). 56

The aqueous activity coefficients were estimated from the group contribution method of

Jain et al. (2007). These authors used Equation 5.6 and back calculated a n effective aqueous activity coefficient for 1675 organic compounds. These compounds had aqueous solubilities less than 1.0 mol/l, which was determined to be the maximum solubility a compound could have and still be considered a dilute solution. 57

5.4 Result s and Discussion

5.4.1 Non -ionizable Compounds and Those with Solubilities Less than 50%

Figure 5.1 depicts the logarithm of the experimental and predicted air -water partition coefficients for the non -ionizable compounds and those with aqueous solubilities of less than 50%. The solid line in the figure is the line of identity.

2.0

0.0 w a K

g -2.0 o l l a t

n -4.0 e m i r

e -6.0 p x

E -8.0

-10.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 Predicted log Kaw

Figure 5.1 Experimental and predicted air -water partition coefficients for non -ionizable compounds and those with aqueous solubilities less than 50%.

It can be seen that Equation 5.9 provides reasonable estimates over ten orders of magnitude. The average absolute error is 0.56 log units which corresponds to a factor of 58

3.6. This error is comparable to the normal experimental errors seen in vapor pressure and solubility measurements. From the total number of compounds in Figure 5.1 87% are predicted to within one log unit from the experimental value.

The group contribution values for the aqueous activity coefficient are based on aqueous solubilities of less than 1.0 mol/l (Jain et al. , 2007). From the total number of reported values in Figure 5.2, 16 have experimental aqueous solubilities greater than 1.0 mol/l and are identified with an asterisk in the supporting information. The air -water partition coefficients are estimated to wit hin one log unit for the majority of these sixteen compounds. Since these estimates agree with the experimental values, it indicates that the measured values were most likely obtained from dilute solutions. The complete list of compounds, experimental, an d predicted values are provided in Appendix D.

5.4.2 Ionizable Compounds and Those with Solubilities Greater than 50%

Figure 5.2 depicts the logarithm of the experimental and predicted air -water partition coefficients for the ionizable compounds and th ose with aqueous solubilities of greater than 50%. 59

2.0

0.0 w a K

g -2.0 o l l a t

n -4.0 e m i r

e -6.0 p x

E -8.0

-10.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 Predicted log Kaw

Figure 5.2 Experimental and predicted air -water partition coefficients for ionizable compounds and those with aqueous solubilities greater than 50%.

From the figure it can be seen that Equation 5.9 pro vides poor estimations for these compounds. The average absolute error is 1.10 log units corresponding to a factor of

12.6. The larger error seen here is most likely do to the water being saturated with these highly soluble solutes and the aqueous activi ty coefficient estimations not accounting for ionization. 60

5.5 Conclusion

An equation for the estimation of the air -water partition coefficient was generated from empirical equation for the molar aqueous solubility and saturated vapor pressure. This equatio n was used to estimate the air -water partition coefficients for two data sets. The first data set represented non -ionizable compounds and those with aqueous solubilities less than 50%. Air -water partition coefficients were estimated to within one log uni t for

87% of these compounds. The second data set represented ionizable compounds and those with aqueous solubilities greater than 50%. The results of these estimations were poor, indicating that the use of the molar volume of water was inappropriate and the aqueous activity coefficient estimations not accounting for ionization. 61

APPENDIX A: ESTIMATION OF OCTANOL SOLUBILITY

Table A.1 Predicted molar solubilities obtained from Equation 2.17.

Exper Pred Absolute

Compound MP (°C) log S oct log S oct Error 1,2,3,5 -Tetrachlorobenzene 55 0.15 0.27 0.12 1,2,3 -Trichlorobenzene 53 0.18 0.29 0.11 1,2,3 -Trichlorobenzene 53 0.09 0.29 0.20 1,2,4,5 -Tetrabromobenzene 182 -1.32 -0.56 0.76 1,2,4,5 -Tetrachlorobenzene 139 -0.92 -0.27 0.65 1,2,4,5 -Tetrachlorobenzene 139 -1.08 -0.27 0.81 1,2,4 -Tribromobenzene 43 -0.15 0.34 0.49 1,3,5 -Tribromobenzene 124 -0.90 -0.11 0.79 1,3,5 -Trichlorobenzene 65 -0.16 0.25 0.41 1,4 -Dibromobenzene 87 -0.30 0.08 0.38 1,4 -Dichlorobenzene 53 0.25 0.31 0.06 1,4 -Dichlorobenzene 53 0.20 0.31 0.11 1,4 -Dichlorobenzene 53 0.11 0.31 0.20 1-Methylfluorene 85 -0.56 -0.03 0.53 2,3,4 -Trichloronitrobenzene 56 -0.29 0.23 0.52 2,3,5,6 -Tetrachloronitrobenezne 100 -0.68 -0.08 0.60 2,3 -Benzanthracene 341 -2.28 -1.63 0.64 2,3 -Benzofluorene 208 -1.75 -1.10 0.65 2,4,6 -Trichlorophenol 70 0.22 0.16 0.06 2,4 -Dichlorophenol 45 0.36 0.32 0.04 2-Methyl -4-nitroimidazole 252 -1.77 -1.49 0.28 3,4 -Dichloronitrobenzene 41 -0.08 0.36 0.44 Acenaphthene 94 -0.59 -0.03 0.56 Acetanilide 114 -0.12 -0.40 0.28 Acetylsalicyclic acid 135 -0.69 -0.68 0.01 Anthracene 216 -1.78 -0.79 0.99 Anthracene 216 -1.91 -0.79 1.12 Antipyrene 111 -0.19 -0.25 0.06 Atrazine 175 -1.32 -1.49 0.17 Barbital 190 -0.92 -1.27 0.35 Benzil 95 -0.89 -0.20 0.69 Benzo[a] 179 -1. 60 -0.85 0.75 Benzoic acid 122 -0.06 -0.25 0.19 Benzoic acid 122 -0.95 -0.25 0.70 beta -Carotene 180 -0.75 -0.86 0.11 62

Bibenzyl 52 -0.35 0.19 0.54 Biphenyl 69 -0.13 0.20 0.33 Butyl p -Aminobenzoate 58 0.13 0.04 0.09 Butyl p -hydroxybenzoate 69 0.34 -0.1 1 0.45 Caffeine 238 -1.72 -1.37 0.35 258 -2.51 -1.31 1.20 Chrysene 258 -2.60 -1.31 1.29 Coronene 438 -2.37 -1.63 0.74 Cortisone 222 -1.97 -1.48 0.49 Decachlorobiphenyl 306 -2.77 -1.40 1.37 Deoxycorticosterone 142 -0.71 -0.68 0.03 Dibenz[a, h]anthracene 270 -3.03 -1.40 1.63 Dibenzofuran 82 -0.27 0.06 0.33 Dieldrin 175 -0.97 -0.81 0.16 Dimetridazole 140 -1.11 -0.51 0.60 Diphenylamine 52 0.03 0.23 0.20 Diphenylethane 25 -0.66 0.50 1.16 Diuron 159 -1.14 -1.02 0.12 Endrin 200 -0.94 -1.03 0.09 Ethyl p -Aminobenzoate 89 -0.31 -0.23 0.08 Ethyl p -hydroxybenzoate 116 0.04 -0.53 0.57 Fenchlorphos 35 -0.16 0.37 0.53 Fenuron 134 -0.77 -0.73 0.04 Fenuron 134 -0.77 -0.73 0.04 Fluoranthene 108 -0.76 -0.23 0.53 112 -0.62 -0.17 0.45 Fluo rodifen 94 -1.52 -0.28 1.24 Flurbiprofen 111 -0.20 -0.42 0.22 Gentisic acid 205 -0.13 -1.08 0.95 Heptachlor 95 -0.63 -0.79 0.16 Hexachlorobenzene 230 -1.82 -0.56 1.26 Hexachlorobenzene 230 -1.86 -0.56 1.30 Hexachloroethane 187 -0.28 -0.50 0.22 Hexam 164 -0.89 -0.22 0.67 Ibuprofen 76 0.18 -0.15 0.33 Ipronidazole 61 -0.06 0.17 0.23 Isazophos 25 0.50 0.50 0.00 Ketoprefen 94 -0.26 -0.28 0.02 Ketoprefen 94 -0.10 -0.28 0.18 Lindane 113 -0.74 -0.84 0.10 m-Bromobenzoic acid 157 -0.07 -0.66 0.59 Metalaxyl 72 -0.33 -0.25 0.08 Methyl p -aminobenzoate 114 -0.53 -0.39 0.14 Methyl p -hydroxybenzoate 131 -0.08 -0.57 0.49 63

Methyltestosterone 163 -0.45 -0.71 0.26 Metolachlor 25 0.47 0.50 0.03 Metoxuron 127 -1.06 -0.78 0.28 Metronidazole 160 -1.5 3 -1.03 0.49 Mirex 485 -0.51 -3.53 3.02 Monuron 172 -1.04 -1.17 0.13 80 -0.15 0.13 0.28 Naphthalene 80 -0.36 0.13 0.49 Naproxen 153 -0.89 -0.95 0.06 o,p' -DDT 75 -0.49 -0.06 0.43 o-Bromobenzoic acid 146 -0.12 -0.56 0.44 p,p -DDT 109 -0.79 -0.45 0.34 p,p -DDT 109 -0.98 -0.45 0.53 p-Aminobenzoic acid 189 -0.80 -0.77 0.03 p-Aminobenzoic acid 189 -1.68 -0.77 0.91 p-Bromobenzoic acid 252 -1.11 -1.26 0.15 PCB -15 149 -0.89 -0.34 0.55 PCB -29 76 -0.75 0.05 0.80 PCB -3 78 -0.22 0.09 0.31 PCB -52 87 -0.63 0.02 0.65 PCB -61 91 -0.85 -0.08 0.78 Pentachlorobenzene 86 -0.56 0.03 0.59 Pentachlorobenzene 86 -0.63 0.03 0.66 Pentachlorophenol 174 -0.11 -0.65 0.54 Perlyene 277 -2.52 -1.20 1.32 Phenacetin 135 -0.84 -0.89 0.05 Phenanthracene 99 -0.45 -0.07 0.38 Phenanthracene 99 -0.53 -0.07 0.46 Phenobarbital 176 -1.09 -1.02 0.07 41 0.94 0.38 0.56 Prednisolone 240 -1.62 -1.66 0.04 Profluralin 32 -0.20 0.40 0.60 Progesterone 131 -0.71 -0.43 0.28 Propyl p -hydroxybenzoate 96 0.36 -0.40 0.76 p-Toluic acid 180 -0.32 -0.70 0.38 Pyrene 156 -0.90 -0.38 0.52 Pyrene 156 -0.95 -0.38 0.57 Salicylic acid 158 0.15 -0.66 0.81 Terbutyrne 105 -0.27 -0.67 0.40 Testosterone 155 -0.49 -0.64 0.15 Theophylline 272 -1.99 -1.66 0.33 trans -Stilbene 125 -1. 10 -0.40 0.70 Triazolam 224 -2.05 -1.24 0.81 Triphenylene 199 -1.77 -0.85 0.92 64

APPENDIX B: RESULTS OF VAPOR PRESSURE ESTIMATIONS

Table B.1 Chemical Name, Molecular weight, Melting Point, Boiling Point, Experimental & Estimated Vapor Pressure and Absolu te Errors.

Tm Tb Exp. Est. Chemical Name MW (K) (K) log VP log VP AE Hydrocyanic acid 27.0 <298.2 298.8 0.004 -0.01 0.01 Methanol 32.0 <298.2 338.0 -0.80 -0.95 0.15 Acetonitrile 41.1 <298.2 354.8 -0.92 -0.93 0.01 Acetonitrile 41.1 <298.2 355.0 -0.90 -0.93 0.03 Aziridine 43.1 <298.2 329.0 -0.60 -0.54 0.06 Aziridine 43.1 <298.2 329.2 -0.54 -0.54 0.01 Formamide 45.0 <298.2 493.2 -4.08 -3.98 0.10 Formic acid 46.0 <298.2 373.0 -1.30 -1.66 0.36 Ethanol 46.1 <298.2 351.0 -1.10 -1.15 0.05 Hydrazine , methyl - 46.1 <298.2 360.7 -1.17 -1.13 0.03 Acrylonitrile 53.1 <298.2 350.0 -0.80 -0.85 0.05 2-Propenenitrile 53.1 <298.2 350.5 -0.83 -0.85 0.02 2-Butyne 54.1 <298.2 300.2 -0.02 -0.03 0.01 Propanenitrile 55.1 <298.2 370.3 -1.19 -1.21 0.02 Propionitri le 55.1 <298.2 370.4 -1.23 -1.21 0.02 2-Propenal 56.1 <298.2 325.8 -0.43 -0.43 0.01 Acrolein 56.1 <298.2 326.0 -0.47 -0.44 0.03 2-Propyn -1-ol 56.1 <298.2 386.8 -1.67 -1.90 0.23 Methane, isocyanato - 57.1 <298.2 312.7 -0.33 -0.22 0.10 2-Propen -1-amine 57.1 <298.2 326.5 -0.48 -0.48 0.00 Aziridine, 2 -methyl - 57.1 <298.2 339.2 -0.82 -0.71 0.11 Ethanedial 58.0 <298.2 323.6 -0.46 -0.40 0.06 Oxirane, methyl - 58.1 <298.2 307.1 -0.14 -0.14 0.00 Oxetane 58.1 <298.2 320.8 -0.36 -0.35 0.00 Propionaldehyde 58.1 <298.2 321.0 -0.40 -0.36 0.04 Propanal 58.1 <298.2 321.2 -0.37 -0.36 0.01 2-Propanone 58.1 <298.2 328.7 -0.50 -0.48 0.02 Acetone 58.1 <298.2 329.0 -0.50 -0.49 0.01 Ally alcohol 58.1 <298.2 370.0 -1.40 -1.51 0.11 2-Propanamine 59.1 <298.2 305.6 -0.10 -0.12 0.02 Formamide, N -methyl - 59.1 <298.2 472.7 -3.46 -3.44 0.02 65

Formic acid, methyl ester 60.1 <298.2 305.2 -0.10 -0.11 0.01 Hydrazine, 1,1 -dimethyl - 60.1 <298.2 337.1 -0.67 -0.67 0.00 1,2 -Dimethyl hydrazine 60.1 <298.2 354.2 -1.02 -1.06 0.04 2-Pro panol 60.1 <298.2 355.5 -1.21 -1.18 0.03 1,2 -Ethanediamine 60.1 <298.2 389.7 -1.79 -1.80 0.01 Acetic acid 60.1 <298.2 390.0 -1.80 -1.95 0.15 Methane, nitro - 61.0 <298.2 374.3 -1.31 -1.28 0.03 Ethanol, 2 -amino - 61.1 <298.2 444.2 -3.26 -3.42 0.16 Ethane thiol 62.1 <298.2 308.2 -0.14 -0.15 0.01 Ethylene glycol 62.1 <298.2 470.0 -3.90 -4.16 0.26 1,2 -Ethanediol 62.1 <298.2 470.5 -3.90 -4.17 0.27 1,3 -Cyclopentadiene 66.1 <298.2 314.2 -0.23 -0.25 0.02 Cyclopentadiene 66.1 <298.2 315.0 -0.25 -0.26 0.01 2-Propenenitrile, 2 -methyl - 67.1 <298.2 363.5 -1.01 -1.08 0.07 Furan 68.1 <298.2 304.6 -0.09 -0.10 0.01 2-Methyl -1,3 - 68.1 <298.2 307.0 -0.12 -0.14 0.02 1,3 -Butadiene, 2 -methyl - 68.1 <298.2 307.2 -0.13 -0.14 0.01 1-Pentyne 68.1 <298.2 313.0 -0.25 -0.23 0.02 3-Methyl -1,2 -butadiene 68.1 <298.2 313.0 -0.25 -0.23 0.02 1,3 -Pentadiene, (E) - 68.1 <298.2 315.2 -0.25 -0.26 0.01 Cyclopentene 68.1 <298.2 317.0 -0.31 -0.29 0.02 1,2 -Pentadiene 68.1 <298.2 318.0 -0.32 -0.31 0.01 2,3 -Pentadiene 68.1 <298.2 321.0 -0.38 -0.36 0.02 2-Pentyne 68.1 <298.2 329.0 -0.51 -0.49 0.02 Propanenitrile, 2 -methyl - 69.1 <298.2 377.1 -1.35 -1.33 0.02 Butanenitrile 69.1 <298.2 390.8 -1.58 -1.59 0.02 Divinyl ether 70.1 <298.2 301.5 -0.04 -0.05 0.01 1-Pentene 70.1 <298.2 30 3.0 -0.08 -0.07 0.01 2-Methyl -1- 70.1 <298.2 304.0 -0.10 -0.09 0.01 1-Butene, 2 -methyl - 70.1 <298.2 304.2 -0.08 -0.09 0.01 2-Pentene (trans) 70.1 <298.2 309.0 -0.18 -0.17 0.01 2-Pentene, (Z) - 70.1 <298.2 309.5 -0.17 -0.17 0.00 2-Pentene, (E) - 70 .1 <298.2 309.5 -0.16 -0.17 0.01 2-pentene (cis) 70.1 <298.2 310.0 -0.19 -0.18 0.01 2-Methyl -2-butene 70.1 <298.2 312.0 -0.22 -0.21 0.01 Cyclopentane 70.1 <298.2 322.0 -0.39 -0.37 0.02 2-Propenal, 2 -methyl - 70.1 <298.2 341.6 -0.69 -0.70 0.02 Crotoadeh yde 70.1 <298.2 377.0 -1.30 -1.33 0.03 2-Butenal, (E) - 70.1 <298.2 377.2 -1.29 -1.34 0.05 Propanenitrile, 3 -hydroxy - 71.1 <298.2 494.2 -3.96 -4.39 0.42 66

2-Propenamide 71.1 357.7 466.2 -5.02 -3.78 1.24 Ethene, ethoxy - 72.1 <298.2 309.2 -0.16 -0.17 0.01 Isobutylaldehyde 72.1 <298.2 336.0 -0.60 -0.61 0.01 Oxirane, ethyl - 72.1 <298.2 336.5 -0.61 -0.61 0.00 Propanal, 2 -methyl - 72.1 <298.2 337.7 -0.63 -0.63 0.01 Furan, tetrahydro - 72.1 <298.2 338.2 -0.66 -0.64 0.01 2-Butanone 72.1 <298.2 352.7 -0.89 -0.89 0.01 Methyl ethyl ketone 72.1 <298.2 353.0 -0.90 -0.90 0.00 Acrylic acid 72.1 <298.2 412.0 -2.30 -2.39 0.09 2-Propenoic acid 72.1 <298.2 414.4 -2.26 -2.44 0.18 Butane, 2 -methyl - 72.2 <298.2 303.2 -0.03 -0.08 0.05 Pentane 72.2 <298.2 309.3 -0.17 -0.17 0.00 Pentane 72.2 <298.2 309.3 -0.16 -0.17 0.02 2-Propanamine, 2 -methyl - 73.1 <298.2 317.2 -0.30 -0.31 0.02 2-Butanamine 73.1 <298.2 336.2 -0.62 -0.65 0.03 1-Propanamine, 2 -methyl - 73.1 <298.2 340.9 -0.72 -0.73 0.02 Dimethyl formamide 73.1 <298.2 426 .0 -2.30 -2.41 0.11 Formamide, N,N -dimethyl - 73.1 <298.2 426.2 -2.28 -2.27 0.01 Ethane, 1,1' -oxybis - 74.1 <298.2 307.8 -0.14 -0.15 0.01 Formic acid, ethyl ester 74.1 <298.2 327.6 -0.48 -0.47 0.01 Acetic acid, methyl ester 74.1 <298.2 330.1 -0.53 -0.51 0.02 1,3 -Dioxolane 74.1 <298.2 351.2 -0.97 -0.87 0.10 t-Butanol 74.1 <298.2 356.0 -1.30 -1.15 0.15 2-Butanol 74.1 <298.2 372.0 -1.60 -1.49 0.11 Isobutanol 74.1 <298.2 381.0 -1.80 -1.69 0.11 Butanol 74.1 <298.2 391.0 -2.10 -1.91 0.19 Propionic acid 74 .1 <298.2 414.0 -2.30 -2.43 0.13 2-Propanol, 2 -methyl - 74.1 298.6 355.6 -1.25 -1.14 0.11 2-Propanol, 1 -amino - 75.1 <298.2 433.2 -3.19 -3.01 0.19 1-Propanol, 3 -amino - 75.1 <298.2 460.7 -3.98 -3.71 0.27 Methane, dimethoxy - 76.1 <298.2 315.2 -0.27 -0.27 0.00 Carbon disulfide 76.1 <298.2 319.2 -0.31 -0.33 0.01 Ethaneperoxoic acid 76.1 <298.2 383.2 -1.71 -1.73 0.02 2-Methoxyethanol 76.1 <298.2 397.0 -1.90 -2.05 0.15 Ethanol, 2 -methoxy - 76.1 <298.2 397.3 -1.89 -2.05 0.16 1,2 -Propanediol 76.1 <298.2 460.8 -3.76 -3.74 0.01 1,3 -Propanediol 76.1 <298.2 487.6 -4.22 -4.46 0.23 1-Propanethiol 76.2 <298.2 341.0 -0.68 -0.69 0.01 3-Chloropropene 76.5 <298.2 318.0 -0.30 -0.31 0.01 1-Propene, 3 -chloro - 76.5 <298.2 318.3 -0.30 -0.31 0.01 67

Benzene 78.1 <298.2 353.3 -0.90 -0.90 0.00 Methane, sulfinylbis - 78.1 <298.2 462.2 -3.08 -3.00 0.08 Acetyl chloride 78.5 <298.2 323.9 -0.41 -0.40 0.00 Pyridine 79.1 <298.2 388.4 -1.55 -1.54 0.01 1,3,5 -Hexatriene 80.1 <298.2 351.0 -0.93 -0.87 0.06 1,3 -Cyclohexadiene 80.1 <298. 2 354.0 -0.90 -0.92 0.02 1,4 -Cyclohexadiene 80.1 <298.2 359.0 -1.06 -1.00 0.06 Ethanol, 2 -chloro - 80.5 <298.2 401.8 -2.01 -2.13 0.11 1,5 -Hexadiene 82.2 <298.2 333.0 -0.54 -0.56 0.02 1-Hexyne 82.2 <298.2 344.0 -0.75 -0.75 0.00 2,3 -Dimethyl -1,3 -butadien e 82.2 <298.2 346.0 -0.71 -0.78 0.07 1-Methylcyclopentene 82.2 <298.2 349.0 -0.82 -0.83 0.01 3-Hexyne 82.2 <298.2 355.0 -0.94 -0.94 0.00 Cyclohexene 82.2 <298.2 356.2 -0.93 -0.95 0.02 Pentanenitrile 83.1 <298.2 414.5 -2.00 -2.06 0.06 Thiophene 84.1 <2 98.2 357.2 -0.97 -0.97 0.01 Cyclopentanone 84.1 <298.2 403.7 -1.81 -1.83 0.02 3,3 -Dimethyl -1-butene 84.2 <298.2 314.0 -0.25 -0.25 0.00 3-Methyl -1-pentene 84.2 <298.2 324.0 -0.46 -0.41 0.05 4-Methyl -1-pentene 84.2 <298.2 327.0 -0.45 -0.46 0.01 2,3 -Dime thyl -1-butene 84.2 <298.2 328.8 -0.47 -0.49 0.02 2,3 -Dimethyl -1-butene 84.2 <298.2 329.0 -0.79 -0.49 0.30 cis -4-Methyl -2-penten 84.2 <298.2 329.0 -0.50 -0.49 0.01 trans -4-Methyl -2-pentene 84.2 <298.2 332.0 -0.54 -0.54 0.00 trans -4-Methyl -2-pentene 84.2 <298.2 332.2 -0.52 -0.54 0.03 Trans -4-Methyl -2-pentene 84.2 <298.2 332.2 -0.48 -0.54 0.06 2-Methyl -1-pentene 84.2 <298.2 334.0 -0.60 -0.58 0.02 1-Hexene 84.2 <298.2 336.0 -0.62 -0.61 0.01 2-Hexene (trans -) 84.2 <298.2 338.2 -0.68 -0.65 0.03 2-Methyl -2-pentene 84.2 <298.2 340.0 -0.69 -0.68 0.01 cis -3-Hexene 84.2 <298.2 340.0 -0.67 -0.68 0.01 trans -3-Hexene 84.2 <298.2 340.0 -0.69 -0.68 0.01 cis -3-Methyl -2-pentene 84.2 <298.2 341.0 -0.69 -0.69 0.00 2-hexene (cis) 84.2 <298.2 342.0 -0.71 -0.71 0.00 trans -3-Methyl -2-pentene 84.2 <298.2 344.0 -0.74 -0.75 0.01 Methylcyclopentane 84.2 <298.2 345.0 -0.72 -0.76 0.04 2,3 -Dimethyl -2-butene 84.2 <298.2 346.0 -0.49 -0.78 0.29 Cyclohexane 84.2 <298.2 354.2 -0.90 -0.92 0.02 Methane, dichloro - 84.9 <298.2 313 .2 -0.23 -0.23 0.00 Propanenitrile, 2 -hydroxy -2- 85.1 <298.2 444.2 -2.99 -3.06 0.07 68 methyl - 2-Pyrrolidinone 85.1 <298.2 518.2 -4.56 -4.39 0.17 Acetic acid ethenyl ester 86.1 <298.2 345.7 -0.91 -0.77 0.14 2-Propenoic acid, methyl ester 86.1 <298.2 353.4 -0.93 -0.91 0.02 2-Butanone, 3 -methyl - 86.1 <298.2 367.5 -1.15 -1.16 0.01 2-Pentanone 86.1 <298.2 375.4 -1.32 -1.31 0.01 2-Propenoic acid, 2 -methyl - 86.1 <298.2 436.2 -2.88 -2.87 0.01 2(3H) -Furanone, dihydro - 86.1 <298.2 477.2 -3.21 -3.31 0.10 (Z) -2-Butenoic acid 86.1 345.2 458.2 -3.10 -3.79 0.70 Piperazine 86.1 379.2 419.2 -3.66 -3.05 0.61 2,2 -Dimethylbutane 86.2 <298.2 323.0 -0.38 -0.39 0.01 2,3 -Dimethylbutane 86.2 <298.2 331.0 -0.52 -0.52 0.00 2-Methylpentane 86.2 <298.2 333.0 -0.56 -0.56 0.00 Hexane 86.2 <298.2 342.2 -0.70 -0.72 0.02 Morpholine 87.1 <298.2 402.0 -1.90 -1.89 0.01 N,N -dimethyl -acetamide 87.1 <298.2 438.2 -2.57 -2.52 0.05 Formic acid, 1 -methylethyl ester 88.1 <298.2 341.4 -0.73 -0.70 0.03 Ethyl acetate 88.1 <298.2 350.0 -1.50 -0.85 0.65 Acetic acid ethyl ester 88.1 <298.2 350.3 -0.90 -0.86 0.04 Propanoic acid, methyl ester 88.1 <298.2 353.0 -0.94 -0.90 0.04 Dioxane 88.1 <298.2 374.0 -1.30 -1.27 0.03 Propanoic acid, 2 -methyl - 88.1 <298.2 427.6 -2.61 -2.67 0.06 Butanoic acid 88.1 <298.2 436.9 -2.89 -2.89 0.00 2-Butene -1,4 -diol (cis -) 88.1 <298.2 508.2 -5.05 -4.87 0.18 Propane, 2 -methoxy -2-methyl - 88.2 <298.2 328.4 -0.47 -0.48 0.01 2-Butanol, 2 -methyl - 88.2 <298.2 375.6 -1.64 -1.53 0.11 3-Pentanol 88.2 <298.2 389.4 -1.92 -1.83 0.09 Thiophene, tetrahydro - 88.2 <298.2 394.2 -1.60 -1.65 0.05 1-Pentanol 88.2 <298.2 411.0 -2.43 -2.33 0.10 1,3 -Butadiene, 2 -chloro - 88.5 <298.2 332.6 -0.53 -0.55 0.01 2-Nitropropane 89.1 <298.2 393.0 -1.60 -1.63 0.03 Propane, 2 -nitro - 89.1 <298 .2 393.4 -1.63 -1.63 0.00 Propane, 1 -nitro - 89.1 <298.2 404.3 -1.86 -1.85 0.01 Ethanol, 2 -(dimethylamino) - 89.1 <298.2 412.2 -3.24 -2.34 0.91 1,1 -Dimethoxyethane 90.1 <298.2 337.0 -0.60 -0.63 0.03 Ethane, 1,1 -dimethoxy - 90.1 <298.2 337.7 -0.63 -0.64 0. 01 1-Methoxyl -2-propanol 90.1 <298.2 391.0 -1.80 -1.86 0.06 2-Propanol, 1 -methoxy - 90.1 <298.2 392.2 -1.77 -1.89 0.12 Ethoxyethanol 90.1 <298.2 408.0 -2.10 -2.25 0.15 69

Ethanol, 2 -ethoxy - 90.1 <298.2 408.2 -2.14 -2.26 0.11 1,4 -Butanediol 90.1 <298.2 503 .2 -4.85 -4.74 0.10 2-Propanethiol, 2 -methyl - 90.2 <298.2 337.5 -0.61 -0.63 0.02 Toluene 92.1 <298.2 384.2 -1.42 -1.46 0.04 1,3,5 -Cycloheptatriene 92.1 <298.2 390.0 -1.61 -1.57 0.04 1,2,3 -Propanetriol 92.1 <298.2 563.2 -6.64 -6.50 0.14 Bicyclo[2.2.1]h epta -2,5 - 92.1 319.0 369.0 -1.06 -1.34 0.28 Oxirane, (chloromethyl) - 92.5 <298.2 390.2 -1.65 -1.58 0.07 Chloroacetone 92.5 <298.2 393.0 -1.80 -1.63 0.17 2-Propanone, 1 -chloro - 92.5 <298.2 393.2 -1.79 -1.64 0.15 Propane, 2 -chloro -2-methyl - 92.6 <29 8.2 323.2 -0.39 -0.39 0.01 Butane, 1 -chloro - 92.6 <298.2 351.8 -0.86 -0.89 0.02 Pyridine, 2 -methyl - 93.1 <298.2 402.5 -1.82 -1.81 0.01 Pyridine, 3 -methyl - 93.1 <298.2 417.3 -2.08 -2.10 0.01 Pyridine, 4 -methyl - 93.1 <298.2 418.5 -2.11 -2.12 0.01 Benzen amine 93.1 <298.2 457.3 -3.18 -3.03 0.15 Phenol 94.1 314.0 455.0 -3.23 -3.39 0.16 Disulfide, dimethyl 94.2 <298.2 383.0 -1.41 -1.45 0.04 Bicyclo[2.2.1] -2- 94.2 319.0 369.0 -1.12 -1.37 0.25 Acetic acid, chloro - 94.5 335.2 462.5 -4.05 -3.76 0.29 Fluorobenzene 96.1 <298.2 358.3 -0.98 -0.99 0.01 2-Furancarboxaldehyde 96.1 <298.2 434.9 -2.52 -2.44 0.08 1-Heptyne 96.2 <298.2 373.0 -1.37 -1.28 0.09 4-Methylcyclohexene 96.2 <298.2 376.0 -1.28 -1.31 0.03 Methylenecyclohexane 96.2 <298.2 376.0 -1.28 -1.31 0.03 1-Ethylcyclopentene 96.2 <298.2 381.0 -1.33 -1.40 0.07 1-Methylcyclohexene 96.2 <298.2 383.0 -1.42 -1.44 0.02 Ethene, 1,1 -dichloro - 96.9 <298.2 304.9 -0.09 -0.10 0.01 Ethene, 1,2 -dichloro - 96.9 <298.2 328.2 -0.56 -0.47 0.09 Ethene, 1,2 -dichl oro -, (Z) - 96.9 <298.2 328.2 -0.56 -0.47 0.09 Ethene, 1,2 -dichloro -, (E) - 96.9 <298.2 328.2 -0.35 -0.47 0.13 cis -1,2 -Dichloroethylene 96.9 <298.2 333.0 -0.60 -0.56 0.04 Hexanenitrile 97.2 <298.2 436.8 -2.41 -2.53 0.12 2-Furanmethanol 98.1 <298.2 444.2 -3.08 -3.01 0.07 2,5 -Furandione 98.1 326.0 475.2 -3.47 -3.52 0.05 4,4 -Dimethyl -1-pentene 98.2 <298.2 346.0 -0.75 -0.78 0.03 trans -4,4 -Diemthyl -2-pentene 98.2 <298.2 350.0 -0.84 -0.85 0.01 3,3 -Dimethyl -1-pentene 98.2 <298.2 351.0 -0.87 -0.87 0.00 2,4 -Dimethyl -1-pentene 98.2 <298.2 355.0 -0.91 -0.94 0.03 2,3 -Dimethyl -1-pentene 98.2 <298.2 357.0 -0.98 -0.98 0.00 70

2,4 -Dimethyl -2-pentene 98.2 <298.2 357.0 -0.96 -0.97 0.01 trans -1,2 - Diemthylcyclopentane 98.2 <298.2 365.0 -1.08 -1.11 0.03 1-Heptene 98.2 <2 98.2 367.0 -1.14 -1.17 0.03 3-Heptene (cis -) 98.2 <298.2 368.9 -1.14 -1.20 0.06 trans -3-Heptene 98.2 <298.2 369.0 -1.18 -1.20 0.02 2,3 -Dimethyl -2-pentene 98.2 <298.2 371.0 -1.19 -1.23 0.04 trans -2-Heptene 98.2 <298.2 371.0 -1.22 -1.24 0.02 2-Heptene ( cis -) 98.2 <298.2 371.2 -1.18 -1.24 0.06 cis -1,2 -Dimethylcyclopentane 98.2 <298.2 372.0 -1.21 -1.24 0.03 1,2 -Dimethylcyclopentane (cis -) 98.2 <298.2 372.7 -1.19 -1.25 0.06 Methylcyclohexane 98.2 <298.2 374.0 -1.21 -1.27 0.06 Ethylcyclopentane 98.2 <298 .2 377.0 -1.28 -1.33 0.05 Cycloheptane 98.2 <298.2 391.6 -1.53 -1.60 0.07 3-Penten -2-one, 4 -methyl - 98.2 <298.2 403.2 -1.95 -1.83 0.13 Cyclohexanone 98.2 <298.2 428.0 -2.20 -2.31 0.11 1,1 -Dichloroethane 99.0 <298.2 330.2 -0.52 -0.51 0.02 Ethane, 1,1 -dichloro - 99.0 <298.2 330.6 -0.51 -0.51 0.00 Ethane, 1,2 -dichloro - 99.0 <298.2 356.7 -0.97 -0.97 0.00 Acetic acid, cyano -, methyl ester 99.1 <298.2 473.7 -3.73 -3.27 0.46 1-Methyl -2-pyrrolidone 99.1 <298.2 475.2 -3.33 -3.27 0.06 Cyclohexanamine 99.2 <29 8.2 407.2 -1.86 -1.98 0.12 2-Propenoic acid, ethyl ester 100.1 <298.2 372.6 -1.28 -1.26 0.02 Methyl methacrylate 100.1 <298.2 373.2 -1.30 -1.27 0.03 2-Propenoic acid, 2 -methyl -, methyl ester 100.1 <298.2 373.7 -1.28 -1.28 0.01 2,4 -Pentanedione 100.1 <2 98.2 413.6 -2.40 -2.03 0.36 2,2 -Dimethylpentane 100.2 <298.2 352.0 -0.87 -0.89 0.02 Butane, 2,2,3 -trimethyl - 100.2 <298.2 354.0 -0.86 -0.92 0.06 2,4 -Dimethylpentane 100.2 <298.2 354.0 -0.89 -0.93 0.04 3,3 -Dimethylpentane 100.2 <298.2 359.0 -0.97 -1.01 0.04 2-methylhexane 100.2 <298.2 363.0 -1.07 -1.09 0.02 3-Methylhexane 100.2 <298.2 365.0 -1.10 -1.13 0.03 3-Ethylpentane 100.2 <298.2 367.0 -1.12 -1.17 0.05 Butane, 1 -(ethenyloxy) - 100.2 <298.2 367.2 -1.18 -1.17 0.00 heptane 100.2 <298.2 372.0 -1.24 -1.27 0.03 2-Pentanone, 4 -methyl - 100.2 <298.2 389.7 -1.57 -1.58 0.01 Methyl isobutyl ketone 100.2 <298.2 390.0 -1.60 -1.58 0.02 2-Hexanone 100.2 <298.2 400.2 -1.80 -1.79 0.01 71

Cyclohexanol 100.2 298.6 434.0 -2.96 -2.77 0.20 Ethanamine, N,N -diethyl - 10 1.2 <298.2 362.2 -1.11 -1.07 0.04 1-Hexanamine 101.2 <298.2 406.0 -1.91 -2.00 0.09 Acetic acid, 1 -methylethyl ester 102.1 <298.2 361.8 -1.09 -1.06 0.03 Acetic acid, propyl ester 102.1 <298.2 374.7 -1.34 -1.30 0.03 Formic acid, butyl ester 102.1 <298.2 379.3 -1.41 -1.40 0.01 Butanoic acid, 3 -methyl - 102.1 <298.2 449.7 -3.22 -3.13 0.09 Pentanoic acid 102.1 <298.2 459.3 -3.48 -3.37 0.11 Diisopropyl ether 102.2 <298.2 341.0 -0.70 -0.70 0.00 Propane, 2,2' -oxybis - 102.2 <298.2 341.7 -0.69 -0.71 0.02 Prop ane, 1,1' -oxybis - 102.2 <298.2 363.2 -1.07 -1.10 0.03 Butane, 1 -ethoxy - 102.2 <298.2 365.5 -1.15 -1.14 0.01 2-Pentanol, 4 -methyl - 102.2 <298.2 404.8 -2.14 -2.13 0.01 Hexanol 102.2 <298.2 429.2 -2.95 -2.71 0.24 Benzonitrile 103.1 <298.2 464.3 -2.98 -3.0 5 0.06 1,2 -Ethanediamine, N -(2 - aminoethyl) - 103.2 <298.2 480.2 -3.50 -3.86 0.36 2-Pyridinecarbonitrile 104.1 302.2 497.7 -3.17 -3.79 0.62 1-Pentanethiol 104.2 <298.2 399.8 -1.73 -1.79 0.06 Styrene 104.2 <298.2 403.8 -2.06 -1.83 0.23 Cyclooctatetraene 104.2 <298.2 416.0 -2.00 -2.07 0.07 Benzene, ethenyl - 104.2 <298.2 418.2 -2.06 -2.11 0.05 1,5 -Pentanediol 104.2 <298.2 512.2 -5.28 -4.89 0.38 Ethanol, 2 - (2 - aminoethyl)amino 104.2 <298.2 517.0 -5.95 -5.11 0.84 Benzaldehyde 106.1 <298.2 452.2 -3.76 -2. 80 0.97 Ethanol, 2,2' -oxybis - 106.1 <298.2 519.0 -4.97 -5.05 0.08 Ethyl benzene 106.2 <298.2 409.4 -1.90 -1.95 0.05 p-Xylene 106.2 <298.2 411.5 -1.94 -2.25 0.31 m-Xylene 106.2 <298.2 412.3 -1.96 -2.00 0.03 o-Xylene 106.2 <298.2 417.0 -2.06 -2.09 0.03 Benzenemethanamine 107.2 <298.2 458.2 -3.05 -3.04 0.01 Benzenamine, N -methyl - 107.2 <298.2 469.4 -3.21 -3.28 0.07 Benzenamine, 2 -methyl - 107.2 <298.2 473.5 -3.45 -3.36 0.09 Benzenamine, 3 -methyl - 107.2 <298.2 476.5 -3.39 -3.42 0.04 Carbamic chloride, dimethyl - 107.5 <298.2 440.2 -2.58 -2.56 0.02 Anisole 108.1 <298.2 427.0 -2.70 -2.29 0.41 p-Cresol 108.1 <298.2 475.0 -3.81 -3.68 0.13 Benzenemethanol 108.1 <298.2 478.5 -4.07 -3.77 0.30 Hydrazine, phenyl - 108.1 <298.2 516.7 -4.46 -4.48 0.02 72

Pentanedi nitrile, 2 -methyl - 108.1 <298.2 536.2 -5.16 -4.65 0.51 Hexanedinitrile 108.1 <298.2 568.2 -6.03 -5.41 0.62 o-Cresol 108.1 304.0 464.0 -3.49 -3.47 0.02 Phenol, 4 -methyl - 108.1 308.7 475.1 -3.83 -3.76 0.07 1,3 -Benzenediamine 108.1 336.7 558.2 -5.73 -5.74 0.01 4-vinyl -1- 108.2 <298.2 399.0 -1.74 -1.74 0.00 Cyclohexene, 4 -ethenyl - 108.2 <298.2 401.2 -1.67 -1.78 0.11 Carbonochloridic acid, ethyl ester 108.5 <298.2 366.2 -1.52 -1.14 0.38 Acetic acid, chloro -, methyl ester 108.5 <298.2 402.7 -1. 98 -1.83 0.16 Bromoethane 109.0 <298.2 311.6 0.33 -0.21 0.54 Ethane, bromo - 109.0 <298.2 311.7 -0.20 -0.21 0.01 1,4 -Benzenediol 110.1 445.5 560.2 -6.05 -6.96 0.90 2,5 -Dimethyl -1,5 -hexadiene 110.2 <298.2 407.0 -1.67 -1.92 0.25 cis -Cyclooctene 110.2 <29 8.2 411.0 -2.01 -1.97 0.04 Benzenethiol 110.2 <298.2 442.3 -2.58 -2.59 0.01 Norcamphor 110.2 363.2 443.2 -2.76 -3.18 0.42 1,3 -Dichloropropene 111.0 <298.2 379.0 -1.30 -1.37 0.07 1-Propene, 1,3 -dichloro - 111.0 <298.2 385.2 -1.34 -1.49 0.15 1-Pentene, 2 ,4,4 -trimethyl - 112.2 <298.2 374.2 -1.22 -1.29 0.07 Propylcyclopentane 112.2 <298.2 376.0 -1.79 -1.31 0.48 1,1,3 -Trimethylcyclopentane 112.2 <298.2 378.0 -1.28 -1.35 0.07 2-Pentene, 2,4,4 -trimethyl - 112.2 <298.2 378.1 -1.31 -1.36 0.04 Cycloheptanone 11 2.2 <298.2 392.0 -1.49 -1.61 0.12 trans -1,4 - Diemthylcyclohexane 112.2 <298.2 392.0 -1.53 -1.61 0.08 trans -1,4 - Dimethylcyclohexane 112.2 <298.2 392.6 -1.51 -1.62 0.11 1,1 -Dimethylcyclohexane 112.2 <298.2 392.8 -1.51 -1.62 0.11 1,1 -Dimethylcyclohexane 11 2.2 <298.2 393.0 -1.53 -1.63 0.10 cis -1,3 -Dimethylcyclohexane 112.2 <298.2 393.0 -1.56 -1.63 0.07 1-Octene 112.2 <298.2 394.0 -1.65 -1.69 0.04 4-Octene (trans) 112.2 <298.2 395.5 -1.62 -1.71 0.10 cis -1,2 -Dimethylcyclohexane 112.2 <298.2 396.7 -1.71 -1. 70 0.01 trans -1,2 - Dimethylcyclohexane 112.2 <298.2 396.7 -1.58 -1.70 0.12 cis -1,4 -Dimethylcyclohexane 112.2 <298.2 397.0 -1.64 -1.70 0.06 trans -1,2 - Diemthylcyclohexane 112.2 <298.2 397.0 -1.60 -1.70 0.10 1,3 -Dimethylcyclohexane 112.2 <298.2 397.7 -1.53 -1.72 0.18 73 trans -1,3 - Dimethylcyclohexane 112.2 <298.2 397.7 -1.62 -1.72 0.10 trans -1,3 - Diemthylcyclohexane 112.2 <298.2 398.0 -1.64 -1.72 0.08 2-Octene (trans -) 112.2 <298.2 398.2 -1.65 -1.77 0.11 cis -1,2 -Dimethylcyclohexane 112.2 <298.2 403.0 -1.73 -1.82 0.09 Propylcyclopentane 112.2 <298.2 404.2 -1.77 -1.86 0.08 Ethylcyclohexane 112.2 <298.2 405.0 -1.77 -1.86 0.09 Ethyl cyclohexane 112.2 <298.2 405.1 -1.76 -1.86 0.10 Cyclooctane 112.2 <298.2 422.0 -2.14 -2.19 0.05 Norborneol 112.2 413.2 449.2 -2.84 -4.08 1.23 Chlorobenzene 112.6 <298.2 405.0 -1.80 -1.86 0.06 Propane, 1,2 -dichloro - 113.0 <298.2 368.7 -1.14 -1.18 0.04 1,2 -Dichloropropane 113.0 <298.2 370.2 -1.20 -1.21 0.01 Acetic acid, cyano -, ethyl ester 113.1 <298.2 483.2 -4.28 -3.50 0.78 2H -Azepin -2-one, hexahydro - 113.2 342.5 543.2 -5.66 -5.29 0.37 Acetic acid, trifluoro - 114.0 <298.2 346.2 -0.83 -0.89 0.06 2,2,4 -Trimethylpentane 114.2 <298.2 372.0 -1.20 -1.24 0.04 2,2 -Dimethylhexane 114.2 <298.2 380.0 -1.36 -1.41 0.05 2,5 -dimethylhexan e 114.2 <298.2 382.0 -1.41 -1.45 0.04 2,2,3 -Trimethylpentane 114.2 <298.2 383.0 -1.38 -1.45 0.07 3,3 -Dimethylhexane 114.2 <298.2 385.0 -1.43 -1.50 0.07 Pentane, 2,3,4 -trimethyl - 114.2 <298.2 386.7 -1.43 -1.53 0.09 2,3,4 -Trimethylpentane 114.2 <298.2 38 7.0 -1.45 -1.53 0.08 2,3,3 -Trimethylpentane 114.2 <298.2 388.0 -1.46 -1.55 0.09 2-Methyl -3-ethylpentane 114.2 <298.2 388.8 -1.49 -1.57 0.09 2-Methyl -3-ethylpentane 114.2 <298.2 389.0 -1.51 -1.58 0.07 2-Methylheptane 114.2 <298.2 391.0 -1.57 -1.63 0.06 3-Methyl -3-ethylpentane 114.2 <298.2 391.0 -1.53 -1.62 0.09 4-Methylheptane 114.2 <298.2 391.0 -1.58 -1.63 0.05 3-Methylheptane (dl) 114.2 <298.2 392.0 -1.60 -1.65 0.05 Octane 114.2 <298.2 399.2 -1.75 -1.80 0.06 2-Hexanone, 5 -methyl - 114.2 <298.2 417. 2 -2.15 -2.12 0.03 3-Heptanone 114.2 <298.2 420.2 -2.45 -2.20 0.26 2-Heptanone 114.2 <298.2 424.2 -2.28 -2.28 0.00 Cyclohexanol, 2 -methyl -, trans 114.2 <298.2 438.2 -2.79 -2.82 0.03 Cyclohexanol, 2 -methyl -, cis - 114.2 <298.2 438.2 -2.71 -2.82 0.11 3-Methylcyclohexanol (trans -) 114.2 <298.2 440.2 -3.11 -2.86 0.25 2-Oxepanone 114.2 <298.2 488.2 -3.74 -3.55 0.19 Morpholine, 4 -ethyl - 115.2 <298.2 411.7 -2.17 -1.99 0.17 1-Heptanamine 115.2 <298.2 429.2 -2.43 -2.48 0.06 74

Butanoic acid, 3 -oxo -, methyl este r 116.1 <298.2 444.9 -2.92 -2.68 0.24 N-Nitrosomorpholine 116.1 302.2 498.2 -4.31 -3.80 0.51 Propanoic acid, 2 -methyl -, ethyl ester 116.2 <298.2 383.3 -1.46 -1.47 0.00 Acetic acid, 1 -methylpropyl ester 116.2 <298.2 385.2 -1.64 -1.50 0.13 Butanoic acid, ethyl ester 116.2 <298.2 394.7 -1.76 -1.69 0.07 Butyl acetate 116.2 <298.2 398.0 -1.70 -1.76 0.06 Acetic acid, butyl ester 116.2 <298.2 399.3 -1.81 -1.78 0.02 2-Pentanone, 4 -hydroxy -4- methyl - 116.2 <298.2 441.1 -2.63 -2.90 0.27 Heptanol 116.2 <298.2 449.2 -3.61 -3.14 0.47 Indene 116.2 <298.2 456.0 -2.58 -2.87 0.29 Butanoic acid, 2 -ethyl - 116.2 <298.2 467.2 -3.59 -3.51 0.09 Hexanoic acid 116.2 <298.2 478.4 -4.23 -3.79 0.44 1H -Indole 117.2 325.7 527.2 -4.78 -4.63 0.15 Carbonic acid, diethyl ester 11 8.1 <298.2 399.2 -1.83 -1.78 0.05 2-Propanol, 1 -propoxy - 118.2 <298.2 423.2 -2.64 -2.53 0.11 Benzene, (1 -methylethenyl) - 118.2 <298.2 438.6 -2.45 -2.52 0.07 3-Methylstyrene 118.2 <298.2 441.0 -2.64 -2.57 0.07 Ethanol, 2 -butoxy - 118.2 <298.2 441.6 -2.92 -2.96 0.04 4-Methylstyrene 118.2 <298.2 442.0 -2.63 -2.59 0.04 2-Methylstyrene 118.2 <298.2 444.0 -2.63 -2.63 0.00 Benzene, 1 -ethenyl -4-methyl - 118.2 <298.2 446.0 -2.61 -2.67 0.06 trans -beta -methylstyrene 118.2 <298.2 448.0 -2.68 -2.72 0.04 2,4 -Penta nediol, 2 -methyl - 118.2 <298.2 471.2 -4.75 -3.74 1.01 1,6 -Hexanediol 118.2 318.2 523.2 -6.17 -5.42 0.75 Chloroform 119.4 <298.2 334.0 -0.60 -0.57 0.03 Methane, trichloro - 119.4 <298.2 334.3 -0.57 -0.58 0.00 Isopropylbenzene 120.2 <298.2 424.2 -2.22 -2. 24 0.02 Cumene 120.2 <298.2 426.0 -2.21 -2.27 0.06 Propylbenzene 120.2 <298.2 432.2 -2.34 -2.41 0.07 m-Ethyltoluene 120.2 <298.2 434.5 -2.38 -2.44 0.06 1-Ethyl -4-methylbenzene 120.2 <298.2 435.0 -2.41 -2.45 0.04 Benzene, 1 -ethyl -4-methyl - 120.2 <298.2 435.2 -2.39 -2.46 0.07 1-Ethyl -2-methylbenzene 120.2 <298.2 438.0 -2.48 -2.52 0.04 1,3,5 -Trimethylbenzene 120.2 <298.2 438.2 -2.49 -2.51 0.02 Benzene, 1 -ethyl -2-methyl - 120.2 <298.2 438.4 -2.45 -2.52 0.07 1,2,4 -Trimethylbenzene 120.2 <298.2 442.2 -2.5 7 -2.59 0.02 1,2,3 -Trimethylbenzene 120.2 <298.2 449.0 -2.70 -2.73 0.03 75

Oxirane, phenyl - 120.2 <298.2 467.3 -3.39 -3.11 0.28 Acetophenone 120.2 <298.2 475.0 -3.30 -3.27 0.03 Ethanone, 1 -phenyl - 120.2 <298.2 475.2 -3.27 -3.27 0.00 Benzaldehyde, 4 -methy l- 120.2 <298.2 477.7 -3.47 -3.33 0.14 Pyridine, 5 -ethyl -2-methyl - 121.2 <298.2 451.5 -2.71 -2.79 0.08 Benzenamine, N,N -dimethyl - 121.2 <298.2 466.6 -3.02 -3.20 0.18 2,5 -Dimethylaniline 121.2 <298.2 487.0 -3.80 -3.64 0.16 2,6 -Dimethylaniline 121.2 <298 .2 488.2 -3.75 -3.66 0.09 Benzaldehyde, 2 -hydroxy - 122.1 <298.2 470.2 -3.09 -3.52 0.43 Trimethoxy silane 122.2 <298.2 354.2 -0.99 -0.93 0.05 Benzene, ethoxy - 122.2 <298.2 443.0 -2.67 -2.63 0.04 2-Ethylphenol 122.2 <298.2 477.7 -3.68 -3.70 0.02 Phenol, 2,4 -dimethyl - 122.2 <298.2 484.1 -3.88 -3.84 0.04 Benzeneethanol 122.2 <298.2 491.4 -3.93 -4.04 0.12 4-Ethylphenol 122.2 320.2 491.2 -4.29 -4.22 0.07 1,2 -Benzenediamine, 3 - methyl - 122.2 336.7 528.2 -6.12 -5.03 1.09 1,2 -Benzenediamine, 4 - methyl - 122.2 362.7 538.2 -6.07 -5.49 0.58 1,3 -Benzenediamine, 4 - methyl - 122.2 372.2 565.2 -6.64 -6.21 0.42 2,6 -Diaminotoluene 122.2 378.0 533.0 -5.50 -5.43 0.07 1,3 -Benzenediamine, 2 - methyl - 122.2 379.2 533.2 -5.48 -5.44 0.04 Benzene, nitro - 123.1 <298.2 484.0 -3.4 8 -3.46 0.02 Benzenamine, 2 -methoxy - 123.2 <298.2 497.2 -3.96 -3.87 0.09 Phenol, 2 -methoxy - 124.1 305.2 478.2 -3.85 -3.77 0.08 2-Butene, 1,4 -dichloro -, (E) - 125.0 <298.2 425.7 -2.33 -2.29 0.04 Cyclohexane, isocyanato - 125.2 <298.2 445.2 -2.86 -2.65 0.2 1 1-Nonene 126.2 <298.2 420.1 -2.14 -2.22 0.08 iso -propylcyclohexane 126.2 <298.2 428.0 -2.21 -2.31 0.10 Propylcyclohexane 126.2 <298.2 430.0 -2.27 -2.37 0.10 Chlorotoluene 126.6 <298.2 431.0 -2.30 -2.37 0.07 3-Chlorotoluene 126.6 <298.2 434.2 -2.46 -2.43 0.03 Benzene, 1 -chloro -4-methyl - 126.6 <298.2 435.6 -2.44 -2.46 0.02 alpha -chlorotoluene 126.6 <298.2 452.0 -2.76 -2.80 0.04 benzyl chloride 126.6 <298.2 452.0 -2.80 -2.80 0.00 Benzene, (chloromethyl) - 126.6 <298.2 452.2 -2.75 -2.80 0.05 Butane, 1,4 -dichloro - 127.0 <298.2 434.2 -2.25 -2.47 0.22 o-Chloroaniline 127.6 <298.2 482.0 -3.50 -3.52 0.02 4-Chloroaniline 127.6 342.0 505.0 -4.50 -4.37 0.13 76

2-Propenoic acid, 2 - methylpropyl ester 128.2 <298.2 405.2 -1.96 -1.89 0.07 2-Propenoic acid, butyl ester 128.2 <298.2 418.2 -2.13 -2.16 0.03 Naphthalene 128.2 353.4 491.1 -3.94 -3.98 0.04 2,2,4,4 -Tetramethylpentane 128.3 <298.2 396.0 -1.59 -1.68 0.09 2,2,5 -Trimethylhexane 128.3 <298.2 397.0 -1.67 -1.73 0.06 2,2,4 -Trimethylhexane 128.3 <298.2 400.0 -1.69 -1.79 0.10 2,4,4 -Trimethylhexane 128.3 <298.2 400.0 -1.76 -1.79 0.03 2,2,3,4 -Tetramethylpentane 128.3 <298.2 406.2 -1.77 -1.90 0.14 2,3,3 -Trimethylhexane 128.3 <298.2 411.0 -1.83 -2.01 0.18 2,2,3,3 -Tetramethylpentane 128.3 <298.2 413.4 -1.89 -2.04 0.15 4-Methyloctane 128.3 <298.2 415.0 -2.05 -2.11 0.06 2-Methyloctane 128.3 <298.2 416.0 -2.08 -2.13 0.05 3-Methyloctane 128.3 <298.2 417.4 -2.07 -2.16 0.09 3,3 -Diethylpentane 128.3 <298.2 419.5 -2.00 -2.19 0.19 Nonane 128.3 <298.2 424.0 -2.26 -2.31 0.05 2-Chlorophenol 128.6 <298.2 449.2 -2.87 -3.03 0.16 3-Chlorophenol 128.6 307.2 487.2 -3.45 -3.97 0.52 4-Chlorophenol 128.6 315.9 493.2 -3.87 -4.17 0.30 2-Propanol, 1,3 -dichloro - 129.0 <298.2 449.2 -2.99 -3.06 0.07 Quinoline 129.2 <298.2 510.3 -4. 09 -4.02 0.07 Bromochloromethane 129.4 <298.2 341.0 -0.71 -0.69 0.02 Methane, bromochloro - 129.4 <298.2 341.2 -0.71 -0.69 0.02 Butanoic acid, 3 -oxo -, ethyl ester 130.1 <298.2 454.0 -2.97 -2.88 0.09 Butanoic acid, 3 -methyl -, ethyl ester 130.2 <298.2 408 .2 -1.95 -1.96 0.01 Butane, 1,1' -oxybis - 130.2 <298.2 413.4 -2.09 -2.09 0.00 1-Butanol, 3 -methyl -, acetate 130.2 <298.2 415.7 -2.12 -2.11 0.01 Acetic acid, pentyl ester 130.2 <298.2 422.4 -2.32 -2.25 0.07 2-Octanol 130.2 <298.2 453.2 -3.48 -3.20 0.28 1-Hexanol, 2 -ethyl - 130.2 <298.2 457.8 -3.73 -3.30 0.43 2-Ethyl -1-hexanol 130.2 <298.2 458.0 -3.70 -3.31 0.39 Octanol 130.2 <298.2 468.2 -3.95 -3.57 0.38 Heptanoic acid 130.2 <298.2 495.4 -5.12 -4.18 0.94 Ethene, trichloro - 131.4 <298.2 360.4 -1.03 -1. 03 0.01 1,3,5 -Trioxane, 2,4,6 - trimethyl - 132.2 <298.2 397.5 -1.82 -1.71 0.11 Ethanol, 2 -ethoxy -, acetate 132.2 <298.2 429.6 -2.50 -2.40 0.10 Cinnamaldehyde 132.2 <298.2 519.2 -4.09 -4.24 0.15 1,1,1 -Trichloroethane 133.4 <298.2 347.2 -0.82 -0.80 0.02 77

1,1,2 -Trichloroethane 133.4 <298.2 387.2 -1.51 -1.53 0.02 Ethane, 1,1' -oxybis 2 - methoxy - 134.2 <298.2 435.2 -2.40 -2.54 0.14 t-Butylbenzene 134.2 <298.2 442.2 -2.54 -2.59 0.05 Isobutylbenzene 134.2 <298.2 446.0 -2.56 -2.69 0.13 Sec -Butylbenzene 134.2 <2 98.2 446.2 -2.62 -2.70 0.07 Benzene, 1 -methyl -3-(1 - methylethyl) - 134.2 <298.2 448.3 -2.63 -2.72 0.09 Benzene, 1 -methyl -4-(1 - methylethyl) - 134.2 <298.2 449.7 -2.70 -2.75 0.05 1-isopropyl -4-methylbenzene 134.2 <298.2 450.0 -2.69 -2.76 0.07 Benzene, 1 -met hyl -2-(1 - methylethyl) - 134.2 <298.2 451.3 -2.69 -2.79 0.09 Benzene, 1,4 -diethyl - 134.2 <298.2 454.2 -2.84 -2.86 0.02 Benzene, 1,3 -diethyl - 134.2 <298.2 454.3 -2.81 -2.86 0.05 Butylbenzene 134.2 <298.2 456.2 -2.86 -2.92 0.06 Benzene, 1,2 -diethyl - 134.2 <298.2 457.2 -2.85 -2.92 0.08 Benzene, 1 -ethyl -2,3 -dimethyl - 134.2 <298.2 467.2 -3.07 -3.12 0.04 Ethanol, 2 -(2 -ethoxyethoxy) - 134.2 <298.2 469.2 -3.77 -3.58 0.18 1,2,3,5 -Tetramethylbenzene 134.2 <298.2 471.1 -3.20 -3.19 0.01 1,2,3,4 -Tetramethylbenzene 134.2 <298.2 478.2 -3.34 -3.34 0.00 1-Propanone, 1 -phenyl - 134.2 <298.2 490.7 -3.69 -3.62 0.07 Thiophene, tetrahydro -3- methyl -, 1,1 -dioxide 134.2 <298.2 549.2 -5.01 -4.88 0.13 Benzo(b)thiophene 134.2 304.0 493.0 -3.59 -3.70 0.11 d-2-Carene 136.2 <298.2 440.0 -2.52 -2.55 0.03 Α-Pinene 136.2 <298.2 428.2 -2.20 -2.31 0.11 Bicyclo 3.1.1 hept -2-ene, 2,6,6 -trimethyl - 136.2 <298.2 428.7 -2.19 -2.32 0.13 d-alpha -pinene 136.2 <298.2 429.0 -2.25 -2.33 0.08 l-beta -pinene 136.2 <298.2 439.0 -2.42 -2.53 0.11 Bicyclo 3.1.1 , 6,6 - dimethyl -2-methylene - 136.2 <298.2 439.2 -2.40 -2.53 0.13 Myrcene 136.2 <298.2 440.2 -2.74 -2.58 0.16 d-limonene 136.2 <298.2 449.0 -2.57 -2.73 0.16 dl -limonene 136.2 <298.2 449.0 -2.60 -2.73 0.13 l-limonene 136.2 <298.2 449.0 -2.61 -2.73 0.12 Limonen e 136.2 <298.2 449.2 -2.57 -2.73 0.16 Limonene 136.2 <298.2 449.2 -2.88 -2.73 0.15 Terpinolene 136.2 <298.2 459.2 -3.01 -2.94 0.07 Benzoic acid, methyl ester 136.2 <298.2 472.2 -3.29 -3.23 0.06 78

2-Propylphenol 136.2 <298.2 498.2 -3.94 -4.16 0.22 Camphe ne 136.2 324.0 432.0 -2.41 -2.61 0.20 dl -camphene 136.2 324.0 432.0 -2.41 -2.61 0.20 Butane, 2 -bromo - 137.0 <298.2 364.4 -1.11 -1.11 0.01 2-Nitroaniline 138.1 344.4 557.2 -5.92 -5.60 0.32 3-Nitroaniline 138.1 387.0 579.0 -6.90 -6.48 0.42 Benzenamine, 4-nitro - 138.1 420.2 605.2 -7.95 -7.27 0.68 Isophorone 138.2 <298.2 487.0 -3.31 -3.52 0.21 Ethanol, 2 -phenoxy - 138.2 <298.2 518.2 -5.02 -4.66 0.36 Naphthalene, decahydro - 138.3 <298.2 460.5 -2.50 -2.97 0.46 Naphthalene, decahydro -, cis - 138.3 <298.2 46 0.5 -2.97 -2.97 0.00 Naphthalene, decahydro -, trans - 138.3 <298.2 460.5 -2.78 -2.97 0.19 Phenol, 2 -nitro - 139.1 318.0 489.2 -3.81 -4.08 0.27 Phenol, 4 -nitro - 139.1 388.2 552.2 -7.25 -6.10 1.16 Methyl -o- isopropylphosphonofluoridate 140.1 <298.2 420.2 -2.41 -2.18 0.23 Phosphoric acid, trimethyl ester 140.1 <298.2 470.4 -2.94 -3.21 0.27 1-Decene 140.3 <298.2 443.2 -2.64 -2.71 0.07 Cyclohexane, butyl - 140.3 <298.2 454.1 -2.75 -2.88 0.13 Cyclodecane 140.3 <298.2 474.0 -3.13 -3.25 0.12 Benzoyl chloride 140.6 <298.2 470.4 -3.02 -3.17 0.15 Pentane, 1,5 -dichloro - 141.0 <298.2 452.2 -2.81 -2.86 0.05 Iodomethane 141.9 <298.2 315.6 -0.27 -0.27 0.00 Methane, iodo - 141.9 <298.2 315.7 -0.26 -0.27 0.01 2-Propenoic acid, 2 -methyl -, butyl ester 142.2 <298.2 433.2 -2.54 -2.47 0.07 1-Methylnaphthalene 142.2 307.2 513.2 -4.04 -4.16 0.12 2-Methylnaphthalene 142.2 307.6 514.3 -4.13 -4.19 0.07 2,7 -Diemthyloctane 142.3 <298.2 433.0 -2.31 -2.48 0.17 2-Methylnonane 142.3 <298.2 440.0 -2.57 -2.64 0.07 Decane 142.3 <298 .2 447.0 -2.77 -2.80 0.03 bis -2-chloroethylether 143.0 <298.2 451.0 -2.70 -2.84 0.14 Ethane, 1,1' -oxybis 2 -chloro - 143.0 <298.2 451.7 -2.68 -2.85 0.18 1-Naphthalenamine 143.2 322.2 574.0 -5.25 -5.79 0.55 2-Naphthalenamine 143.2 384.2 579.2 -6.46 -6.46 0.00 beta -naphthylamine 143.2 385.0 579.0 -6.50 -6.46 0.04 1-Propanamine, N,N -dipropyl - 143.3 <298.2 429.2 -2.69 -2.41 0.27 1-Nonanamine 143.3 <298.2 475.4 -3.42 -3.51 0.09 Propanoic acid, 2 -methyl -, 2 - 144.2 <298.2 421.8 -2.23 -2.23 0.00 79 methylpropyl ester Butanoic acid, butyl ester 144.2 <298.2 440.7 -2.61 -2.65 0.04 Octanoic acid 144.2 <298.2 512.2 -5.33 -4.56 0.77 1-Naphthol 144.2 369.2 552.2 -5.29 -6.01 0.71 2-Naphthol 144.2 395.2 559.2 -5.39 -6.40 1.01 Nonanol 144.3 <298.2 488.2 -3.99 -4.03 0. 04 alpha,alpha,alpha - trifluorotoluene 146.1 <298.2 375.0 -1.30 -1.29 0.01 Ethanedioic acid, diethyl ester 146.1 <298.2 458.9 -3.25 -3.01 0.24 1,2 -Ethanediol, diacetate 146.1 <298.2 463.2 -3.98 -3.10 0.88 2-Pentanethiol, 2,4,4 - trimethyl - 146.3 <298.2 42 8.7 -2.17 -2.35 0.17 m-Dichlorobenzene 147.0 <298.2 445.0 -2.50 -2.65 0.15 o-Dichlorobenznee 147.0 <298.2 454.0 -2.71 -2.83 0.12 p-Dichlorobenzene 147.0 326.0 447.0 -3.02 -2.88 0.14 Acetaldehyde, trichloro - 147.4 <298.2 371.0 -1.17 -1.22 0.05 Trichlor oacetaldehyde 147.4 <298.2 371.0 -1.20 -1.22 0.02 1,2,3 -Trichloropropane 147.4 <298.2 429.2 -2.31 -2.33 0.02 Trichlorohydrin 147.4 <298.2 430.0 -2.38 -2.38 0.00 Propane, 1,2,3 -trichloro - 147.4 <298.2 430.2 -2.30 -2.38 0.08 1,3 -Isobenzofurandione 148.1 404.0 568.2 -6.15 -6.23 0.08 Anethole 148.2 <298.2 508.2 -4.13 -4.01 0.12 1-Ethyl -3-isopropylbenzene 148.3 <298.2 465.0 -2.98 -3.09 0.11 1-Ethyl -4-isopropylbenzene 148.3 <298.2 470.0 -3.07 -3.19 0.12 Pentylbenzene 148.3 <298.2 478.0 -3.36 -3.38 0.02 Pentamethylbenzene 148.3 327.2 505.2 -4.01 -4.14 0.12 Ethanol, 2,2',2'' -nitrilotris - 149.2 <298.2 608.6 -8.31 -7.38 0.93 Methyltrichlorosilane 149.5 <298.2 338.8 -0.64 -0.65 0.01 Benzoic acid, ethyl ester 150.2 <298.2 485.2 -3.44 -3.53 0.09 Acetic acid, phenylmethyl ester 150.2 <298.2 486.2 -3.62 -3.55 0.07 Carvacrol 150.2 <298.2 511.2 -4.46 -4.39 0.07 Oxirane, (phenoxymethyl) - 150.2 <298.2 516.2 -4.87 -4.20 0.66 Ethanol, 2,2' - 1,2 - ethanediylbis(oxy) bis - 150.2 <298.2 558.2 -5.75 -5.93 0.18 Thymol 15 0.2 323.2 506.2 -4.45 -4.50 0.04 Thujone 152.2 <298.2 476.2 -3.34 -3.29 0.05 Benzoic acid, 2 -hydroxy -, methyl ester 152.2 <298.2 496.1 -4.33 -4.20 0.13 Pulegone 152.2 <298.2 497.2 -4.04 -3.74 0.30 Bicyclo 2.2.1 heptan -2-one, 152.2 449. 2 477.2 -3.05 -4.64 1.58 80

1,7,7 -trimethyl - Benzene, 1 -methoxy -2-nitro - 153.1 <298.2 550.2 -5.32 -4.92 0.41 Carbon tetrachloride 153.8 <298.2 350.0 -0.80 -0.85 0.05 Sulfuric acid, diethyl ester 154.2 <298.2 481.2 -3.40 -3.46 0.06 Biphenyl 154.2 360.0 528.0 -4.90 -4.83 0. 07 Acenaphthylene, 1,2 -dihydro - 154.2 366.6 552.2 -5.47 -5.55 0.08 Acenaphthene 154.2 369.0 551.0 -5.37 -5.47 0.10 Limonene Oxide 154.3 <298.2 449.2 -3.53 -2.73 0.80 Cineole 154.3 <298.2 449.2 -3.05 -2.73 0.32 1-Undecene 154.3 <298.2 465.9 -3.17 -3.22 0.05 Linalool 154.3 <298.2 470.2 -3.68 -3.50 0.18 Citronellal 154.3 <298.2 481.2 -3.58 -3.48 0.10 Terpineol 154.3 304.2 493.2 -3.83 -4.02 0.19 3-Cyclohexene -1-methanol, .alpha.,.alpha.,4 -trimethyl - 154.3 306.2 490.7 -4.50 -4.00 0.51 Iodoethane 156.0 <298.2 345.2 -0.75 -0.76 0.02 N,N -Bis(2 - chloroethyl)methylamine 156.1 <298.2 490.2 -3.64 -3.68 0.04 1-Ethylnaphthalene 156.2 <298.2 532.0 -4.60 -4.51 0.09 2-Ethylnaphthalene 156.2 <298.2 532.0 -4.93 -4.50 0.43 1,6 -Dimethyl naphthalene 156.2 <298.2 537. 2 -4.70 -4.61 0.09 2-Methyldecane 156.3 <298.2 462.0 -3.09 -3.13 0.04 Undecane 156.3 <298.2 469.0 -3.28 -3.30 0.02 Decanal 156.3 <298.2 482.2 -3.85 -3.58 0.27 Benzoic acid, 2 -chloro - 156.6 413.4 560.2 -6.05 -6.55 0.50 Bromobenzene 157.0 <298.2 428.2 -2.26 -2.31 0.05 Bromobenzene 157.0 <298.2 429.0 -2.26 -2.33 0.07 Decylamine 157.3 <298.2 490.0 -3.90 -3.86 0.04 Nonanoic acid 158.2 <298.2 527.7 -5.80 -4.93 0.86 8-Methyl -1-nonanol 158.3 <298.2 494.2 -4.55 -4.15 0.40 Decanol 158.3 <298.2 503.2 -4.94 -4.39 0.55 Mustard Gas 159.1 <298.2 489.2 -3.83 -3.66 0.17 Propanedioic acid, diethyl ester 160.2 <298.2 473.2 -3.44 -3.33 0.11 Benzene, cyclohexyl - 160.3 <298.2 513.3 -4.27 -4.09 0.18 2,5 -Dichlorotoluene 161.0 <298.2 472.2 -3.16 -3.21 0.05 2,4 -Dichlor otoluene 161.0 <298.2 473.2 -3.15 -3.23 0.08 2,6 -Dichlorotoluene 161.0 <298.2 473.2 -3.16 -3.23 0.07 Benzene, (dichloromethyl) - 161.0 <298.2 478.2 -3.19 -3.34 0.14 2,3 -Dichlorotoluene 161.0 <298.2 481.2 -3.26 -3.40 0.14 3,4 -Dichlorotoluene 161.0 <298.2 482.2 -3.26 -3.42 0.16 81

Benzenamine, 3,4 -dichloro - 162.0 345.2 545.2 -4.88 -5.43 0.55 Tabun 162.1 <298.2 513.2 -4.02 -4.14 0.12 Ethanol, 2 -(2 -butoxyethoxy) - 162.2 <298.2 504.2 -4.53 -4.40 0.12 Pyridine, 3 -(1 -methyl -2- pyrrolidinyl) -, (S) - 162.2 <298.2 520.2 -4.29 -4.24 0.05 1,3 -Benzodioxole, 5 -(1 - propenyl) - 162.2 <298.2 525.2 -3.90 -4.36 0.46 Benzene, 1,3 -bis(1 - methylethyl) - 162.3 <298.2 476.4 -3.27 -3.33 0.06 Benzene, 1,4 -bis(1 - methylethyl) - 162.3 <298.2 483.5 -3.48 -3.48 0.00 1,2,4 -Triethylbenzene 162.3 <298.2 491.0 -3.47 -3.67 0.20 n-Hexylbenzene 162.3 <298.2 499.2 -3.86 -3.89 0.03 1-trans -5-trans -9-cis - 162.3 <298.2 504.0 -3.94 -3.89 0.05 Hexamethyldisiloxane 162.4 <298.2 372.2 -1.24 -1.25 0.01 1-Chloronaphthalene 162.6 <298.2 536.2 -4.40 -4.59 0.19 2-Chloronaphthalene 162.6 333.2 529.2 -4.78 -4.74 0.04 2,4 -Dichlorophenol 163.0 318.2 483.2 -3.91 -3.90 0.01 2,5 -Dichlorophenol 163.0 330.2 484.2 -4.12 -4.03 0.09 2,3 -Dichlorophenol 163.0 332.2 479.2 -4.10 -3.93 0.17 2,6 -Dichlo rophenol 163.0 340.2 492.2 -3.91 -4.25 0.34 3,4 -Dichlorophenol 163.0 340.2 526.2 -4.63 -5.09 0.46 3,5 -Dichlorophenol 163.0 341.2 506.2 -4.94 -4.58 0.36 Acetic acid, trichloro - 163.4 330.7 469.7 -3.66 -3.70 0.04 Eugenol 164.2 <298.2 526.2 -4.53 -4.77 0. 24 4-Propylphenol 164.3 <298.2 505.2 -4.13 -4.26 0.14 Chloropicrin 164.4 <298.2 385.0 -1.63 -1.48 0.15 Methane, trichloronitro - 164.4 <298.2 385.2 -1.49 -1.48 0.01 Tetrachloroethylene 165.8 <298.2 394.0 -1.60 -1.65 0.05 Tetrachloroethene 165.8 <298.2 394.5 -1.61 -1.66 0.05 9H -Fluorene 166.2 388.0 568.2 -4.94 -6.00 1.06 1,1' -Bicyclohexyl 166.3 <298.2 511.2 -3.83 -4.04 0.21 9H -Carbazole 167.2 520.2 628.2 -6.84 -8.56 1.72 1,1,1,2 -Tetrachloroethane 167.9 <298.2 403.7 -1.74 -1.84 0.10 Ethane, 1,1,1,2 -tetrachloro - 167.9 <298.2 403.7 -1.79 -1.84 0.05 1,1,2,2 -Tetrachloroethane 167.9 <298.2 419.2 -2.17 -2.15 0.02 Benzene, 1,3 -dinitro - 168.1 363.2 570.2 -5.91 -5.86 0.06 Diphenylmethane 168.2 <298.2 537.0 -4.81 -4.64 0.17 Dibenzofuran 168.2 359.7 560.2 -5.45 -5.60 0.16 1-Dodecene 168.3 <298.2 487.0 -3.66 -3.71 0.05 82

Benzenamine, N -phenyl - 169.2 326.1 575.2 -5.96 -5.83 0.13 Thiophosphoryl chloride 169.4 <298.2 398.2 -1.65 -1.73 0.07 Benzene, 1,1' -oxybis - 170.2 <298.2 531.2 -4.51 -4.48 0.03 1,1' -Biphenyl -2-ol 170.2 332.2 559.2 -5.57 -5.78 0.22 Dodecane 170.3 <298.2 489.0 -3.77 -3.77 0.00 Naphthalene, 2 -(1 - methylethyl) - 170.3 <298.2 541.4 -5.15 -4.71 0.45 2,6 -Dichlorobenzonitrile 172.0 361.2 543.2 -5.88 -5.23 0.64 Acetic acid, 2 -ethylhexyl ester 172.3 <298.2 472.2 -3.50 -3.34 0.17 1-Undecanol 172.3 <298.2 516.2 -5.39 -4.71 0.69 Naphthalene, 1 -nitro - 173.2 334.2 577.2 -6.19 -5.83 0.36 Methane, dibromo - 173.8 <298.2 370.2 -1.22 -1.20 0.02 Butanedioic acid, diethyl ester 174.2 <298.2 490.9 -4.22 -3.74 0.48 Benzene, 2,4 -diisocyanato -1- methyl - 174.2 <298.2 524.2 -4.96 -4.33 0.64 Benzoic acid, butyl ester 178.2 <298.2 523.5 -4.87 -4.42 0.45 Phenanthrene 178.2 373.2 613.2 -6.69 -6.92 0.23 Anthracene 178.2 490.0 615.0 -8.40 -7.68 0.72 Dodecahydrofluore ne 178.3 <298.2 526.0 -4.20 -4.37 0.17 Phosphoric triamide, hexamethyl - 179.2 <298.2 505.7 -4.20 -3.97 0.23 cis -Stilbene 180.3 <298.2 579.7 -5.03 -5.61 0.57 Benzene, 1 -chloro -4- (trifluoromethyl) - 180.6 <298.2 411.7 -1.98 -1.99 0.00 1,2,4 -Trichlorobenze ne 181.5 <298.2 487.2 -3.22 -3.53 0.31 1,2,3 -Trichlorobenzene 181.5 325.8 492.2 -3.31 -3.87 0.56 1,3,5 -Trichlorobenzene 181.5 336.0 481.2 -3.50 -3.63 0.13 2,6 -Dinitrotoluene 182.1 344.2 573.2 -6.10 -5.82 0.28 Benzene, 2 -methyl -1,3 -dinitro - 182.1 344.2 573.2 -6.11 -5.78 0.34 Diazene, diphenyl - 182.2 341.7 566.2 -6.31 -5.60 0.71 1,1 -Diphenylethane 182.3 <298.2 545.8 -4.80 -4.83 0.04 3,3 -Dimethylbiphenyl 182.3 <298.2 553.0 -5.40 -4.97 0.43 1-Tridecene 182.4 <298.2 506.0 -4.06 -4.17 0.11 2-Propenoic ac id, 2 -ethylhexyl ester 184.3 <298.2 486.7 -3.62 -3.67 0.05 Dibenzothiophene 184.3 373.2 605.0 -5.59 -6.73 1.14 Tridecane 184.4 <298.2 508.6 -4.12 -4.24 0.12 (2 -bromoethyl)benzene 185.1 <298.2 491.0 -3.49 -3.64 0.15 Benzene, hexafluoro - 186.1 <298.2 353 .4 -0.94 -0.90 0.04 1-Dodecanol 186.3 <298.2 532.2 -5.94 -5.11 0.83 Ethane, 1,2 -bis(2 - 187.1 <298.2 505.2 -4.09 -4.09 0.00 83 chloroethoxy) - Ethane, 1,1,1 -trichloro -2,2,2 - trifluoro - 187.4 <298.2 319.3 -0.31 -0.33 0.02 Ethane, 1,1,2 -trichloro -1,2,2 - trifluor o- 187.4 <298.2 320.9 -0.31 -0.36 0.05 1,2 -Dibromoethane 187.9 <298.2 404.0 -1.70 -1.85 0.15 Ethane, 1,2 -dibromo - 187.9 <298.2 404.8 -1.82 -1.86 0.05 1,2 -Dibromomethane 187.9 <298.2 440.0 -2.57 -2.56 0.01 PCB -1 188.7 305.3 547.2 -4.69 -4.90 0.20 PCB -3 188.7 351.1 564.2 -5.57 -5.68 0.11 n-Octylbenzene 190.3 <298.2 537.2 -4.81 -4.81 0.01 1,4 -Bromochlorobenzene 191.5 341.0 469.0 -3.46 -3.48 0.02 1,2,3,4 -Tetrahydronaphthalene 192.2 <298.2 481.0 -3.26 -3.40 0.14 Dimethyl phthalate 194.2 <298.2 555.0 -5. 39 -5.09 0.30 1,2 -Benzenedicarboxylic acid, dimethyl ester 194.2 <298.2 556.9 -5.65 -5.14 0.51 Ethanol, 2,2' - oxybis(2,1 - ethanediyloxy) bis - 194.2 <298.2 601.2 -9.08 -7.02 2.06 1,4 -Benzenedicarboxylic acid, dimethyl ester 194.2 414.2 561.2 -4.87 -6.63 1.76 2,4,5 -Trichlorotoluene 195.5 355.2 504.2 -3.87 -4.39 0.52 1-Tetradecene 196.4 <298.2 524.2 -4.69 -4.62 0.07 Benzenamine, 4 -(phenylazo) - 197.2 400.2 639.2 -8.72 -8.02 0.70 Halothane 197.4 <298.2 323.4 -0.39 -0.40 0.01 2,3,6 -Trichlorophenol 197.5 32 9.2 526.2 -5.48 -4.93 0.55 2,3,5 -Trichlorophenol 197.5 331.2 521.1 -4.99 -4.83 0.16 2,4,5 -Trichlorophenol 197.5 341.2 526.2 -4.59 -5.03 0.44 2,4,6 -Trichlorophenol 197.5 343.2 518.2 -4.89 -4.82 0.07 3,4,5 -Trichlorophenol 197.5 374.2 545.2 -5.48 -5.69 0. 22 Phenol, 2 -methyl -4,6 -dinitro - 198.1 359.8 651.2 -7.14 -8.21 1.07 Methane, bromotrichloro - 198.3 <298.2 378.2 -1.28 -1.35 0.08 Benzene, 1,1' - oxybis(methylene) bis - 198.3 <298.2 571.2 -5.86 -5.48 0.38 Tetradecane 198.4 <298.2 527.0 -4.74 -4.70 0.04 Acetic acid, (4 -chloro -2- methylphenoxy) - 200.6 393.2 559.9 -8.10 -6.65 1.44 1,1,2,2,2 -Pentachloroethane 202.3 <298.2 435.0 -2.22 -2.45 0.23 Pentachloroethane 202.3 <298.2 435.2 -2.30 -2.45 0.15 Fluoranthene 202.3 384.2 648.2 -7.91 -7.91 0.00 Pyrene 202 .3 429.2 677.2 -8.23 -8.60 0.38 Ethane, 1,1,2,2 -tetrachloro - 1,2 -difluoro - 203.8 299.2 366.2 -1.19 -1.15 0.04 84

Iodobenzene 204.0 <298.2 461.0 -2.88 -2.98 0.10 Naphthalene, 1 -bromo - 207.1 <298.2 554.2 -4.88 -4.99 0.11 Benzoic acid, phenylmethyl ester 212. 3 <298.2 596.7 -6.52 -6.06 0.46 Pentadecane 212.4 <298.2 544.0 -5.25 -5.14 0.11 Dodecanoic acid, methyl ester 214.4 <298.2 540.2 -5.25 -5.00 0.25 1,2,3,4 -Tetrachlorobenzene 215.9 320.7 527.2 -4.28 -4.57 0.29 1,2,3,5 -Tetrachlorobenzene 215.9 327.7 519.2 -4.01 -4.47 0.46 1,2,4,5 -Tetrachlorobenzene 215.9 413.2 519.2 -5.17 -4.99 0.18 1,2,3 -Propanetriol, triacetate 218.2 <298.2 532.2 -5.47 -4.69 0.78 Benzene, decyl - 218.4 <298.2 571.2 -5.76 -5.68 0.08 n-Decylbenzene 218.4 <298.2 596.2 -5.76 -6.29 0.53 1,2 -Benzenedicarboxylic acid, diethyl ester 222.2 <298.2 568.2 -5.65 -5.47 0.18 diethyl phthalate 222.2 <298.2 572.0 -5.70 -5.56 0.14 PCB -11 223.1 302.2 595.2 -6.57 -5.95 0.62 PCB -15 223.1 422.2 588.2 -7.32 -6.72 0.60 1-Hexadecene 224.4 <298.2 558.1 -5. 45 -5.50 0.05 Hexadecane 226.5 <298.2 560.0 -5.48 -5.56 0.08 2-Butenedioic acid (Z) -, dibutyl ester 228.3 <298.2 554.2 -6.07 -5.29 0.78 Benzanthracene 228.3 433.0 711.0 -9.56 -9.85 0.29 Benzo[a]anthracene 228.3 433.2 711.2 -9.56 -9.86 0.30 Triphenylen e 228.3 472.2 711.2 -8.65 -9.74 1.09 Chrysene 228.3 529.2 721.2 -11.25 -10.71 0.54 m-Dibromobenzene 235.9 <298.2 491.0 -3.24 -3.61 0.37 p-Dibromobenzene 235.9 360.0 492.0 -3.67 -4.05 0.38 Propane, 1,2 -dibromo -3- chloro - 236.3 <298.2 469.2 -3.10 -3.19 0. 08 Heptadecane 240.5 <298.2 573.2 -6.51 -5.93 0.58 Heptadecane 240.5 <298.2 575.0 -6.53 -5.97 0.56 n-Dodecylbenzene 246.4 <298.2 573.2 -7.16 -5.80 1.36 Benzene, dodecyl - 246.4 <298.2 601.2 -7.16 -6.47 0.69 Benzene, 1 -bromo -4-phenoxy - 249.1 <298.2 583. 3 -5.69 -5.69 0.00 Pentachlorobenzene 250.3 359.2 550.2 -5.01 -5.37 0.36 Benzopyrene 252.3 449.0 768.0 -11.20 -11.24 0.04 Benzo[a]pyrene 252.3 450.2 768.2 -11.16 -11.41 0.25 Benzo[e]pyrene 252.3 451.2 765.2 -11.14 -11.34 0.20 Benzo[k]fluoranthene 252. 3 490.2 753.2 -11.88 -11.19 0.69 Methane, tribromo - 252.7 <298.2 422.3 -2.13 -2.19 0.06 Bromoform 252.7 <298.2 423.0 -2.12 -2.21 0.09 85 n-Octadecane 254.5 301.0 589.0 -6.65 -6.44 0.21 Ethane, 1,2 -dibromo -1,1,2,2 - tetrafluoro - 259.8 <298.2 320.5 -0.35 -0.3 5 0.00 Benzene, tridecyl - 260.5 <298.2 619.2 -7.76 -6.99 0.78 1,3 -Butadiene, 1,1,2,3,4,4 - hexachloro - 260.8 <298.2 488.2 -3.52 -3.57 0.05 Phosphoric acid tributyl ester 266.3 <298.2 562.2 -6.79 -5.55 1.24 Phenol, pentachloro - 266.3 447.2 582.7 -6.83 -7. 06 0.23 PCP 266.3 463.0 583.0 -7.70 -7.19 0.51 VX 267.4 <298.2 573.2 -6.02 -5.67 0.35 Methane, diiodo - 267.8 <298.2 455.2 -2.79 -2.86 0.07 Nonadecane 268.5 305.0 603.0 -7.19 -6.97 0.22 1,3 -Cyclopentadiene, 1,2,3,4,5,5 -hexachloro - 272.8 <298.2 512.2 -4.09 -4.06 0.02 Indeno 1,2,3 -cd pyrene 276.3 436.8 809.2 -12.87 -12.31 0.55 Dibutyl phthalate 278.4 <298.2 613.0 -7.00 -6.70 0.30 1,2 -Benzenedicarboxylic acid, dibutyl ester 278.4 <298.2 613.2 -7.00 -6.71 0.30 9,12 -Octadecadienoic acid (Z,Z) - 280.5 <298 .2 638.4 -8.93 -7.85 1.08 9-Octadecenoic acid (Z) - 282.5 317.2 633.2 -9.13 -8.27 0.86 Eicosane 282.6 310.0 617.0 -7.69 -7.54 0.15 Metolachlor 283.8 <298.2 555.2 -7.37 -5.21 2.16 Hexachlorobenzene 284.8 503.2 605.2 -7.64 -7.21 0.43 Hexachlorobenzene 28 4.8 504.0 598.0 -5.60 -7.05 1.45 Cyclohexane, 1,2,3,4,5,6 - hexachloro -, 290.8 385.7 596.6 -6.25 -6.72 0.47 Parathion 291.3 <298.2 648.2 -7.88 -7.43 0.45 Benzene, pentachloronitro - 295.3 417.2 601.2 -7.17 -6.98 0.18 Octamethyltetrasiloxane 296.6 <298.2 449.2 -2.85 -2.73 0.11 1,2,4,5 -Tetrabutylbenzene 302.6 <298.2 470.0 -3.18 -3.38 0.20 Butyl benzyl phthalate 312.4 <298.2 643.0 -7.96 -7.38 0.59 Decanedioic acid, dibutyl ester 314.5 <298.2 617.7 -8.20 -7.15 1.05 Hexanedioic acid, dihexyl ester 314.5 <29 8.2 617.7 -8.41 -7.15 1.26 DDE 318.0 362.2 609.2 -8.09 -6.93 1.16 p,p' -DDD 320.1 382.7 623.2 -8.75 -7.62 1.13 Tricosane 324.6 321.0 653.0 -9.41 -9.07 0.34 Methane, tetrabromo - 331.6 363.3 463.2 -3.44 -3.36 0.08 DCPA 332.0 429.2 643.2 -8.47 -8.74 0.27 Benfluralin 335.3 339.2 643.2 -7.05 -8.06 1.02 86

Hexanedioic acid, bis(2 - ethylhexyl) ester 370.6 <298.2 690.2 -8.94 -9.20 0.26 Decamethylcyclopentasiloxane 370.8 <298.2 483.2 -3.57 -3.44 0.12 Heptachlor 373.3 368.7 583.2 -6.26 -6.27 0.00 Dieldrin 380.9 499.2 603.2 -8.10 -7.87 0.23 1,2 -Benzenedicarboxylic acid, bis(2 -ethylhexyl) est 390.6 <298.2 657.2 -7.88 -8.09 0.21 Octacosane 394.8 338.0 705.0 -11.09 -11.67 0.58 Octachlorodibenzo -p-dioxin 459.8 603.2 783.2 -14.95 -13.12 1.83 87

APPENDIX C: RESULTS OF THE OCTANOL -AIR PARTITION COEFFICIENT

ESTIMATIONS

Table C.1 Chemical Name, Molecular Weight, Boiling Point (Kelvin), Experimental and Predicted log Octanol -Air Partition Coefficient, and Absolute Error in Prediction.

Exper Pred Chemical Name MW lo g Koa BP (K) log Koa AE Methyl formate 60.1 1.75 304.9 1.99 0.24 2-Methylbuta -1,3 -diene 68.1 2.06 307.2 2.03 0.03 74.1 2.19 307.8 2.04 0.15 1-Pentene 70.1 1.93 308.2 2.04 0.11 2-Monochloropropane 78.5 2.08 308.9 2.05 0.03 Pentane 72.2 1.96 309.3 2.06 0.10 Bromoethane 109.0 2.11 311.7 2.10 0.01 Dichloromethane 84.9 2.27 313.2 2.12 0.15 Iodomethane 141.9 2.16 315.7 2.16 0.00 Allyl chloride 76.5 1.67 318.3 2.20 0.53 Carbon disulphide 76.1 2.28 319.2 2.22 0.06 Chloropropane 78.5 2.24 319.7 2.23 0.01 trans -1,2 -Dichloroethene 96.9 1.95 320.7 2.24 0.29 Propanal 58.1 3.02 321.2 2.25 0.77 Ethyl formate 74.1 2.19 327.2 2.35 0.16 cis -1,2 -Dichloroethene 96.9 2.56 328.2 2.36 0.20 Methyl Tertiary Butyl Ether 88.1 2.58 328.4 2.37 0.21 Aceton e 58.1 2.31 328.7 2.37 0.06 Methyl acetate 74.1 2.31 330.2 2.40 0.09 1,1 -Dichloroethane 99.0 2.41 330.6 2.40 0.01 Acetonitrile 41.1 2.31 332.8 2.44 0.13 Trichloromethane 119.4 2.80 335.2 2.48 0.32 Hex -1-ene 84.2 2.41 336.2 2.51 0.10 Tetrahydrofuran 72.1 2.86 338.2 2.53 0.33 Methanol 32.0 2.88 338.2 2.84 0.04 Bromochloromethane 129.4 2.67 341.0 2.58 0.09 Di -isopropyl ether 102.2 2.66 341.7 2.60 0.06 88

Hexane 86.2 2.40 341.9 2.61 0.21 2,2 -Dichloropropane 113.0 2.30 342.2 2.60 0.30 Iodoethane 156.0 2.59 345.2 2.65 0.06 1,1,1 -Trichloroethane 133.4 2.70 347.2 2.69 0.01 Butanal 72.1 3.39 348.0 2.71 0.68 1,1 -Dichloropropene 111.0 2.51 349.7 2.73 0.22 Butylamine 73.1 3.61 350.2 2.81 0.80 Tetrachloromethane 153.8 2.79 350.2 2.74 0.05 Ethyl acetate 88. 1 2.70 350.3 2.75 0.05 Acrylnitrile 53.1 2.28 350.5 2.74 0.46 Chlorobutane 106.6 2.72 351.2 2.76 0.04 Teramethyl tin 178.9 2.62 351.2 2.76 0.14 Ethanol 46.1 3.25 351.5 3.05 0.20 2-Butanone 72.1 2.71 352.7 2.78 0.07 Benzene 78.1 2.78 353.2 2.79 0.01 Hexafluorobenzene 186.1 2.11 353.4 2.79 0.68 Cyclohexane 84.2 2.74 353.9 2.80 0.06 Propyl formate 88.1 2.66 354.1 2.82 0.16 N-Methylpyrrolidine 85.1 3.64 354.2 2.81 0.83 2-Propanol 60.1 3.41 355.6 3.07 0.34 t-Butanol 74.1 3.50 355.6 3.03 0.47 Cyclohe xene 82.2 2.83 356.1 2.84 0.01 1,2 -Dichloroethane 99.0 2.78 356.2 2.85 0.07 Fluorobenzene 96.1 2.84 357.9 2.87 0.03 Pentafluorobenzene 168.1 2.54 358.2 2.88 0.33 Pyrrolidine 71.1 4.07 359.7 2.98 1.09 Trichloroethene 131.4 2.99 360.4 2.92 0.07 Tetrahy dropyran 86.1 3.22 361.2 2.96 0.26 Isopropyl acetate 102.1 2.93 361.8 2.95 0.02 1,4 -Difluorobenzene 114.1 2.93 362.2 2.95 0.02 Dipropyl ether 102.2 2.97 363.2 2.99 0.02 Dichlorobromomethane 163.8 2.97 363.2 2.97 0.00 Methyl Acrylonitrile 67.1 2.60 363 .5 2.97 0.37 3-Methyl -2-butanone 86.1 3.04 367.5 3.05 0.01 1,2 -Dichloropropane 113.0 2.96 368.7 3.07 0.11 Dibromomethane 173.8 3.07 370.2 3.09 0.02 Propionitrile 55.1 2.69 370.3 3.10 0.41 1-Propanol 60.1 3.71 370.4 3.40 0.31 89

Heptane 100.2 2.95 371.6 3.15 0.20 Ethyl Propionate 102.1 3.15 372.3 3.15 0.00 2-Butanol 74.1 3.85 372.7 3.40 0.45 Methyl methacrylate 100.1 3.08 373.2 3.16 0.08 98.2 3.05 374.1 3.17 0.12 Nitromethane 61.0 2.53 374.3 3.17 0.64 Propyl acetate 102.1 3.17 374. 7 3.19 0.02 1,4 -Dioxane 88.1 3.18 374.7 3.18 0.00 3-Pentanone 86.1 3.20 375.1 3.19 0.01 2-Pentanone 86.1 3.19 375.4 3.20 0.01 2-Propanenitrile 69.1 2.87 377.2 3.22 0.35 Piperidine 85.2 4.04 379.5 3.34 0.70 2-Methyl -1-propanol 74.1 3.93 381.2 3.58 0.3 5 Dipropyalmine 101.2 3.59 383.2 3.43 0.16 Toluene 92.1 3.31 383.8 3.34 0.03 cis -1,3 -Dichloropropene 111.0 3.75 385.2 3.38 0.37 trans -1,3 -Dichloropropene 111.0 3.28 385.2 3.38 0.10 1,1,2 -Trichloroethane 133.4 3.40 387.0 3.41 0.01 Nitroethane 75.1 2.8 8 387.2 3.41 0.53 Pyridine 79.1 4.20 388.4 3.43 0.77 4-Methyl -2-pentanone 100.2 3.30 389.7 3.47 0.17 Isobutyl acetate 116.2 3.45 389.7 3.48 0.03 Ethyl Methacrylate 114.1 3.34 390.2 3.48 0.14 Butyronitrile 69.1 3.12 390.8 3.48 0.36 Acetic Acid 60.1 4. 31 391.2 3.87 0.44 1-Butanol 74.1 4.19 391.2 3.81 0.38 Dibromochloromethane 208.3 3.59 393.2 3.52 0.07 Oct -1-ene 112.2 3.35 394.2 3.58 0.23 Tetrachloroethene 236.7 3.48 394.5 3.55 0.07 Ethyl butanoate 116.2 3.56 394.7 3.58 0.02 Di -isobutyl ether 130. 2 3.40 396.2 3.62 0.22 Octane 114.2 3.35 398.8 3.68 0.33 Butyl acetate 116.2 3.65 399.2 3.67 0.02 2-Hexanone 100.2 3.68 400.2 3.68 0.00 2-Picoline 93.1 4.30 402.2 3.69 0.61 2-Chloroethanol 80.5 4.30 402.2 4.02 0.28 1,1,1,2 -Tetrachloroethane 167.8 3.9 7 403.7 3.73 0.24 Cyclopentanone 84.1 3.67 403.7 3.72 0.05 90

1-Nitropropane 89.1 3.25 404.2 3.74 0.49 Isopentanol 88.1 4.52 404.2 4.05 0.47 Hexanal 100.2 4.41 404.2 3.77 0.64 1,2 -Dibromoethane 187.9 3.69 404.8 3.75 0.06 Chlorobenzene 112.6 3.31 404.9 3.74 0.43 Ethyl benzene 106.2 3.74 409.4 3.84 0.10 1-Pentanol 88.2 4.69 411.2 4.22 0.47 p-Xylene 106.2 3.79 411.5 3.87 0.08 o-Xylene 106.2 3.91 411.7 3.88 0.03 m-Xylene 106.2 3.78 412.3 3.89 0.11 Dibutyl ether 130.2 3.89 413.4 3.98 0.09 Pentanonitril e 83.1 3.60 414.2 3.95 0.35 Isopentyl acetate 130.2 3.94 415.2 3.99 0.05 104.2 3.92 418.2 4.00 0.08 1,1,2,2 -Tetrachloroethane 167.8 4.30 419.7 4.05 0.25 Non -1-ene 126.2 3.83 420.1 4.11 0.28 Pentyl acetate 130.2 4.12 422.4 4.14 0.02 Bromoform 252.7 4.23 423.2 4.10 0.13 2-Heptanone 114.2 4.15 424.2 4.17 0.02 Isopropylbenzene 120.2 3.98 424.2 4.13 0.15 4-Bromofluorobenzene 175.0 4.11 424.7 4.13 0.02 cis -1,4 -Dichloro -2-butene 125.0 4.04 425.2 4.17 0.13 trans -1,4 -Dichloro -2-butene 125.0 4.15 425.7 4.18 0.03 Tricyclene 136.2 3.87 425.7 4.15 0.28 Dimethylformamide 73.1 4.38 426.2 4.17 0.21 108.1 4.01 426.9 4.18 0.17 N-Nitrosodimethylamine 74.1 3.72 427.2 4.19 0.46 Bromobenzene 157.0 4.08 428.2 4.20 0.12 alpha -Pinene 136.2 3.75 428.2 4.20 0.45 1,2,3 -Trichloropropane 147.4 4.52 430.2 4.27 0.25 1-Hexanol 102.2 5.18 431.2 4.64 0.54 2-Chlorotoluene 126.6 4.11 432.2 4.28 0.17 Camphene 136.2 4.04 432.2 4.28 0.24 Propylbenzene 120.2 4.09 432.2 4.30 0.21 Pentachloroethane 202.3 3.89 433 .0 4.31 0.42 Cyclohexanol 100.2 5.18 434.0 4.65 0.53 4-Chlorotoluene 126.6 4.15 435.2 4.34 0.19 Hexanonitrile 97.2 4.08 436.8 4.42 0.34 91

1,3,5 -Trimethylbenzene 120.2 4.18 437.9 4.40 0.22 Dimethylacetamide 87.1 5.33 438.2 4.41 0.92 beta -Pinene 136.2 3. 68 439.2 4.42 0.74 1,2,4 -Trimethylbenzene 120.2 4.20 442.2 4.48 0.28 tert -Butylbenzene 134.2 4.18 442.2 4.48 0.31 N-Nitroso -methyl -ethylamine 88.1 3.85 443.2 4.53 0.68 3-Carene 136.2 3.80 443.2 4.50 0.70 Octanal 128.2 5.36 444.2 4.61 0.75 Hexyl aceta te 144.2 4.58 444.7 4.62 0.04 sec -Butylbenzene 134.2 4.20 446.2 4.59 0.38 1,3 -Dichlorobenzene 147.0 4.30 446.2 4.56 0.26 1,4 -Dichlorobenzene 147.0 4.46 446.2 4.56 0.10 alpha -Terpinene 80.1 3.90 448.2 4.61 0.71 p-Isopropyltoluene 134.2 4.54 449.7 4.63 0.09 N-Nitrosodiethylamine 102.1 4.04 450.2 4.69 0.65 Limonene 136.2 4.04 451.2 4.67 0.62 1,2 -Dichlorobenzene 147.0 4.36 453.2 4.71 0.35 Butylbenzene 134.2 4.34 456.2 4.81 0.47 gamma -Terpinene 80.1 4.28 456.2 4.78 0.50 Aniline 93.1 4.48 457.2 4.93 0. 45 Dipentylether 158.3 4.80 461.2 5.02 0.22 Hexachloroethane 236.7 4.47 462.2 4.89 0.42 Dimethyl sulfoxide 78.1 4.96 463.2 4.91 0.05 Benzonitrile 103.1 4.46 464.2 4.93 0.47 Octan -1-ol 128.2 6.03 468.2 5.45 0.58 1,2 -Dibromo -3-Chloropropane 236.3 4.56 469.2 5.08 0.52 o-Toluidine 107.2 4.66 473.4 5.26 0.60 Decafluorobiphenyl 334.1 4.54 479.2 5.25 0.70 N-Nitrosodipropylamine 130.2 4.30 479.2 5.34 1.04 1,3,5 -Trichlorobenzene 181.5 4.85 481.2 5.29 0.44 1,2,4 -Trichlorobenzene 181.5 4.95 486.7 5.41 0.46 Hexachlorobutadiene 260.8 4.58 488.2 5.45 0.87 Naphthalene 128.2 5.19 491.1 5.50 0.31 1,2,3 -Trichlorobenzene 181.5 5.19 491.7 5.51 0.32 1,4 -Dibromobenzene 235.9 5.21 492.2 5.52 0.31 N-Nitrosodibutylamine 158.2 4.81 507.2 6.01 1.20 2-Methylnaphthalene 142.2 5.11 514.2 6.00 0.88 1,2,4,5 -Tetrachlorobenzene 215.9 5.63 517.7 6.07 0.44 92

1,2,3,5 -Tetrachlorobenzene 215.9 5.55 519.2 6.11 0.56 1,2,3,4 -Tetrachlorobenzene 215.9 5.64 527.2 6.28 0.64 2-Chloronaphthalene 162.6 5.80 529.2 6.33 0.53 Biphenyl 154.2 6.15 529.2 6.33 0.18 1-Chloronaphthalene 162.6 5.80 532.2 6.39 0.59 Hexamethylbenzene 162.3 6.31 536.6 6.49 0.18 PCB -1 188.7 6.65 547.2 6.72 0.07 Pentachlorobenzene 250.3 6.49 550.2 6.79 0.30 Acenaphthene 154.2 6.31 552.2 6.84 0.53 PCB -2 188.7 6.82 558.2 6.97 0.15 2,7 -Dichloronaphthalene 197.1 6.70 558.2 6.97 0.27 alpha -Hexachlorocyclohexane 290.8 7.25 561.2 7.04 0.21 1,4 -Dichloronapthalene 197.1 6.78 561.2 7.04 0.26 PCB -3 188.7 6.80 564.2 7.11 0.31 Fluorene 166.2 6.79 568.2 7.20 0.41 1,2 -Dichl oronapthalene 197.1 6.89 569.7 7.23 0.34 Diphenylamine 169.2 7.64 575.2 7.53 0.11 t-Stilbene 180.2 7.48 579.7 7.50 0.02 Heptachlor 373.3 7.64 583.2 7.54 0.10 1-Chlorodibenzo -p-dioxin 218.6 7.86 589.2 7.68 0.18 PCB -15 223.1 7.68 590.2 7.70 0.02 PCB -11 223.1 7.90 595.2 7.81 0.09 gamma -Hexachlorocyclohexane 290.8 7.85 596.2 7.84 0.01 Hexachlorobenzene 284.8 7.38 598.2 7.88 0.50 Dieldrin 380.9 8.90 603.2 8.00 0.90 1,4,6,7 -Tetrachloronapthalene 266.0 8.13 604.2 8.02 0.11 1-Hexadecanol 242.5 9.90 607.2 9.00 0.90 p,p' -DDE 318.0 9.68 609.2 8.18 1.50 Anthracene 178.2 7.55 613.1 8.23 0.68 178.2 7.57 613.2 8.23 0.66 p,p' -DDD 320.1 10.10 623.2 8.55 1.55 Oxychlordane 423.8 8.39 626.2 8.53 0.14 PCB -49 292.0 8.39 633.2 8.70 0.31 4,4' -Dibromod iphenylether 328.0 8.60 634.2 8.77 0.17 1-Eicosanol 298.6 12.06 645.2 10.15 1.91 2,7 -Dichlorodibenzo -p-dioxin 253.1 8.36 647.2 9.03 0.67 Fluoranthene 202.3 8.88 648.2 9.05 0.17 2,8 -Dichlorodibenzo -p-dioxin 253.1 8.36 656.2 9.24 0.88 93

Pyrene 202.3 8.80 677.2 9.74 0.94 1,2,3,4 -Tetrachlorodibenzo -p- dioxin 322.0 9.70 692.2 10.10 0.40 Benzo[a]anthracene 228.3 10.80 710.8 10.55 0.25 Triphenylene 228.3 10.63 711.2 10.56 0.07 2,3,7,8 -Tetrachlorodibenzofuran 306.0 10.02 711.5 10.57 0.55 2,3,7,8 -Tetrachlorod ibenzo -p- dioxin 322.0 10.05 720.2 10.78 0.73 Chrysene 228.3 10.63 721.2 10.81 0.18 1,2,3,4,7, -Pentachlorodibenzo -p- dioxin 356.4 10.67 738.2 11.22 0.55 2,3,4,7,8 -Pentachlorodibenzofuran 340.4 10.37 738.2 11.22 0.85 Benzo[k]fluoranthene 252.3 11.18 753.2 11.59 0.41 1,2,3,4,7,8 -Hexachlorodibenzo -p- dioxin 390.9 11.11 761.2 11.79 0.68 1,2,3,6,7,8 - Hexachlorodibenzofuran 374.9 10.78 761.2 11.79 1.01 1,2,3,4,7,8 - Hexachlorodibenzofuran 374.9 10.77 761.2 11.79 1.02 Benzo[e]pyrene 252.3 11.13 765.2 11.89 0.76 Benzo[a]pyrene 252.3 10.77 768.2 11.96 1.19 Perlyene 252.3 11.70 770.2 12.01 0.31 1,2,3,4,6,7,8 - Heptachlorodibenzofuran 409.3 11.17 780.2 12.26 1.09 1,2,3,4,6,7,8 -Heptachlorodibenzo - p-dioxin 425.3 11.42 780.4 12.27 0.85 Dibenz[a,h]anthracene 278.4 13. 91 808.2 12.96 0.95 94

APPENDIX D: RESULTS OF THE AIR -WATER PARTITION COEFFICIENT

ESTIMATIONS FOR NON -IONIZABLE COMPOUNDS AND THOSE WITH

AQUEOUS SOLUBILITIES OF LESS THAN 50%

Table D.1 Chemical Name, Molecular Weight, Boiling Point (Kelvin), Experimental a nd Predicted log Air -Water Partition Coefficient, and Absolute Error in Prediction for Non - ionizable Compounds and those with Aqueous Solubilities of Less than 50%.

Exper Pred Name MW Tb (K) log Kaw log Kaw AE Acrylonitrile* 53.1 350.45 -2.25 -1.79 0.46 Propionitrile* 55.1 370.25 -2.82 -2.05 0.77 Propanal* 58.1 321.15 -2.52 -1.85 0.67 Nitromethane* 61.0 374.25 -2.93 -2.45 0.48 Dimethyl sulfide 62.1 310.45 -1.18 -0.12 1.06 Ethyl mercaptan 62.1 308.25 -0.73 -0.44 0.29 Pyrrole 67.1 402.85 -3.13 -2.98 0.16 Furan 68.1 304.65 -0.66 -0.56 0.10 2-Methyl -1,3 -butadiene 68.1 307.15 0.50 0.71 0.22 1,4 -Pentadiene 68.1 299.15 0.69 1.46 0.77 68.1 317.35 0.42 -0.07 0.49 cis -2-Pentene 70.1 309.45 0.96 0.81 0.16 trans -2-Pentene 70.1 309 .45 0.97 0.81 0.17 2-Methyl -2-butene 70.1 311.65 0.96 0.69 0.27 70.1 322.45 0.89 0.04 0.84 1-Pentene 70.1 308.15 1.21 1.07 0.14 2-Methyl -1-butene 70.1 304.35 1.25 1.03 0.22 Isobutyraldehyde* 72.1 337.65 -2.13 -1.74 0.39 2-Butanone* 72.1 352.65 -2.63 -2.01 0.63 Butanal 72.1 347.95 -2.33 -1.79 0.53 2-Methylbutane 72.2 300.95 1.76 0.94 0.82 Pentane 72.2 309.15 1.71 1.13 0.58 Methyl acetate* 74.1 365.15 -2.33 -2.26 0.07 2-Butanol* 74.1 372.65 -3.43 -2.55 0.88 (+)2 -Butanol* 74.1 372.65 -3.43 -2.55 0.88 Isobutyl alcohol* 74.1 380.95 -3.40 -2.54 0.86 95

2-Methyl -1-propanol* 74.1 380.95 -3.40 -2.54 0.86 Methyl isopropyl ether 74.1 303.85 -1.43 -0.99 0.44 Butyl alcohol 74.1 391.15 -3.44 -2.59 0.85 Diethyl ether 74.1 307.65 -1.30 -0.87 0.4 3 Methyl propyl ether 74.1 312.25 -1.22 -0.94 0.27 Peroxyacetic acid 76.1 383.15 -4.06 -4.83 0.77 Dimethoxymethane* 76.1 315.15 -2.15 -3.01 0.86 1-Propanethiol 76.2 340.95 -0.48 -0.47 0.01 3-Chloropropylene 76.5 318.25 -0.35 -0.01 0.34 Benzene 78.1 353.15 -0.64 -0.62 0.03 2-Chloropropane 78.5 308.85 -0.15 0.03 0.17 1-Chloroproprane 78.5 319.65 -0.27 0.04 0.31 1-Chloropropane 78.5 319.15 -0.27 0.05 0.32 1,4 -Cyclohexadiene 80.1 358.65 -0.40 -0.26 0.13 1,5 -Hexadiene 82.1 332.55 0.76 1.12 0.36 2,3 -Dimethyl -1,3 -Butadiene 82.2 341.95 0.31 1.03 0.72 Cyclohexene 82.2 356.05 0.27 -0.02 0.29 Cyclopentanone 84.1 403.65 -3.39 -2.69 0.70 Thiophene 84.1 357.15 -0.92 -1.20 0.27 2-Methyl -1-pentene 84.2 335.25 1.05 1.04 0.01 Cyclohexane 84.2 353.85 0.79 0.22 0.56 1-Hexene 84.2 336.55 1.23 1.12 0.11 4-Methylpent -1-ene 84.2 327.05 1.41 1.10 0.31 84.2 344.95 1.17 0.33 0.84 Dichloromethane 84.9 313.15 -0.88 -0.59 0.29 Methyl acrylate 86.1 353.35 -2.09 -1.56 0.54 Vinyl acetate 86.1 345.65 -1.68 -1.33 0.35 Isopropyl methyl ketone 86.1 367.45 -2.40 -1.89 0.51 3-Pentanone 86.1 375.05 -2.44 -1.92 0.52 2-Pentanone 86.1 375.35 -2.47 -1.91 0.56 3-Methyl -1-butanal 86.1 365.65 -1.78 -1.78 0.00 2,3 -Dimethylbutane 86.2 331.05 1.68 0.92 0.76 2,2 -Dimethylbutane 86.2 322.85 1.79 1.37 0.43 3-Methylpentane 86.2 336.35 1.84 1.01 0.83 2-Methylpentane 86.2 333.35 1.84 1.06 0.78 n-Hexane 86.2 341.85 1.87 1.10 0.77 Ethyl acetate 88.1 350.25 -2.26 -1.48 0.78 Methyl Propionate 88.1 352.95 -2.15 -1.55 0.60 96

Isopentanol 88.1 404.25 -3.24 -2.50 0.74 2-Methyl -2-butanol* 88.2 375.55 -3.25 -0.70 2.55 3-Pentanol 88.2 389.35 -3.09 -2.37 0.73 Methyl tert -butyl ether 88.2 328.35 -1.62 -0.75 0.87 2-Pentanol 88.2 392.45 -3.22 -2.43 0.79 2,2 -Dimethyl -1-propano l 88.2 386.65 -2.66 -1.97 0.69 1-Pentanol 88.2 411.05 -3.27 -2.48 0.79 Ethyl propyl ether 88.2 336.35 -1.33 -0.83 0.50 sec -Butyl Methyl Ether 88.2 338.15 -1.22 -1.04 0.18 Methyl n -butyl ether 88.2 343.25 -1.14 -0.95 0.19 Ethyl carbamate* 89.1 458.15 -5.58 -4.27 1.31 2-Nitropropane 89.1 393.35 -2.31 -1.93 0.38 1-Nitropropane 89.1 404.25 -2.45 -2.02 0.43 Diethyl sulfide 90.2 365.25 -1.44 -0.03 1.41 2-Butanethiol 90.2 357.65 -0.53 -0.43 0.10 n-Butyl mercaptan 90.2 371.65 -0.43 -0.51 0.08 Cycloheptat riene 92.1 390.15 -0.73 -0.33 0.40 Toluene 92.1 383.75 -0.58 -0.68 0.11 Chloroacetone 92.5 392.15 -3.17 -3.52 0.34 1-Chloro -2,3 -Epoxypropane 92.5 390.15 -2.91 -3.03 0.12 Isobutyl Chloride 92.6 341.65 -0.09 0.00 0.10 1-Chlorobutane 92.6 351.75 -0.17 0. 01 0.17 2-Chlorobutane 92.6 341.15 -0.01 0.01 0.02 tert -Butyl chloride 92.6 323.15 -0.28 0.44 0.72 Phenol 94.1 454.95 -4.87 -4.30 0.56 Dimethyldisulfide 94.2 382.95 -1.31 -1.34 0.03 Bromomethane 94.9 311.65 -0.51 -0.64 0.13 Furfural 96.1 434.85 -3.86 -2.99 0.87 Fluorobenzene 96.1 357.85 -0.59 -0.57 0.02 4-Methyl -3-penten -2-one 98.1 403.15 -2.82 -2.71 0.11 Cyclohexanone 98.2 428.55 -3.43 -2.46 0.97 3-Methylthiophene 98.2 388.65 -0.53 -1.28 0.75 98.2 391.55 0.58 0.25 0.33 1-Heptene 98 .2 366.75 1.24 1.09 0.14 2-Heptene 98.2 371.15 1.23 0.77 0.47 trans -2-Heptene 98.2 371.15 1.25 0.77 0.48 Methylcyclohexane 98.2 374.05 1.24 0.53 0.72 1,2 -Dichloroethane 99.0 356.65 -1.32 -1.00 0.32 97

1,2 -Dichloroethene (Cis) 99.0 328.15 -0.78 -0.51 0.2 7 1,1 -Dichloroethane 99.0 330.55 -0.64 -0.54 0.10 1,2 -Dichloroethene (trans) 99.0 328.15 -0.42 -0.51 0.09 Ethyl acrylate 100.1 372.55 -1.86 -1.39 0.46 Methyl methacrylate 100.1 373.65 -1.86 -1.03 0.83 Cyclohexanol 100.2 433.95 -3.75 -3.12 0.62 3,3 -Di methyl -2-butanone 100.2 379.25 -2.05 -1.80 0.25 4-Methyl -2-pentanone 100.2 389.65 -2.25 -1.85 0.40 2-Hexanone 100.2 400.75 -2.42 -1.89 0.53 3-Hexanone 100.2 396.65 -2.29 -1.83 0.46 Hexanal 100.2 404.15 -2.06 -1.83 0.23 3-Methylhexane 100.2 364.15 1.83 1.03 0.80 2-Methylhexane 100.2 363.15 2.15 1.05 1.10 3,3 -Dimethylpentane 100.2 359.15 1.88 1.25 0.63 2,4 -Dimethylpentane 100.2 353.55 1.89 1.04 0.85 2,2 -Dimethylpentane 100.2 352.35 2.11 1.38 0.73 Heptane 100.2 371.65 1.91 1.07 0.85 2-Methylhexane 100.2 363.15 2.15 1.05 1.10 Isopropyl acetate 102.1 361.75 -1.94 -1.36 0.59 Ethyl Propionate 102.1 372.25 -1.99 -1.39 0.60 N-Propylacetate 102.1 374.65 -2.05 -1.42 0.63 Methylbutyrate 102.1 375.95 -2.08 -1.46 0.62 Phenylacetylene 102.1 416.15 -1.61 -1. 11 0.49 4-Methyl -2-pentanol 102.2 404.75 -2.74 -2.33 0.41 2-Hexanol 102.2 409.15 -3.00 -2.26 0.74 Ethyl t -butyl ether 102.2 346.25 -1.25 -0.54 0.70 2,3 -Dimethyl -2-butanol 102.2 391.55 -3.39 -0.67 2.72 3-Methyl -3-pentanol 102.2 395.55 -3.14 -0.58 2.56 2-Methyl -2-Pentanol 102.2 394.25 -2.84 -0.55 2.28 Isopropyl ether 102.2 341.65 -1.03 -0.77 0.26 1-Hexanol 102.2 430.75 -3.16 -2.38 0.77 4-Oxaheptane 102.2 363.15 -1.05 -0.80 0.25 Benzonitrile 103.1 464.25 -2.67 -2.95 0.28 4-Cyanopyridine 104.1 486.6 5 -4.42 -4.07 0.35 3-Cyanopyridine 104.1 480.05 -4.95 -3.93 1.02 Diethoxymethane 104.1 361.15 -2.56 -2.78 0.22 Styrene 104.2 418.15 -0.95 -1.12 0.17 1-Pentanethiol 104.2 399.75 -0.31 -0.53 0.23 98

Isopropyl nitrate 105.1 373.15 -1.18 -0.95 0.23 Benzalde hyde 106.1 452.15 -2.96 -2.87 0.09 o-Xylene 106.2 411.65 -0.67 -0.73 0.06 Ethylbenzene 106.2 409.25 -0.49 -0.68 0.19 p-Xylene 106.2 411.45 -0.55 -0.73 0.18 m-Xylene 106.2 412.25 -0.53 -0.74 0.21 2-Chloroethyl vinyl ether 106.6 381.15 -0.45 -1.98 1.53 2-Chloropentane 106.6 372.15 -0.22 -0.03 0.19 3-Chloropentane 106.6 370.65 0.03 0.00 0.03 1-Chloropentane 106.6 380.95 -0.01 -0.02 0.01 Benzyl alcohol 108.1 478.45 -4.86 -4.47 0.39 m-Hydroxytoluene 108.1 475.35 -4.46 -4.23 0.22 p-Hydroxytoluene 108. 1 475.05 -4.39 -4.23 0.16 Methoxybenzene 108.1 426.85 -1.70 -1.80 0.10 Methyl chloroacetate 108.5 402.65 -3.01 -2.88 0.13 Thiophenol 110.2 442.25 -1.86 -1.86 0.00 2,3 -Dichloropropene 111.0 367.15 -0.77 -0.36 0.41 1,5 -Dimethylcyclohexane 112.2 396.65 1.16 0.77 0.39 Ethylcyclohexane 112.2 405.05 1.09 0.45 0.64 cis -1,2 -Dimethylcyclohexane 112.2 396.65 1.16 0.77 0.40 trans -1,2 -Dimethylcyclohexane 112.2 396.65 1.35 0.77 0.58 1-Octene 112.2 396.15 1.41 1.04 0.37 cis -1,4 -Dimethylcyclohexane 112.2 392.55 1.55 0.85 0.71 trans -1,4 -Dimethylcyclohexane 112.2 392.55 1.55 0.85 0.71 Propylcyclopentane 112.2 404.15 1.56 0.26 1.30 Chlorobenzene 112.6 404.85 -0.90 -1.01 0.12 1,2 -Dichloropropane 113.0 368.65 -0.94 -0.88 0.06 1,3 -Dichloropropane 113.0 394.05 -1.40 -1.18 0.22 Ethyl cyanoacetate 113.1 483.15 -4.93 -4.42 0.51 Diisopropyl ketone 114.2 398.55 -1.84 -1.61 0.23 5-Methyl -2-Hexanone 114.2 417.15 -2.23 -1.88 0.35 2-Heptanone 114.2 424.15 -2.16 -1.85 0.31 3-Heptanone 114.2 420.15 -2.43 -1.79 0.64 4-Heptanone 114.2 417.15 -2.65 -1.73 0.92 Heptanal 114.2 425.95 -1.96 -1.76 0.19 3-Methylcyclohexanol 114.2 440.15 -3.82 -2.55 1.27 2-Methylcyclohexanol 114.2 438.15 -3.51 -2.51 1.00 2,2,4 -Trimethylpentane 114.2 372.35 2.09 1.35 0.75 99

2,2,3 -Trim ethylpentane 114.2 383.15 1.91 1.14 0.78 2,3,4 -Trimethylpentane 114.2 386.65 1.86 0.77 1.09 3-Methylheptane 114.2 391.15 2.18 1.03 1.15 n-Octane 114.2 398.75 2.12 1.05 1.07 2,2 -Dimethylhexane 114.2 379.95 2.18 1.37 0.80 2-Nonanol 114.3 466.65 -2.70 -2.05 0.65 Bis(chloromethyl)ether 115.0 379.15 -2.07 -2.92 0.85 Methyl acetoacetate* 116.1 444.85 -4.95 -4.39 0.56 n-Butyl acetate 116.2 399.25 -1.94 -1.38 0.56 sec -Butyl acetate 116.2 389.65 -1.73 -1.37 0.36 n-Propylpropionate 116.2 395.66 -1.79 -1.33 0.46 1-Heptanol 116.2 449.55 -3.11 -2.28 0.84 Dimethyl oxalate 118.1 436.65 -3.92 -3.94 0.02 1,1 -Diethoxyethane 118.2 375.35 -2.40 -2.71 0.32 1,2 -Diethoxyethane 118.2 392.55 -2.59 -1.36 1.23 a-Methylstyrene 118.2 438.55 -0.98 -0.64 0.34 p-Methylstyre ne 118.2 445.95 -0.89 -1.19 0.31 Trichloromethane 119.4 334.25 -0.82 -0.38 0.44 Acetophenon 120.2 475.15 -3.37 -3.80 0.43 P-Tolualdehyde 120.2 477.65 -3.15 -2.92 0.23 Methyl Ethyl Benzene 120.2 435.15 -0.60 -0.71 0.11 p-Ethyltoluene 120.2 435.15 -0.6 9 -0.71 0.02 1,2,3 -Trimethylbenzene 120.2 449.25 -0.75 -0.99 0.25 o-Ethyltoluene 120.2 438.35 -0.65 -0.77 0.13 Isopropylbenzene 120.2 425.55 -0.33 -0.62 0.29 1,2,4 -Trimethylbenzene 120.2 442.45 -0.60 -0.86 0.26 n-Propylbenzene 120.2 432.35 -0.37 -0.6 4 0.27 1,3,5 -Trimethylbenzene 120.2 437.85 -0.45 -0.76 0.32 1-Chlorohexane 120.6 408.15 0.00 -0.04 0.04 N,N -Dimethylaniline 121.2 466.60 -2.63 -2.33 0.30 p-Hydroxybenzaldehyde 122.1 583.15 -7.68 -7.62 0.06 m-Hydroxybenzaldehyde 122.1 513.15 -6.99 -5.92 1.07 o-Hydroxybenzaldehyde 122.1 470.15 -3.64 -5.09 1.45 2-Phenylethanol 122.2 491.35 -4.98 -4.23 0.75 2,4 -Dimethylphenol 122.2 484.05 -4.41 -3.90 0.51 Ethoxybenzene 122.2 442.95 -1.74 -1.63 0.11 p-Ethylphenol 122.2 491.05 -4.50 -4.07 0.43 3,5 -Dimethylphenol 122.2 494.85 -4.60 -4.15 0.45 100

3,4 -Dimethylphenol 122.2 500.15 -4.77 -4.28 0.49 2,5 -Dimethylphenol 122.2 484.25 -4.34 -3.91 0.43 2,3 -Dimethylphenol 122.2 490.05 -2.11 -4.10 1.99 m-Ethylphenol 122.2 491.55 -4.59 -4.08 0.51 Diethyl disulf ide 122.2 427.25 -1.06 -0.92 0.14 Ethyl Chloroacetate 122.6 417.45 -2.78 -2.67 0.11 2-Bromopropane 123.0 332.65 -0.35 -0.14 0.21 1-Bromopropane 123.0 344.15 -0.52 -0.16 0.37 Nitrobenzene 123.1 483.95 -3.01 -2.99 0.02 o-Methoxyphenol 124.1 478.15 -4.3 1 -4.72 0.41 1,4 -Dichloro -2-butene(trans) 125.0 425.66 -1.57 -1.63 0.06 1,4 -Dichloro -2-butene(cis) 125.0 425.65 -0.46 -1.63 1.17 3,4 -Dichloro -1-butene 125.0 389.15 -0.46 -1.81 1.35 1- 126.2 420.05 1.51 1.06 0.45 alpha -Chlorotoluene 126.6 452.15 -1.77 -1.95 0.17 o-Chlorotoluene 126.6 432.15 -0.84 -1.06 0.23 p-Chlorotoluene 126.6 435.55 -0.75 -1.13 0.38 m-Chlorotoluene 126.6 434.95 -0.18 -1.12 0.94 2,3 -Dichlorobutane 127.0 391.15 -0.53 -0.97 0.44 1,4 -Dichlorobutane 127.0 434.15 -1.70 -1.48 0. 23 Butyl acrylate 128.2 418.15 -1.73 -1.27 0.46 Isobutyl acrylate 128.2 405.15 -1.51 -1.18 0.33 Naphthalene 128.2 491.05 -1.75 -1.94 0.20 2-Octanone 128.2 445.65 -2.11 -1.79 0.32 Octanal 128.2 444.15 -1.68 -1.64 0.04 128.3 423.95 2.14 1.05 1.1 0 2,2,5 -Trimethylhexane 128.3 397.15 2.00 1.38 0.62 4-Methyloctane 128.3 415.55 2.61 1.05 1.56 Chlorobromomethane 129.4 341.15 -1.22 -1.02 0.20 Acetoacetic ester 130.1 453.95 -4.31 -4.08 0.23 Ethyl valerate 130.2 419.25 -1.82 -1.30 0.52 Ethyl Isovale rate 130.2 408.15 -1.54 -1.24 0.29 Isoamyl acetate 130.2 415.65 -1.62 -1.37 0.25 n-Amyl acetate 130.2 422.35 -1.80 -1.34 0.46 N-Propylbutyrate 130.2 416.15 -1.59 -1.23 0.35 n-Butyl propionate 130.2 419.95 -1.69 -1.31 0.38 Methyl Hexanoate 130.2 422.65 -1.82 -1.34 0.48 2-Octanol 130.2 453.15 -2.30 -2.19 0.11 101

2-Ethyl -1-Hexanol 130.2 457.75 -2.97 -2.10 0.87 1-Octanol 130.2 468.25 -3.00 -2.18 0.82 Di -n-Butyl ether 130.2 413.35 -0.61 -0.76 0.15 Trichloroethene 131.4 360.35 -0.40 -0.27 0.12 Trichloroet hylene 131.4 360.35 -0.40 0.27 0.67 2,2,3,3 -Tetrafluoro -1-propanol 132.1 382.65 -3.59 -2.28 1.31 Ethoxyethylacetate* 132.2 429.55 -3.88 -3.51 0.38 2,4,6 -Trimethyl -1,3,5 -trioxane 132.2 397.45 -3.16 -2.26 0.90 1,2,3,4 -Tetrahydronaphthlene 132.2 480.75 -1.26 -1.15 0.10 1-Heptanethiol 132.3 450.15 0.00 -0.56 0.56 1,1,2 -Trichloroethane 133.4 386.95 -1.47 -1.44 0.03 1,1,1 -Trichloroethane 133.4 347.15 -0.15 0.04 0.19 o-Diethylbenzene 134.2 457.15 -0.97 -0.68 0.29 m-Cymene 134.2 448.25 -0.53 -0.59 0.06 tert -Butylbenzene 134.2 442.25 -0.27 -0.65 0.38 p-Diethylbenzene 134.2 454.15 -0.51 -0.62 0.11 m-Diethylbenzene 134.2 454.25 -0.47 -0.62 0.15 p-Cymene 134.2 449.65 -0.35 -0.62 0.27 o-Cymene 134.2 451.25 -0.33 -0.65 0.32 sec -Butylbenzene 134.2 449.6 5 -0.14 -0.61 0.47 n-Butylbenzene 134.2 456.45 -0.19 -0.64 0.45 Isobutylbenzene 134.2 445.85 0.14 -0.58 0.72 Acetanilide 135.2 577.15 -6.64 -6.71 0.07 Methyl benzoate 136.2 472.15 -2.88 -2.85 0.03 2,3,6 -Trimethylphenol 136.2 499.15 -3.79 -3.73 0.07 p-Propylphenol 136.2 505.75 -4.33 -3.88 0.45 d-Limonene 136.2 451.15 0.02 -0.14 0.17 1-Bromobutane 137.0 374.75 -0.45 -0.20 0.25 tert -Butyl bromide 137.0 346.45 0.22 0.27 0.04 o-Nitrotoluene 137.1 495.15 -3.29 -2.74 0.55 3-Nitrotoluene 137.1 505.15 -3.42 -2.96 0.46 4-Nitrotoluene 137.1 511.45 -3.64 -3.10 0.54 Trichlorofluoromethane 137.4 296.85 0.60 0.44 0.16 2-Phenoxyethanol 138.2 518.15 -5.71 -5.11 0.61 2-Methoxy -4-methylphenol 138.2 494.15 -4.26 -4.27 0.01 Decahydronaphthalene (cyclic) 138.3 460.45 1.28 -1.70 2.99 3-Ethyl -5-methylphenol 139.2 508.85 -4.56 -3.95 0.61 P-MENTHANE (cyclic) 140.3 445.15 1.86 0.66 1.20 102

1- 140.3 443.15 2.04 1.08 0.96 1,5 -Dichloropentane 141.0 452.15 -1.64 -1.35 0.29 Iodomethane 141.9 315.65 -0.67 -0.28 0.39 n-Butyl methacrylic 142.2 433.15 -1.69 -0.54 1.15 1-Methylnaphthalene 142.2 513.15 -1.68 -1.93 0.25 2-Methylnaphthalene 142.2 514.25 -1.67 -1.96 0.28 2,6 -Dimethyl -4-heptanone 142.2 442.55 -2.32 -0.45 1.87 2-Nonanone 142.2 468.45 -1.82 -1.78 0.04 5-Nonanone 142.2 460.65 -1.92 -1.64 0.29 Nonanal 142.2 464.15 -1.52 -1.57 0.05 n- 142.3 447.25 2.32 1.06 1.27 o-Chloroanisole 142.6 471.65 -2.43 -2.16 0.27 1,5 -Dichloro -3-oxapentane 143.0 451.65 -3.16 -3.36 0.21 1-Bromo -2-chloroethane 143.4 380.1 5 -1.43 -1.21 0.22 Dimethyl maleate 144.1 466.15 -4.54 -4.39 0.15 Dimethyl fumarate 144.1 466.15 -4.54 -4.39 0.15 a-Naphthol 144.2 561.15 -5.63 -5.25 0.38 ß-Naphthol 144.2 558.15 -5.95 -5.18 0.77 Isobutyl Isobutyrate 144.2 421.75 -1.47 -1.13 0.34 Am yl Propionate 144.2 441.75 -1.46 -1.26 0.20 Hexyl ethanoate 144.2 444.65 -1.66 -1.30 0.36 Butyl butanoate 144.2 440.65 -1.55 -1.24 0.32 1-Nonanol 144.3 486.45 -2.90 -2.09 0.81 Benzotrifluoride 146.1 375.25 -0.17 0.21 0.38 Ethyl oxalate 146.1 458.85 -4.04 -3.23 0.81 Coumarin 146.2 574.85 -4.99 -5.39 0.40 Butyl lactate 146.2 459.15 -4.11 -4.18 0.07 t-Butyl peroxide 146.2 384.15 0.30 0.29 0.01 2-Ethyl -1,3 -Hexandiol 146.2 517.15 -6.25 -5.26 0.99 1,2 -Dichlorobenzene 147.0 453.15 -1.11 -1.41 0.31 1,3 -Dichlorobenzene 147.0 446.15 -0.97 -1.27 0.30 1,4 -Dichlorobenzene 147.0 447.15 -1.01 -1.29 0.28 1,2,3 -Trichloropropane 147.4 430.15 -1.85 -1.97 0.12 Phthalic anhydride 148.1 568.15 -6.18 -6.37 0.20 148.3 505.15 -1.75 -1.20 0.55 Penty l benzene 148.3 478.55 0.02 -0.61 0.63 1-Chloroocatne 148.7 454.65 0.19 0.00 0.20 1,2,3,5 -Tetrafluorobenzene 150.1 357.55 -0.10 -0.17 0.08 103

1,2,4,5 -Tetrafluorobenzene 150.1 363.35 -0.14 -0.28 0.14 Benzyl acetate 150.2 486.15 -3.34 -3.18 0.15 Phenyl gly cidyl ether 150.2 516.15 -4.47 -4.52 0.04 Ethyl benzoate 150.2 485.15 -2.52 -2.63 0.11 Thymol 150.2 505.65 -4.70 -3.47 1.24 1-Bromo -3-methylbutane 151.0 393.55 0.15 -0.22 0.37 1-Bromopentane 151.1 402.95 -0.09 -0.23 0.13 Methyl salicylate 152.1 496.06 -2.40 -4.89 2.49 Acenaphthylene 152.2 553.15 -2.29 -2.97 0.68 2-Nitroanisole 153.1 550.15 -4.76 -4.25 0.51 Carbon tetrachloride 153.8 349.95 0.05 0.28 0.22 2,6 -Dimethoxyphenol 154.2 534.15 -5.02 -5.49 0.46 Biphenyl 154.2 529.25 -1.90 -2.07 0.17 Acen aphthene 154.2 552.15 -2.13 -2.75 0.62 alpha -Terpineol (cylic) 154.3 490.65 -3.30 -2.77 0.54 Iodoethane 156.0 345.65 -0.55 -0.26 0.29 1-Ethylnaphthalene 156.2 531.75 -1.55 -1.86 0.31 2-Ethylnaphthalene 156.2 531.15 -1.66 -1.85 0.19 1,8 -Dimethylnaphtha lene 156.2 538.15 -1.84 -1.99 0.15 1,5 -Dimethylnaphthalene 156.2 538.15 -1.84 -1.99 0.15 2,3 -Dimethylnaphthalene 156.2 541.15 -1.42 -2.06 0.64 Decanal 156.3 481.65 -1.13 -1.46 0.33 n-Undecane 156.3 469.05 1.90 1.08 0.82 Bromobenzene 157.0 429.15 -1.0 0 -1.13 0.14 1,2 -Chloronitrobenzene 157.6 518.65 -3.42 -3.18 0.24 1,3 -Nitrochlorobenzene 157.6 508.65 -3.26 -2.96 0.30 1,4 -Nitrochlorobenzene 157.6 515.15 -3.70 -3.10 0.60 Ethyl Heptanoate 158.2 460.15 -1.69 -1.15 0.54 Methyl octanoate 158.2 466.05 -1.49 -1.28 0.21 1-Decanol 158.3 504.25 -2.88 -2.00 0.88 Diethyl Malonate 160.2 473.15 -4.07 -3.55 0.52 (Dichloromethyl)benzene 161.0 478.15 -1.79 -2.33 0.54 3,4 -Dichlorotoluene 161.0 482.05 -0.98 -1.53 0.55 Hexylbenzene 162.3 499.25 0.07 -0.57 0.64 He xamethylbenzene 162.3 536.55 -1.50 -1.40 0.10 1-Chloronaphthalene 162.6 532.15 -1.84 -2.27 0.44 2-Chloronaphthalene 162.6 529.15 -1.88 -2.21 0.32 Bromodichloromethane 163.8 363.15 -1.06 -1.30 0.23 104

Trichloronitromethane 164.4 385.15 -1.08 -1.88 0.80 Me thoxyflurane 165.0 378.15 -0.82 -2.07 1.25 1-Bromohexane 165.1 428.45 0.13 -0.24 0.36 Tetrachloroethene 165.8 394.45 -0.14 0.32 0.46 Fluorene 166.2 568.15 -2.41 -2.83 0.43 1,1,2,2 -Tetrachloroethane 167.9 419.65 -1.82 -1.96 0.14 1,1,1,2 -Tetrachloroeth ane 167.9 403.65 -1.00 -0.90 0.11 1,1,1,3,3,3 -Hexafluoro -2- propanol 168.0 332.15 -2.76 -0.06 2.70 1,3 -Dinitrobenzene 168.1 564.15 -5.70 -4.57 1.13 Dibenzofuran 168.2 560.15 -2.06 -2.82 0.76 Diphenylmethane 168.2 538.15 -2.28 -2.09 0.19 2-Iodopropan e 170.0 362.65 -0.55 -0.23 0.32 1-Iodopropane 170.0 375.75 -0.43 -0.29 0.14 o-Hydroxybiphenyl 170.2 559.15 -4.37 -4.44 0.07 Diphenyl ether 170.2 531.15 -1.94 -2.44 0.50 6-Undecanone 170.3 500.15 -2.04 -1.52 0.52 2-Undecanone 170.3 504.65 -2.59 -1.60 0.98 Dodecane 170.3 489.45 2.53 1.12 1.41 p-Bromotoluene 171.0 457.45 -1.02 -1.22 0.20 m-Bromotoluene 171.0 456.85 -0.56 -1.21 0.65 2,6 -Dichlorobenzonitrile 172.0 543.15 -3.38 -3.53 0.15 1-Nitronaphthalene 173.2 577.15 -4.14 -3.66 0.48 Diethyl succin ate 174.2 490.85 -4.67 -3.76 0.91 1-Phenylheptane 176.3 513.15 -0.21 -0.40 0.19 Methyleugenol 178.2 543.65 -3.64 -2.42 1.22 Butyl benzoate 178.2 523.45 -2.79 -1.98 0.81 phenanthrene 178.2 613.15 -2.76 -3.29 0.53 Anthracene 178.2 613.05 -2.64 -3.29 0. 64 1-Bromoheptane 179.1 452.15 0.27 -0.23 0.50 7,8 -Benzoquinoline 179.2 612.15 -5.15 -3.92 1.23 1,2,3 -Trichlorobenzene 181.5 491.65 -1.29 -1.66 0.37 1,3,5 -Trichlorobenzene 181.5 481.15 -1.11 -1.44 0.33 2,4 -Dinitrotoluene 182.1 573.15 -5.66 -4.28 1.37 2,6 -Dinitrotoluene 182.1 573.15 -4.52 -4.28 0.23 trans -Azobenzene 182.2 566.15 -3.26 -2.70 0.56 2-Iodobutane 184.0 393.15 -0.09 -0.29 0.19 N -Butyl Iodide 184.0 403.75 -0.17 -0.32 0.15 Diphenylcarbinol 184.2 571.15 -6.27 -5.18 1.09 105

Dibenzothiophene 184.3 605.65 -2.86 -3.62 0.76 n-Tridecane 184.4 508.55 2.07 1.14 0.93 Isoflurane 184.5 321.65 0.07 -0.45 0.52 (2 -Bromoethyl)benzene 185.1 492.15 -1.21 -2.08 0.87 Methyl decanoate 186.3 497.15 -1.07 -0.97 0.11 Dodecanol 186.3 532.15 -3.04 -1.66 1.38 1,8 -Dichloro -3,6 -dioxaoctane 187.1 505.15 -4.50 -5.08 0.58 1,1,2 -Trifluoro -1,2,2 - trichloroethane 187.4 320.85 1.33 1.53 0.19 1,2 -Dibromoethane 187.9 404.75 -1.56 -1.46 0.10 2-Chlorobiphenyl 188.7 563.15 -1.52 -2.27 0.75 3-Chlorobiphenyl 188.7 557.65 -1. 60 -2.15 0.54 4-Chlorobiphenyl 188.7 566.05 -1.63 -2.34 0.70 n-Octylbenzene 190.3 537.65 0.24 -0.49 0.73 1,4 -Bromochlorobenzene 191.5 469.15 -1.23 -1.39 0.16 1,4 -Dichloro -4-nitrobenzene 192.0 528.65 -3.48 -2.84 0.64 1,4 -Dichloro -2-Nitrobenzene 192.0 540.15 -3.31 -3.09 0.22 1-Bromooctane 193.1 473.15 0.38 -0.19 0.56 Dimethyl phthalate 194.2 556.85 -5.37 -4.66 0.71 1,4 -Dicarbomethoxybenzene 194.2 561.15 -2.26 -4.75 2.49 2,4,5 -Trichlorotoluene 195.5 504.15 -1.21 -1.44 0.23 2-Bromo -2-chloro -1,1,1 - trif luoroethane 197.4 323.35 -0.08 0.84 0.92 1-Iodopentane 198.1 428.15 -0.10 -0.30 0.20 Dibenzyl ether 198.3 571.15 -3.56 -4.22 0.66 Tetradecane 198.4 526.65 2.58 1.20 1.37 1-Naphthyl methylcarbamate 201.2 588.15 -6.75 -5.06 1.68 1,3 -Dibromopropane 201.9 440.45 -1.44 -1.67 0.23 1,2 -Dibromopropane 201.9 415.05 -1.22 -1.33 0.11 m-Nitrobromobenzene 202.0 529.15 -4.12 -3.06 1.06 Fluoranthene 202.3 657.15 -3.44 -4.08 0.64 Pyrene 202.3 677.15 -3.31 -4.55 1.24 Pentachloroethane 202.3 432.95 -1.10 -1.37 0. 27 Pebulate 203.4 475.15 -2.01 -1.15 0.86 1,1,2,2 - Tetrachlorodifluoroethane 203.8 366.15 0.66 0.76 0.10 1,1,1,2 -Tetrachloro -2,2 - difluoroethane 203.8 364.65 0.78 0.15 0.63 Iodobenzene 204.0 461.55 -1.29 -1.50 0.21 106

1-Bromonaphthalene 207.1 554.15 -1.93 -2.41 0.48 Anthraquinone 208.2 650.15 -6.02 -4.45 1.56 Dibromochloromethane 208.3 393.15 -1.49 -1.63 0.14 2,3,6 -Trichloroanisole 211.5 500.15 -1.93 -1.65 0.28 Iodohexane 212.1 454.15 0.06 -0.34 0.40 n-Pentadecane 212.4 543.75 2.71 1.27 1.44 Desmetry n 213.3 618.15 -7.70 -6.27 1.43 1-Tetradecanol 214.4 562.15 -2.18 -1.45 0.73 1,2,3,4 -Tetrachlorobenzene 215.9 527.15 -1.51 -1.87 0.36 1,2,4,5 -Tetrachlorobenzene 215.9 517.65 -1.39 -1.66 0.27 Diethyl pimelate 216.3 527.15 -4.74 -3.13 1.61 1,2 -Benzoflu orene 216.3 678.15 -2.96 -4.02 1.05 Glyceryl triacetate 218.2 532.15 -6.30 -5.75 0.55 1-Phenyldecane 218.4 571.15 0.80 -0.30 1.10 p-Nonylphenol 220.4 566.15 -2.86 -2.28 0.57 Diethyl phthalate 222.2 568.15 -4.60 -3.96 0.65 3,3' -Dichlorobiphenyl 223.1 593.15 -2.02 -2.39 0.37 4,4' -Dichlorobiphenyl 223.1 590.15 -2.09 -2.33 0.24 Iodoheptane 226.1 477.15 0.20 -0.34 0.54 Hexadecane 226.5 559.95 1.29 1.36 0.07 Trinitroglycerine 227.1 523.15 -5.39 -3.70 1.70 Ametryn 227.3 618.15 -7.01 -5.76 1.25 Dibutyl M aleate 228.3 554.15 -4.82 -3.45 1.36 Triphenylene 228.3 698.15 -5.20 -3.92 1.28 1,2 -Benzanthracene 228.3 710.75 -3.31 -4.23 0.92 3,4 -Benzophenanthrene 228.3 721.15 -3.67 -4.48 0.81 Chrysene 228.3 721.15 -3.67 -4.48 0.81 m-Terphenyl 230.3 636.15 -3. 84 -2.43 1.41 o-Terphenyl 230.3 605.15 -2.60 -1.73 0.87 1,3 -Dibromobenzene 235.9 491.15 -1.30 -1.50 0.21 1,4 -Dibromobenzene 235.9 493.15 -1.44 -1.55 0.11 1,2 -Dibromo -3-chloroprpane 236.3 469.15 -2.22 -2.56 0.34 1-Hexadecanol 242.5 607.15 -2.53 -1.65 0.88 Perchloropropylene 248.8 482.65 -0.72 -0.68 0.04 Pentachlorobenzene 250.3 550.15 -1.54 -1.82 0.28 Benzo(k)fluoranthene 252.3 753.15 -4.62 -5.02 0.40 Tribromomethane 252.7 422.25 -1.66 -1.35 0.31 Hexachlorobutadiene 260.8 488.15 -0.38 0.25 0.63 107

Pe ntachlorotoluene 264.4 574.15 -1.50 -1.88 0.38 2,4,5,6 -Tetrachloro -1,3 - benzenedicarbonitile 265.9 623.15 -4.09 -4.43 0.34 Diiodomethane 267.8 455.15 -1.88 -1.93 0.05 Indeno(1,2,3 -CD)pyrene 276.3 809.15 -4.85 -6.17 1.32 Dibutyl phthalate 278.4 613.15 -4.13 -3.14 0.99 N-(1 -ethylpropyl) -2,6 -dinitro - 3,4 -xylidine 281.3 603.15 -4.46 -2.26 2.19 Hexachlorobenzene 284.8 598.15 -1.16 -2.35 1.20 1a,2a,3ß,4a,5a,6ß - hexachlorocyclohexane 290.8 561.15 -3.68 -2.46 1.21 Pentachloronitrobenzene 295.3 601.15 -2.74 -2. 80 0.06 Butyl benzyl phthalate 312.4 643.15 -4.29 -3.85 0.44 Dibutyl sebacate 314.5 617.65 -5.70 -2.03 3.68 1,3,5 -Tribromobenzene 314.8 544.15 -1.49 -1.75 0.25 1,1 -Dichloro -2,2 -bis(4 - chlorophenyl)ethylene 318.0 609.15 -2.77 -1.67 1.10 Carbon tetrabrom ide 331.6 462.65 -1.70 -1.03 0.67 Dacthal 332.0 638.15 -4.05 -4.33 0.28 Benfluralin 335.3 643.15 -1.92 -2.84 0.92 1,1,2,2 -Tetrabromoethane 345.7 517.15 -3.24 -3.15 0.10 1,1' -(2,2,2 -trichloroethylidene - bis(4 -methoxy)benzene 345.7 619.15 -5.08 -2.41 2.67 2-Chloro -1-(3 -ethoxy -4- nitrophenoxy) -4- (trifluoromethyl)benzene 361.7 631.35 -4.47 -2.25 2.23 DI -2-Ethylhexyl adipate 370.6 690.15 -4.75 -2.39 2.37 Bis(2 -Ethylhexyl)phthalate 390.6 657.15 -4.96 -0.80 4.15 * Compounds with aqueous solubilities greater than 1.0 mol/l. 108

APPENDIX E: RESULTS OF THE AIR -WATER PARTITION COEFFICIENT

ESTIMATIONS FOR IONIZABLE COMPOUNDS AND THOSE WITH

AQUEOUS SOLUBILITIES OF GREATER THAN 50%

Table D.1 Chemical Name, Molecular Weight, Boiling Point (Kelvin), Experimental and Pred icted log Air -Water Partition Coefficient, and Absolute Error in Prediction for Ionizable Compounds and those with Aqueous Solubilities of Greater than 50%.

Exper Pred Name MW Tb (K) log Kaw log Kaw AE Methanol 32.0 337.75 -3.73 -3.15 0.58 Acetonit ile 41.1 332.75 -2.85 -1.88 0.97 Ethanol 46.1 351.35 -3.69 -2.85 0.84 Acetone 58.1 328.65 -2.79 -2.09 0.70 Allyl alcohol 58.1 370.15 -3.69 -1.94 1.75 Propylene oxide 58.1 308.15 -2.55 -1.71 0.83 Acetamide 59.1 495.15 -6.74 -6.86 0.12 1-Aminopropane 59.1 320.35 -3.22 -1.04 2.18 2-Aminopropane 59.1 304.85 -2.73 -0.95 1.78 Ethanoic acid 60.1 391.05 -5.39 -4.41 0.98 1-Propanol 60.1 370.35 -3.52 -2.70 0.82 2-Propanol 60.1 355.45 -3.48 -2.74 0.74 Diaminoethane 60.1 390.15 -7.15 -3.86 3.29 1,2 -Ethanedi ol 62.1 468.15 -5.61 -7.26 1.65 2-Fluoroethanol 64.1 376.65 -4.13 -3.24 0.90 Acrylamide 71.1 465.75 -7.39 -5.05 2.34 Pyrrolidine 71.1 359.65 -4.01 -3.08 0.93 Acrylic acid 72.1 414.35 -4.82 -4.42 0.40 Tetrahydrofuran 72.1 338.15 -2.54 -1.44 1.10 n-Methylacetamide 73.1 478.15 -5.76 -5.67 0.09 N,N -dimethylformamide 73.1 426.15 -5.52 -2.52 3.00 n-Butylamine 73.1 350.15 -3.15 -1.06 2.09 tert -Butyl amine 73.1 317.15 -2.83 -0.52 2.31 Diethylamine 73.1 328.65 -2.98 -3.90 0.92 Isobutylamine 73.1 340.85 -3.26 -1.07 2.19 sec -Butylamine 73.1 336.15 -2.20 -0.98 1.22 1,3 -Dioxolane 74.1 351.15 -3.00 -2.89 0.11 propionic acid 74.1 414.25 -4.74 -4.37 0.37 tert -Butyl alcohol 74.1 355.55 -3.43 -0.81 2.62 109

2-Methoxyethanol 76.1 397.25 -4.87 -4.74 0.13 Dimethyl sulfoxide 78.1 462.15 -7.21 -3.48 3.73 Pyridine 79.1 388.35 -3.35 -1.91 1.44 2-Chloroethanol 80.5 401.75 -4.51 -3.71 0.79 Piperidine 85.2 379.35 -3.74 -2.73 1.01 a-Methylacrylic acid 86.1 436.15 -4.80 -3.96 0.84 cis -Crotonic acid 86.1 458.15 -4.76 -5.11 0.35 2-Methyl -3-butene -2-ol 86.1 370.15 -3.07 -1.56 1.51 n-Pentylamine 87.2 377.45 -3.00 -1.07 1.94 1,4 -Dioxane 88.1 374.65 -3.71 -2.60 1.11 Butanoic acid 88.1 436.85 -4.66 -4.32 0.34 Isobutyric acid 88.1 427.55 -4.44 -4.23 0.21 1-Methoxy -2-Propa nol 90.1 392.15 -4.42 -4.44 0.02 2-Ethoxyethanol 90.1 408.15 -4.72 -4.43 0.29 4-Methylpyridine 93.1 418.45 -3.61 -2.00 1.61 2-Methylpyridine 93.1 402.45 -3.39 -1.69 1.70 3-Methylpyridine 93.1 417.25 -3.50 -1.98 1.52 Aniline 93.1 457.25 -4.08 -3.57 0.5 2 2-Methylpyrazine 94.1 410.15 -4.05 -2.49 1.56 a-Chloroacetic acid 94.5 462.45 -6.41 -5.80 0.62 Furfuryl alcohol 98.1 444.15 -5.49 -4.46 1.04 Cyclohexanamine 99.2 407.15 -3.77 -1.63 2.14 2,2,2 -Trifluoroethanol 100.0 347.15 -3.15 -1.57 1.58 Diisoprop ylamine 101.2 357.05 -2.41 -3.75 1.34 Dipropylamine 101.2 382.45 -2.68 -3.88 1.20 Triethylamine 101.2 362.15 -2.22 1.66 3.88 Hexylamine 101.2 405.95 -2.96 -1.12 1.84 2,2 -Dimethylpropanoic acid (pivalic acid) 102.1 437.15 -3.94 -4.09 0.14 Pentanoic aci d 102.1 459.25 -4.71 -4.29 0.42 Isovaleric acid 102.1 449.65 -4.47 -4.23 0.23 4-Ethylpyridine 107.2 441.45 -3.46 -1.97 1.49 3-Ethylpyridine 107.2 438.15 -3.37 -1.91 1.47 2-Ethylpyridine 107.2 421.75 -3.17 -1.58 1.59 n-Methylaniline 107.2 469.35 -3.44 -2.66 0.78 p-Toluidine 107.2 473.55 -4.08 -3.41 0.67 m-Toluidine 107.2 476.45 -4.17 -3.48 0.69 o-Toluidine 107.2 473.45 -4.09 -3.41 0.68 2,4 -Dimethylpyridine 107.2 431.65 -3.56 -1.78 1.78 2,6 -Dimethylpyridine 107.2 417.25 -3.37 -1.49 1.88 2,5 -Dimethy lpyridine 107.2 430.15 -3.45 -1.75 1.70 2,3 -Dimethylpyridine 107.2 434.35 -3.53 -1.83 1.70 3,5 -Dimethylpyridine 107.2 445.15 -3.55 -2.05 1.50 3,4 -Dimethylpyridine 107.2 452.25 -3.82 -2.19 1.63 110 o-Hydroxytoluene 108.1 464.15 -4.31 -3.97 0.34 Phenylhydra zine 108.1 516.65 -6.74 -4.90 1.85 m-Phenylenediamine 108.1 558.15 -8.41 -6.70 1.71 o-Phenylenediamine 108.1 530.15 -6.53 -5.81 0.72 p-Aminophenol 109.1 557.15 -7.41 -7.69 0.28 1,4 -Dihydroxybenzene 110.1 560.15 -8.71 -8.32 0.40 1,2 -Dihydroxybenzene 110.1 518.15 -6.89 -7.61 0.72 p-Fluorophenol 112.1 458.65 -4.54 -4.19 0.35 o-Fluorophenol 112.1 424.65 -3.88 -3.43 0.45 2-Chloropyridine 113.5 443.15 -3.18 -2.42 0.76 Trifluoroacetic acid 114.0 346.15 -5.34 -2.58 2.76 Hexanoic acid 116.2 478.35 -4.51 -4.20 0.31 2-Ethylbutyric acid 116.2 467.15 -4.18 -4.05 0.14 2-Butoxyethanol 118.2 441.55 -4.18 -4.11 0.08 4-Acetylpridine 121.1 485.15 -5.59 -4.67 0.92 3-Acetylpridine 121.1 493.15 -6.06 -4.84 1.22 Benzamide 121.1 563.15 -8.00 -6.12 1.88 2,6 -Dimethyl aniline 121.2 488.15 -3.99 -3.23 0.76 3,4 -Xylidine 121.2 501.15 -4.12 -3.52 0.60 2,5 -Dimethylaniline 121.2 487.15 -3.76 -3.21 0.55 2,4,6 -Trimethylpyridine 121.2 443.75 -3.44 -1.53 1.91 N-Ethylaniline 121.2 476.15 -3.40 -2.30 1.10 5-Ethyl -2-Methylpyrid ine 121.2 451.45 -3.11 -1.69 1.42 Benzoic acid 122.1 522.35 -5.81 -5.70 0.11 2,6 -Dimethylphenol 122.2 474.15 -3.57 -3.67 0.11 o-Ethylphenol 122.2 477.65 -3.72 -3.64 0.08 p-Methoxyaniline 123.2 516.15 -5.57 -4.63 0.94 p-Chloroaniline 127.6 505.15 -4. 32 -4.01 0.31 m-Chloroaniline 127.6 503.65 -4.27 -3.98 0.29 o-Chloroaniline 127.6 481.95 -3.66 -3.68 0.02 4-Chlorophenol 128.6 493.15 -4.59 -4.51 0.08 3-Chlorophenol 128.6 487.15 -4.85 -4.37 0.48 2-Chlorophenol 128.6 448.05 -3.34 -3.66 0.32 Dichlor oacetic acid 128.9 467.15 -4.84 -5.62 0.78 1,3 -Dichloro -2-propanol 129.0 449.15 -4.28 -4.40 0.13 Quinoline 129.2 510.25 -4.17 -3.01 1.16 Diisobutylamine 129.2 412.75 -1.64 -3.82 2.18 Dibutylamine 129.2 432.75 -2.44 -3.90 1.46 2-Ethylhexylamine 129.2 442.15 -2.41 -1.03 1.38 Heptanoic acid 130.2 495.35 -4.86 -4.07 0.79 2,4,5 -Trimethylaniline 135.2 507.65 -3.99 -3.16 0.83 Phenylacetic acid 136.2 538.65 -5.78 -5.74 0.03 2,4,6 -Trimethylphenol 136.2 493.15 -3.97 -3.59 0.39 3-Nitroaniline 138.1 579.15 -6.49 -6.07 0.42 111

4-Nitroaniline 138.1 605.15 -7.29 -6.68 0.61 2-Nitroaniline 138.1 557.15 -5.62 -5.44 0.18 o-Nitrophenol 139.1 489.15 -3.28 -4.65 1.37 p-Nitrophenol 139.1 552.15 -7.77 -6.25 1.52 3-Methyl -4-chlorophenol 142.6 508.15 -4.00 -4.33 0.33 2-Methyl -4-chlorophenol 142.6 496.15 -4.34 -4.05 0.28 2-Naphthylamine 143.2 573.15 -5.48 -4.72 0.76 1-Naphthylamine 143.2 573.95 -5.34 -4.74 0.60 Tripropylamine 143.3 429.15 -1.81 1.87 3.68 Octanoic acid 144.2 512.15 -4.44 -3.95 0.49 Diisopropylethanol amine 145.2 463.15 -4.28 -1.43 2.86 Adipic acid 146.1 610.65 -9.72 -9.81 0.10 Trichloroacetaldehyde 147.4 370.95 -6.92 -2.43 4.49 Cinnamic acid 148.2 573.15 -6.16 -6.87 0.71 2,6 -Diethylaniline 149.2 508.65 -4.34 -2.71 1.63 4-tert -Butylphenol 150.2 510 .15 -4.31 -3.74 0.57 o-t-Butylphenol 150.2 496.15 -2.98 -3.31 0.33 Vanillin 152.2 558.15 -7.06 -6.72 0.34 2-Chlorobenzoic acid 156.6 560.15 -5.58 -5.82 0.25 Nonanoic acid 158.2 527.65 -4.33 -3.80 0.52 3,4 -Dichloroaniline 162.0 545.15 -3.22 -4.32 1.10 3,5 -Dichlorophenol 163.0 506.15 -5.00 -4.17 0.83 2,4 -Dichlorophenol 163.0 483.15 -4.05 -3.82 0.23 2,6 -Dichlorophenol 163.0 493.15 -3.96 -4.22 0.26 Trichloroacetic acid 163.4 469.65 -6.26 -5.08 1.18 Diphenylamine 169.2 575.15 -3.86 -4.35 0.49 Decanoic acid 172.3 541.85 -4.26 -3.64 0.62 4-Bromophenol 173.0 511.15 -5.21 -4.47 0.74 Phenanthridine 179.2 622.15 -6.17 -4.15 2.03 5-Methyl -1,2,4 -triazolo[3,4 - b]benzothiazole 189.2 548.15 -8.90 -3.86 5.03 2,4,5 -Trichlorophenol 197.5 520.15 -4.18 -4.05 0.13 2,4,6 -Trichlorophenol 197.5 519.15 -3.97 -3.85 0.12 2-Methyl -4,6 -dinitrophenol 198.1 651.15 -4.24 -7.74 3.50 (4 -chloro -o-tolyloxy)acetic acid 200.6 559.89 -7.26 -5.68 1.59 3-Amino -2,5 -dichlorobenzoic acid 206.0 585.15 -8.80 -6.86 1.94 2-(4 -chloro -2- me thylphenoxy)propanoic acid 214.7 571.15 -7.40 -5.55 1.85 Tetradecanoic acid 228.4 599.35 -4.69 -3.12 1.57 2-sec -butyl -4,6 -Dinitrophenol 240.2 605.15 -4.73 -5.10 0.37 Hexadecanoic acid 256.4 624.65 -3.09 -2.81 0.27 Pentachlorophenol 266.3 582.65 -6.00 -4.50 1.50 Octadecanoic acid 284.5 656.15 -4.71 -2.71 2.00 112

REFERENCES

Abraham MH, Le J, Acree WE, Carr PW, Dallas AJ. 2001. The solubility of and vapors in dry octan -1-ol at 298 K. Chemosphere 44(4): 855 -863.

Barton AFM. Handbook of Solubility Pa rameters and Other Cohesion Parameters. 1979. CRC Press, Boca Raton, Florida.

Beothling RB, Howard PH, Meylan WM. 2004. Finding and Estimating Chemical Property Data for Environmental Assessment. Environ Toxicol Chem 23(10): 2290 -2308.

Chen JW, Quan X, Zha o Z, Yang FL, Schramm KW, Kettrup A. 2001. Quantitative Structure -Property Relationships for Octanol -Air Partition Coefficients of PCDD/Fs. Bull Environ Contam Toxicol 66(6): 755 -761.

Chen J, Xue X, Schramm K, Quan X, Yang F, Kettrup A. 2002a. Quantitativ e structure – property relationships for octanol –air partition coefficients of polychlorinated biphenyls. Chemosphere 48(5): 535 -544.

Chen J, Harner T, Yang P, Quan X, Chen S, Shramm K, Kettrup A. 2002b. Quantitative predictive models for octanol –air partit coefficients of polybrominated diphenyl ethers at different temperatures. Chemosphere 51(7): 577 -584 .

Chen JW, Harner Y, Schramm KW, Quan X, Xue XY, Wu WZ, Kettrup A. 2002c. Quantitative relationships between molecular structures, environmental temper atures and octanol -air partition coefficients of PCDD/Fs. Sci Total Environ 300(1 -3): 155 -166.

Chen J, Xue X, Schramm K, Quan X, Yang F, Kettrup A. 2003a. Quantitative structure - property relationships for octanol –air partition coefficients of polychlorina ted phthalenes, chlorobenzenes and p,p′-DDT. Comput Biol Chem 27(3): 165 -171.

Chen JW, Harner T, Schramm KW, Quan X, Xue XY, Kettrup A. 2003b. Quantitative relationship between molecular structures, environmental temperatures and octanol -air partition coefficients of polychlorinated biphenyl s. Comput Biol Chem 27 (3): 405 -421.

Cousin I, Mackay D. 2000. Correlating the physical -chemical properties of phthalate esters using the ‘three solubility’ approach. Chemosphere 41(9): 1389 -1399.

Coutsikos P, Voutsas E, Magoulas K, Tassios D. 2003. Predi ction of vapor pressures of solid organic compounds with a group contribution method. Fluid Phase Equilib 207(1 - 2): 263 -281. 113

Dearden JC, Schuumann G. 2003. Quantitative Structure -Property Relationships for Predicting Henry’s Law Constant from Molecular St ructure. Envrion Tox Chem 22(8): 1755 -1770.

Endo S, Schmidt T. 2006. Partitioning properties of linear and branched ethers: Determination of linear solvation energy relationship (LSER) descriptors. Fluid Phase Equilib 246(1 -2): 143 -152.

Ferreira MMC. 200 1. Polycyclic aromatic hydrocarbons: a QSPR study. Chemosphere 44(2): 125 -146.

Fletcher KA, Pandey S, McHale MER, Acree WE. 1997. Solubility of benzyl in (binary alcohol + 1 -octanol) solvents. J Chem Thermodynamics 27(5): 475 -480.

Gracin S, Brinck T, R asmuson AC. 2002. Prediction of Solubility of Solid Organic Compounds in Solvents by UNIFAC. Ind Eng Chem Res 41(20): 5114 -5124.

Hau K, Connell D, Richardson B. 1999. Mechanism of acute inhalation toxicity of and aliphatic alcohols. Environ Toxic ol Pharmacol 7(3): 159 -167.

Hau KM, Connell DW, Richardson BJ. 2000. Use of Partition Models in Setting Health Guidelines for Volatile Organic Compounds. Reg Toxicol Pharmacol 31(1): 22 -29.

Hiatt MH. 1997. Analyses of fish tissue by vacuum distillatio n/gas chromatography/mass spectrometry. Anal Chem 69(6): 1127 -1134.

Hiatt MH. 1998. Bioconcentration factors for volatile organic compounds in vegetation. Anal Chem 70(5): 851 -856.

Hildebrand JH. 1935. Solubility .XIV. Experimental tests of a General Eq uation for Solubility. J Am Chem Soc 57(5): 866 -871.

Hildebrand JH, Scott RL. The Solubility of Nonelectrolytes . (3 rd ed.) 1950. Reinhold Publishing Corporation, New York.

Jain A, Yang G, Yalkowsky SH. 2004. Estimation of Total Entropy of Melting of Orga nic Compounds. Ind Eng Chem Res 43(15): 4376 -4379.

Jain P, Sepassi K, Yalkowsky SH. 2007. Estimation of Solubility of Organic Compounds. In preparation.

Kosanovic D, Dumanovic D, Jovanovic J. 1988. Solubility in octanol and the octanol - water partition coe fficients of some 4 (5) - and 5 -nitroimidazoles. J Serb Chem Soc 53(10): 559 -563. 114

Lei YD, Wania F, Mathers D, Mabury SA. 2004. Determination of vapor pressures, octanol -air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and te lomere alcohols. J Chem Eng Data 49(4): 1013 -1022.

Lin ST, Sandler SI. 2002. Henry’s law constant of organic compounds in water from a group contribution model with multiple corrections. Chem Eng Sci 57(14): 2727 -2733.

Liu, R. Water -Insoluble Drug Formul ations . 2000. CRC Press, Boca Raton, Florida.

Mackay D, Bobra A, Chan DW, Shiu WY. 1982. Vapor Pressure Correlations for Low - Volatility Environmental Chemicals. Environ Sci Technol 16(10): 645 -649.

Meylan WM, Howard PH. 1991. Bond Contribution Method for Estimating Henry’s Law Constants. Eniron Tox Chem 10: 1283 -1293.

Meylan WM, Howard PH. 2005. Estimating Octanol -Air Partition Coefficients with Octanol -Water Partition Coefficients and Henry’s Law Constants. Chemosphere 61(5): 640 -644.

Miller MM, Wasik SP, Huang G, Shiu W, Mackay D. 1985. Relationship between octanol -water partition coefficient and aqueous solubility. Environ Sci Technol 19(6): 522 -529.

Mishra DS, Yalkowsky SH. 1991. Estimation of Vapor Pressure of Some Organic Compounds. Ind Eng Chem Res 30(7): 1609 -1612.

Modarresi H, Modarress H, Dearden JC. 2005. Henry’s law constant of hydrocarbons in air -water system: The cavity ovality effect on the non -electrostatic contribution term of solvation free energy. SAR and QSAR in Environ Res 16(5): 461 -482.

MPBPWIN v1.41. 2000. U.S. Environmental Protection Agency ( www.epa.gov ).

Myrdal PB, Krzyaniak JF, Yalkowsky SH. 1996. Modified Trouton’s Rule for Predicting the Entropy of Boiling. Ind Eng Chem Res 35(5): 1788 -1792.

Myrdal PB, Yalkowsky SH. 1997. Estimating Pure Component Vapor Pressures of Complex Organic Molecules. Ind Eng Chem Res 36(6): 2494 -2499.

Neau S, Flynn G. 1990. Solid and Liquid Heat Capacities of n -alkyl p -aminobenzoates near the melting point. Pharm Res 7(11): 1157 -1162.

Neau SH, Flynn GH, Yalkowsky SH. 1989. The influence of heat capacity assumptions on the estimation of solubility parameters from solubility data. Int J Pharm 49(3): 223 - 229. 115

Nimi AJ. 1991. Solubility of organic chemicals in oct anol, triolein, and Cod liver oil and relationships between solubility and partition coefficients. Wat Res 25(12): 1515 -1521.

Nirmalakhandan N, Brennan RA, Speece RE. 1997. Predicting Henry’s Law Constant and the Effect of Temperature on Henry’s Law Const ant. Wat Res 31(6): 1471 -1481.

Otvos E, Kozak IO, Fekete J, Sharma VK, Tuba Z. 2004. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. Sci Total Environ 330(1 -3): 89 -99.

Pinsuwan S, Li A, Yalk owsky SH. 1995. Correlation of octanol/water solubility ratios and partition coefficients. J Chem Eng Data 40(3): 623 -626.

Powell JR, McHale MER, Kauppila AM, Acree WE. 1996. Solubility in (alcohol + methyl t -butyl ether) solvents. J Chem Thermodynamics 2 8(11): 1215 -1220.

Puzyn T, Falandysz J. 2005. Computational estimation of logarithm of n-octanol/air partition coefficient and subcooled vapor pressures of 75 chloronaphthalene congeners. Atmos Environ 39(8): 1439 -1446.

Sanghvi R, Yalkowsky SH. 2006. Es timation of the Normal Boiling Point of Organic Compounds. Ind Eng Chem Res 45(8): 2856 -2861.

Sepassi K, Myrdal PB, Yalkowsky SH. 2006. Estimating Pure Component Vapor Pressures of Complex Organic Molecules -Part II. Ind Eng Chem Res 45(25):8744 -8747 .

Shi u W,Wania F, Hung H, Mackay D. 1997. Temperature dependence of aqueous solubility of selected chlorobenzenes, polychlorinated biphenyls, and dibenzofuran. J Chem Eng Data 42(2): 293 -297.

Spencer WF, Cliath MM. 1983. Measurement of Pesticide Vapor Pressure . Residue Rev 85: 57 -71.

Staikova M, Wania F, Donaldson DJ. 2004. Molecular Polarizability as a single - parameter predictor of vapour pressures and octanol -air partitioning coefficients of non - polar compounds: a priori approach and results. Atmos Enviro n 38(2): 213 -225.

Taskinen J, Yliruusi J. 2003. Prediction of physicochemical properties based on neural network modeling. Advan Drug Deliv Rev 55(9):1163 -1183.

Treszczanowicz T, Kasprzycka -Guttman T, Treszczanowicz AJ. 2001. Solubility of β- carotene in binary solvents formed by some hydrocarbons with cyclohexanone and 1 - octanol. J Chem Eng Data 46 (6): 1494 -1496. 116

Voutsas E, Lampadariou M, Magoulas K, Tassios D. 2002. Prediction of vapor pressures of pure compounds from knowledge of the nor mal boiling point. Fluid Phase Equilib 198(1): 81 -93.

Walden PZ. 1908. Uber die schmeltzwarme, specifische Kokesion und Molekulargrosse bei der Schmeltztemperature. Z Elektrochem 14: 713 -728.

Wania F, Lei YD, Harner T. 2002. Estimating octanol -air partiti on coefficients of nonpolar semivolatile organic compounds from gas chromatographic retention times. Anal Chem 74(14): 3476 -3483.

Weiss P. 2000. Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical propertie s. Environ Sci Technol 34(9): 1707 -1714.

Yalkowsky SH, Valvani SC, Roseman TJ. 1983. Solubility and partitioning VI: octanol solubility and octanol -water partition coefficients. J Pharm Sci 72(8): 866 -870.

Yalkowsky SH, Dannenfelser R -M, Myrdal P, Simam ora P. 1994. Unified physical property estimation relationships (UPPER). Chemosphere 28(9): 1657 -1673.

Yao X, Liu M, Zhang X, Hu Z, Fan B. 2002. Radial basis function network -based quantitative structure -property relationship for the prediction of Henry’s law constant. Anal Chim Acta 462(1): 101 -117.