Biomechanical Modelling of the Human Eye
Total Page:16
File Type:pdf, Size:1020Kb
JOHANNESKEPLER UNIVERSITÄTLINZ Netzwerk für Forschung, Lehre und Praxis Biomechanical Modelling of the Human Eye Dissertation zur Erlangung des akademischen Grades Doktor der Technischen Wissenschaften im Doktoratsstudium der technischen Wissenschaften Angefertigt am Institut für Anwendungsorientierte Wissensverarbeitung (FAW) Eingereicht von: Dipl.-Ing. (FH) Michael Buchberger Betreuung: Univ.-Prof. Dipl.-Ing. Dr. Roland Wagner Beurteilung: Univ.-Prof. Dipl.-Ing. Dr. Roland Wagner Univ.-Doz. Dipl.-Ing. Dr. Thomas Haslwanter Linz, März 2004 Johannes Kepler Universität A-4040 Linz · Altenbergerstraße 69 · Internet: http://www.uni-linz.ac.at · DVR 0093696 Eidesstattliche Erklärung Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Linz, im März 2004 Michael Buchberger To Bianca and my parents... Abstract The goal of this work was the development of a biomechanical model of the human eye. An interactive software system was implemented, called „SEE++“ which allows also physicians to obtain a better understanding of the mechanics of eye movements. This software visualizes and simulates pathologies and eye muscle surgeries, based on the biomechanics of the eye. It can be used in preoperative planning, medical training and basic research, and shows how Medical- Informatics can improve the diagnosis and treatment of patients. The interdisciplinary nature of the project required contributions from very different fields. Anatomical studies, in cooperation with researchers as well as practicing physicians, provided data for defining a mathematical representation of human eye movements. The biomechanical model included a geometrical representation of eye movements, a muscle force prediction model, and a kinematic model that balances muscle forces by using mathematical optimization meth- ods. High-resolution magnetic resonance imaging studies were carried out to visualize eye muscle morphology, and image processing methods used to reconstruct three dimensional approximation models of human eye muscles. Modern software engineering methods provided the basis for an extensible object-oriented software design. Three dimensional interactive visualization and a user interface optimized for medical use were combined into a unique software simulation system for the clinic and for teaching. The „SEE++“ software system is currently the most advanced biomechanical representation of the human eye, with respect to simulating eye movements and eye muscle surgeries. The extensive possibilities for parametrization of the human eye model allow interactive simulations of pathological cases and surgical corrections, and the predictions correspond well with clinical data. This system is used in various clinical facilities as computer aided decision support for strabismus (squint) surgeries. In medical training and education, it substantially improves the functional understanding of human eye movements. Keywords: Biomechanical Modelling, Eye Surgery, Strabismus, Eye Motility, Medical Decision Support Systems v Kurzfassung Diese Forschungsarbeit hat das Ziel, ein biomechanisches Modell des menschlichen Auges zu entwickeln. Das implementierte Software System, „SEE++“, soll es Medizinern ermöglichen, ein besseres Verständnis der Mechanik der Augenbewegungen zu bekommen. Augenbewegungsstö- rungen und Augenmuskeloperationen werden dabei auf biomechanische Ursachen und Wirkungen zurückgeführt. Der erfolgreiche klinische Einsatz dieses Systems zeigt, wie computerbasierte Me- thoden der Medizin-Informatik die Diagnose und Behandlung von Patienten verbessern können. Die interdisziplinären Anforderungen dieses Projekts erforderten Beiträge aus stark unterschied- lichen medizinisch-technischen Forschungsbereichen. Anatomische Studien lieferten Grunddaten für die Formulierung eines mathematischen Modells der menschlichen Augebewegungen. Biome- chanische Überlegungen führten zu einer geometrischen Beschreibung von Augenbewegungen, einer Muskelkraftsimulation und eines kinematischen Modells. Augenpositionen wurden mit ma- thematischen Optimierungsmethoden aus dem Kräftegleichgewicht der Augenmuskulatur berech- net. Um die Morphologie der Augenmuskulatur besser zu verstehen, wurden umfangreiche Studien mit hochauflösender Magnetresonanztomographie durchgeführt, und mit Bildverarbeitungsme- thoden die dreidimensionalen Rekonstruktionen berechnet. Der Einsatz von modernen Methoden des objektorientierten Software-Engineering bildete die Grundlage für eine flexible Implementie- rung. Dreidimensionale interaktive Visualisierung und optimiertes Benutzerschnittstellen-Design wurden in einem einzigartigen Software System kombiniert. Das biomechanische Simulationssystem „SEE++“ ist derzeit das weltweit detaillierteste und mo- dernste Softwaresystem für die Modellierung und Simulation von Augenbewegungsstörungen. Das System ermöglicht durch umfangreiche Möglichkeiten der Parametrisierung die Simulation von pathologischen Fällen und deren operative Korrektur. Die Simulationsergebnisse zeigen nach- weislich eine gute Übereinstimmung mit verfügbaren klinischen Vergleichsdaten. Derzeit wird dieses System für die computerbasierte Entscheidungsunterstützung in verschiedenen klinischen Einrichtungen verwendet. Der Einsatz in der medizinischen Ausbildung verbessert das Verständ- nis über Funktion und Wirkungsweise von menschlichen Augenbewegungen. In der medizinisch- physiologischen Grundlagenforschung ermöglicht das System die Auswertung und Evaluierung von Messergebnissen, und gibt somit einen detaillierteren Einblick in die komplizierte Struktur des menschlichen Auges. Schlüsselwörter: Biomechanische Modelle, Augenoperation, Strabismus, Augenmotilität, Klini- sche Entscheidungsunterstützung vi Acknowledgements Within eight years of research, many people have greatly contributed to this work. First of all, I would like to express my deepest gratitude, respect and admiration to Prim. Prof. Dr. Siegfried Priglinger, head of the ophthalmologic department at the convent hospital of the „Barmherzigen Brüder“ in Linz. He did not only start this project, but also greatly contributed to this work as teacher, mastermind and highly experienced medical expert, always emphasizing improvement in patient care. His exceptional personality and social engagement inspired me beyond my technical work. I would like to thank Univ.-Prof. Dipl.-Ing. Dr. Roland Wagner, head of the Research Institute for Applied Knowledge Processing (FAW) at the University of Linz for reviewing and supporting this work. From the ETH-Zurich, I would like to thank Univ.-Doz. Dipl.-Ing. Dr. Thomas Haslwanter for explaining medical details and giving valuable advice and guidance throughout the creation of this thesis. From the medical side, many physicians and researchers have been involved in this research work. For valuable cooperation I would like to thank Dr. Joel Miller from the Smith Kettlewell Eye Research Institute. Furthermore, Prim. Univ.-Prof. Dr. Erich Salomonowitz, Prim. Univ.-Doz. DDr. Armin Ettl and Dr. Jörg Hildebrandt from the hospital St. Pölten supported this work by providing clinical patient data. Additionally, the radiologic department of the Wagner Jauregg hospital in Linz lead by Prim. Dr. Johannes Trenkler with the help of Univ.-Doz. Dr. Franz Fellner and Univ.-Doz. DDr. Dipl.-Ing. Mag. Josef Kramer provided necessary equipment and medical expert knowledge to carry out different physiological studies. For usability testing and evaluation of the software system „SEE++“ I would like to thank Univ.- Prof. Dr. Andrea Langmann from the university in Graz for believing in this work. From the university of Innsbruck I appreciate the help of OA Dr. Eduard Schmid, OA Dr. Ivo Baldissera and OA Dr. Cornelia Stieldorf. From the hospital of the „Barmherzigen Schwestern“ in Ried I would like to thank OA Dr. Robert Hörantner for extensively testing the software and providing valuable feedback. From the Upper Austrian University of Applied Sciences in Hagenberg I would especially like to thank Univ.-Prof. Dipl.-Ing. Dr. Witold Jacak for initiating and greatly supporting the „SEE- KID“ project. Moreover, thanks go to FH-Prof. Dipl.-Ing. Dr. Herwig Mayr, who also supported the project in its beginnings with his project engineering knowledge. Many diploma students were involved within this project. First of all, I would like to give my respect to Dipl.-Ing. (FH) Thomas Kaltofen for extensive implementation work and above- average participation within this work. Additionally, Dipl.-Ing. (FH) Martin Wiesmair, Dipl.-Ing. (FH) Franz Pirklbauer, Dipl.-Ing. (FH) Stefan Satzinger and Dipl.-Ing. (FH) Michael Lacher spent their internship and diploma semester in the field of the „SEE-KID“ project. I would also like to thank Dipl.-Ing. (FH) Thomas Kern, Dipl.-Ing. (FH) Johannes Dirnberger, Mag. Michael Giretzlehner and Dr. Thomas Luckeneder for proof reading this work. Last but not least, I would like to thank Dipl.-Ing. Dr. Otmar Höglinger from the Upper Austrian Research GmbH for believing in new technologies and providing a fascinating infrastructure for application-oriented research in the field of Medical-Informatics. This work was also supported by grants from the Austrian Ministry of Science (FFF) and the Upper Austrian government. vii Contents 1 Introduction 1 1.1 Overview . 1 1.2 Medical Informatics . 3 1.3 Clinical Decision