Ophiothrix Fragilis (Abildgaard in O.F

Total Page:16

File Type:pdf, Size:1020Kb

Ophiothrix Fragilis (Abildgaard in O.F Ophiothrix fragilis (Abildgaard in O.F. Müller, 1789) AphiaID: 125131 OFIÚRO Animalia (Reino) >Echinodermata (Filo) >Asterozoa (Subfilo) >Ophiuroidea (Classe) >Myophiuroida (Subclasse) >Metophiurida (Infraclasse) > Ophintegrida (Superordem) > Amphilepidida (Ordem) > Gnathophiurina (Subordem) > Gnathophiurina (Infraordem) > Ophiactoidea (Superfamilia) > Ophiotrichidae (Familia) Bruno Van Bogaert mnolito - iNaturalist.org Sinónimos Asteria cuvierii Delle Chiaje, 1828 Asteria ferussacii Delle Chiaje, 1828 Asterias echinata Delle Chiaje, 1828 Asterias fragilis Abildgaard in O.F. Müller, 1789 Asterias pentaphylla Pennant, 1777 Asterias rubra Delle Chiaje, 18?? Ophiocoma minuta Forbes, 1839 Ophiocoma rosula Forbes, 1839 Ophiothrix alba Grube, 1857 Ophiothrix alopecurus Müller & Troschel, 1842 Ophiothrix cuvierii (Delle Chiaje, 1828) Ophiothrix echinata (Delle Chiaje, 1828) Ophiothrix ferussacii (Delle Chiaje, 1828) Ophiothrix fragilis var. abildgaardi Koehler, 1921 1 Ophiothrix fragilis var. echinata (Delle Chiaje, 1828) Ophiothrix fragilis var. lusitanica Ljungman, 1872 Ophiothrix fragilis var. pentaphyllum Pennant, 1777 Ophiothrix lusitanica Ljungman, 1872 Ophiothrix pentaphylla (Pennant, 1777) Ophiothrix rammelsbergii Müller & Troschel, 1842 Ophiothrix rubra Ljungman, 1872 Ophiothrix rubra Ljungman, 1872 Ophiura scutellum Grube, 1840 Referências additional source Hansson, H. (2004). North East Atlantic Taxa (NEAT): Nematoda. Internet pdf Ed. Aug 1998., available online at http://www.tmbl.gu.se/libdb/taxon/taxa.html [details] additional source Hansson, H.G. (2001). Echinodermata, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels,. 50: pp. 336-351. [details] additional source Clark, A.M. (1974). Notes on some echinoderms from southern Africa. Bulletin of the British Museum of Natural History (Zoology). 26(6): 423-487, 3 pls, 16 figs, 1 map, 3 tables., available online at http://www.biodiversitylibrary.org/item/19502#page/513/mode/1up [details] basis of record Ljungman, A. (1867). Ophiuroidea viventia huc usque cognita enumerat. Öfversigt af Kgl. Vetenskaps-Akademiens Förhandlingar 1866. 23(9): 303-336. [details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] additional source Dyntaxa. (2013). Swedish Taxonomic Database. Accessed at www.dyntaxa.se [15-01-2013]., available online at http://www.dyntaxa.se [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] status source Clark, A.M. 1967. Proposals for stabilization of the names of some common European Ophiuroidea Z.N.(S.) 1772. Bulletin Zoological Nomenclature, 24(1), 41-49., available online at http://www.biodiversitylibrary.org/page/12223192#page/59/mode/1up [details] context source (Schelde) Maris, T.; Beauchard, O.; Van Damme, S.; Van den Bergh, E.; Wijnhoven, S.; 2 Meire, P. (2013). Referentiematrices en Ecotoopoppervlaktes Annex bij de Evaluatiemethodiek Schelde-estuarium Studie naar “Ecotoopoppervlaktes en intactness index”. Monitor Taskforce Publication Series, 2013-01. NIOZ: Yerseke. 35 pp.[details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] context source (BeRMS 2020) Bio-environmental research group; Institute of Agricultural and Fisheries research (ILVO), Belgium; (2015): Epibenthos and demersal fish monitoring at long-term monitoring stations in the Belgian part of the North Sea. [details] additional source Clark, A. M. (1974). Notes on some echinoderms from southern Africa. Bulletin of the British Museum of Natural History (Zoology). 26(6): 423-487, 3 pls, 16 figs, 1 map, 3 tables., available online at https://www.biodiversitylibrary.org/page/2294231 [details] status source Clark, A. M. (1967). Proposals for stabilization of the names of some common European Ophiuroidea Z.N.(S.) 1772. Bulletin Zoological Nomenclature. 24(1): 41-49., available online at http://www.biodiversitylibrary.org/page/12223192#page/59/mode/1up [details] additional source Clark, A. M.; Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] Última atualização: 24 Set. 2021 3.
Recommended publications
  • UNIVERSITY of KERALA Zoology Core Course
    1 UNIVERSITY OF KERALA First Degree Programme in Zoology Choice Based Credit and Semester System Zoology Core Course Syllabus-2015 Admission Onwards 2 FIRST DEGREE PROGRAMME IN ZOOLOGY Scheme of Instruction and Evaluation Course Study Components Instructional Credit Duration Evaluation Total Code Hrs/week of Univ. Credit T P Exam CE ESE Semster EN1111 English I 5 4 3 Hrs 20% 80% 1111 Additional language I 4 3 3 Hrs 20% 80% EN 1121 Foundation course I 4 2 3 Hrs 20% 80% CH1131.4 Complementary course I 2 2 3 Hrs 20% 80% Complementary course I 2 16 I Practical of CH1131.4 BO1131 Complementary course II 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1131 ZO1141 Core Course I 3 3 3 Hrs 20% 80% Core Course Practical of ZO1141 1 EN1211 English II 4 3 3 Hrs 20% 80% EN1212 English III 5 4 3 Hrs 20% 80% 1211 Additional language II 4 3 3 Hrs 20% 80% CH1231.4 Complementary course III 2 2 3 Hrs 20% 80% II Complementary course III 2 Practical of CH1231.4 17 BO1231 Complementary course IV 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1231 ZO1241 Core Course II 3 3 3 Hrs 20% 80% Core Course Practical of ZO1241 1 III EN1311 English IV 5 4 3 Hrs 20% 80% EN1312 Additional language III 5 4 3 Hrs 20% 80% CH1331 Complementary course V 3 3 3 Hrs 20% 80% CH1331.4 Complementary course V 2 Practical of CH1331.4 BO1331 Complementary course VI 3 3 3 Hrs 20% 80% 17 BO1332 Complementary course VI 2 Practical of BO1331 ZO1341 Core Course III 3 3 3 Hrs 20% 80% ZO1341 Core Course Practical of ZO1341 2 IV EN1411 English V 5 4 3 Hrs 20% 80% EN1411 Additional language II 5 4 3 Hrs 20% 80% CH1431.4 Complementary course VII 3 3 3 Hrs 20% 80% CH1432.4 Complementary course 2 4 3 Hrs 20% 80% Practical of CH1131.4, CH1231.4, CH1331.4, CH1431.4.
    [Show full text]
  • Key to the Common Shallow-Water Brittle Stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228496999 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea Article · January 2007 CITATIONS READS 10 702 1 author: Christopher Pomory University of West Florida 34 PUBLICATIONS 303 CITATIONS SEE PROFILE All content following this page was uploaded by Christopher Pomory on 21 May 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea CHRISTOPHER M. POMORY 2007 Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA. [email protected] ABSTRACT A key is given for 85 species of ophiuroids from the Gulf of Mexico and Caribbean Sea covering a depth range from the intertidal down to 30 m. Figures highlighting important anatomical features associated with couplets in the key are provided. 2 INTRODUCTION The Caribbean region is one of the major coral reef zoogeographic provinces and a region of intensive human use of marine resources for tourism and fisheries (Aide and Grau, 2004). With the world-wide decline of coral reefs, and deterioration of shallow-water marine habitats in general, ecological and biodiversity studies have become more important than ever before (Bellwood et al., 2004). Ecological and biodiversity studies require identification of collected specimens, often by biologists not specializing in taxonomy, and therefore identification guides easily accessible to a diversity of biologists are necessary.
    [Show full text]
  • Two New Brittle Star Species of the Genus Ophiothrix
    Caribbean Journal of Science, Vol. 41, No. 3, 583-599, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Two New Brittle Star Species of the Genus Ophiothrix (Echinodermata: Ophiuroidea: Ophiotrichidae) from Coral Reefs in the Southern Caribbean Sea, with Notes on Their Biology GORDON HENDLER Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. [email protected] ABSTRACT.—Two new species, Ophiothrix stri and Ophiothrix cimar, inhabit shallow reef-platforms and slopes in the Southern Caribbean, and occur together at localities in Costa Rica and Panama, nearly to Colombia. What appears to be an undescribed species resembling O. cimar has been reported from eastern Venezuela. In recent years, reefs where the species were previously observed have deteriorated because of environmental degradation. As a consequence, populations of the new species may have been reduced or eradicated. The new species have previously been mistaken for O. angulata, O. brachyactis, and O. lineata. Ophiothrix lineata, O. stri, and O. cimar have in common a suite of morphological features pointing to their systematic affinity, and a similar pigmentation pattern consisting of a thin, dark, medial arm stripe flanked by two pale stripes. Ophiothrix lineata is similar to Indo-Pacific members of the subgenus Placophiothrix and closely resembles Ophiothrix stri. The latter is extremely similar to O. synoecina, from Colombia, and both can live in association with the rock-boring echinoid Echinometra lucunter. Although O. synoecina is a protandric hermaphrodite that reportedly broods its young externally, the new species are gonochoric and do not brood.
    [Show full text]
  • The Reproductive System and Associated Organs of the Brittle-Star Ophiothrix Fragilis
    The Reproductive System and associated organs of the Brittle-star Ophiothrix fragilis. By J. B. Smith, M.A., PhJ)., Zoological Laboratory, Cambridge. With 15 Text-figures. CONTENTS. PAGE IHTKODTTCTION 267 METHODS 268 THE A-itTAT. OEGAN AXD BELATED SINUSES 269 The Left Axial Sinus and Organ ...... 279 The Right Axial Sinus and Organ ...... 280 THE GENITAL RACHIS 281 THE GONADS 287 Testis 288 Ovary 289 THE GoNODtrcrs 297 THE GENITAL BTTBSAE ........ 301 CoiTCLTrsiONs .......... 305 STTMMAEY 307 REFERENCES .......... 308 INTEODUCTION. The observations which are recorded in this paper are the outcome of an investigation directed, primarily, towards the interpretation of the morphology and histology of the nervous system of the ophiuroid Opldothrix fragilis, Abildgaard. During the course of the work opportunity was afforded for examination of large numbers of brittle-stars ranging from post- metamorphic individuals to fully mature specimens, the sizes being of a disc diameter of 0-4 to 16 mm. Prom observations made on living animals and by the examination of sectioned material it has been possible to obtain information relating to the morphology and development of the organs assoeiatedj either directly or indirectly, -with reproduction. The systems of organs described include the gonads, the gonodncts, the axial organ and related sinuses, the genital rachis and the 268 J. E. SMITH genital bursae. Some explanation of the inclusion of the axial organ complex, which is not primarily associated with the reproductive system, in this account is, perhaps, due. Two reasons may be given. The first is that the axial organ and the genital rachis, though of different origin, are in close association during development and throughout adult life, and the second is that the interpretation of the morphology of the axial organ complex, here given, is in close agreement with that of Fedotov (1924) who, in ascribing a double origin and structure to the axial organ and sinus system of Opbiuroids, is in disagreement with all earlier investigators of the problem.
    [Show full text]
  • New Echinoderm Remains in the Buried Offerings of the Templo Mayor of Tenochtitlan, Mexico City
    New echinoderm remains in the buried offerings of the Templo Mayor of Tenochtitlan, Mexico City Carolina Martín-Cao-Romero1, Francisco Alonso Solís-Marín2, Andrea Alejandra Caballero-Ochoa4, Yoalli Quetzalli Hernández-Díaz1, Leonardo López Luján3 & Belem Zúñiga-Arellano3 1. Posgrado en Ciencias del Mar y Limnología, UNAM, México; [email protected], [email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México, México; [email protected] 3. Proyecto Templo Mayor (PTM), Instituto Nacional de Antropología e Historia, México (INAH). 4. Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apdo. 70-305, Ciudad de México, México, C.P. 04510; [email protected] Received 01-XII-2016. Corrected 02-V-2017. Accepted 07-VI-2017. Abstract: Between 1978 and 1982 the ruins of the Templo Mayor of Tenochtitlan were exhumed a few meters northward from the central plaza (Zócalo) of Mexico City. The temple was the center of the Mexica’s ritual life and one of the most famous ceremonial buildings of its time (15th and 16th centuries). More than 200 offerings have been recovered in the temple and surrounding buildings. We identified vestiges of 14 species of echino- derms (mostly as disarticulated plates). These include six species of sea stars (Luidia superba, Astropecten regalis, Astropecten duplicatus, Phataria unifascialis, Nidorellia armata, Pentaceraster cumingi), one ophiu- roid species (Ophiothrix rudis), two species of sea urchins (Eucidaris thouarsii, Echinometra vanbrunti), four species of sand dollars (Mellita quinquiesperforata, Mellita notabilis, Encope laevis, Clypeaster speciosus) and one species of sea biscuit (Meoma ventricosa grandis).
    [Show full text]
  • Echinodermata, Ophiuroidea)
    Vol. 16: 105–113, 2012 AQUATIC BIOLOGY Published online July 19 doi: 10.3354/ab00435 Aquat Biol Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea) Melody S. Clark*, Terri Souster British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Regeneration of arms in brittle stars is thought to proceed slowly in low temperature environments. Here a survey of natural arm damage and arm regeneration rates is documented in the Antarctic brittle star Ophiura crassa. This relatively small ophiuroid, a detritivore found amongst red macroalgae, displays high levels of natural arm damage and repair. This is largely thought to be due to ice damage in the shallow waters it inhabits. The time scale of arm regener- ation was measured in an aquarium-based 10 mo experiment. There was a delayed regeneration phase of 7 mo before arm growth was detectable in this species. This is 2 mo longer than the longest time previously described, which was in another Antarctic ophiuroid, Ophionotus victo- riae. The subsequent regeneration of arms in O. crassa occurred at a rate of approximately 0.16 mm mo−1. To date, this is the slowest regeneration rate known of any ophiuroid. The confir- mation that such a long delay before arm regeneration occurs in a second Antarctic species pro- vides strong evidence that this phenomenon is yet another characteristic feature of Southern Ocean species, along with deferred maturity, slowed growth and development rates. It is unclear whether delayed initial regeneration phases are adaptations to, or limitations of, low temperature environments.
    [Show full text]
  • Dental Insights Into Ophiuroids: Feeding Mechanisms and Life Style
    Dental insights into ophiuroids: Feeding mechanisms and life style Karin Boos Biologische Anstalt Helgoland/ Alfred Wegener Institut for Polar and Marine Research, PO Box 180, 27483 Helgoland; [email protected] Ophiuroid echinoderms are highly specific towards different habitats reflecting lifestyles and feeding mechanisms. Previous studies have considered ophiuroids to be generally omnivorous macro- or microphageous feeders. According to their lifestyle, however, different feeding mechanisms may have evolved e.g. deposit feeding, filter feeding or predation. Most ophiuroids typically show more than one feeding mechanism along with their main feeding mode. In the present study, the morphology of teeth and associated papillae on individual jaw elements (see figure right) from ophiuroids performing different lifestyles (epibenthic, infaunal or epibenthic-cryptic) are compared and discussed in relation to reported feeding mechanisms and diets (for explanation on teeth and papillae see numbers in the pictures and adjacent text sections). Schematic overview of the ‚mouth‘ side of an ophiuroid (from Hayward and Ryland, 1996) MACROPHAGEOUS and a single jaw element. The epibethic: predators, scavengers and deposit feeders 3 Ophiura albida has three conical infradental papillae1 and two or three broadened 2 1 oral papillae located along 2 the lateral sides of the jaw plates. Long and strongly 3 pointed sharp teeth3 are found 3 down the vertical jaw edges. Epibenthic lifestyle of Ophiura albida Forbes, Top view of one jaw element in Ophiura Oblique view on the mouth in Ophiura Lateral view of jaws with teeth in Ophiura 1839; Photo by Encyclopedia of Marine Life albida. albida. albida. of Britain and Ireland MICROPHAGEOUS a) The infaunal: surface and sub-surface deposit feeders, filter feeder, suspension feeder 3 Amphiura filiformis and Acrocnida brachiata both 3 have a pair of slightly rounded infradental 1 1 1 1 papillae1, as well as two pairs of long and pointy 2 2 2 (A.
    [Show full text]
  • Behavior and Functional Morphology of Respiration in The
    BEHAVIOR AND FUNCTIONAL MORPHOLOGY OF RESPIRATION IN THE BASKET STAR, GORGONOCEPHALUS EUCNEMIS AND TWO BRITTLE STARS IN THE GENUS OPHIOTHRIX. by MACKENNA A. H. HAINEY A THESIS Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Master of Science September 2018 THESIS APPROVAL PAGE Student: MacKenna A. H. Hainey Title: Behavior and Functional Morphology of Respiration in the Basket Star, Gorgonocephalus eucnemis and Two Brittle Stars in the Genus Ophiothrix This thesis has been accepted and approved in partial fulfillment of the requirements for the Master of Science degree in the Department of Biology by: Richard B. Emlet Advisor Alan L. Shanks Member Maya Watts Member and Janet Woodruff-Borden Vice Provost and Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded September 2018 ii © 2018 MacKenna A. H. Hainey This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike (United States) License. iii THESIS ABSTRACT MacKenna A. H. Hainey Master of Science Department of Biology September 2018 Title: Behavior and Functional Morphology of Respiration in the Basket Star, Gorgonocephalus eucnemis and Two Brittle Stars in the Genus Ophiothrix Gorgonocephalus eucnemis, Ophiothrix suensonii and Ophiothrix spiculata are aerobic Echinoderms. Previous observations on the anatomy of these two genera state five pairs of radial shields and genital plates are responsible for regulating the position of the roof of the body disc and the flushing of water in and out of the bursae.
    [Show full text]
  • The First Report of Amphipholis Squamata (Delle Chiaje, 1829) (Echinodermata: Ophiuroidea) from Chabahar Bay – Northern Oman Sea
    Short communication: The first report of Amphipholis squamata (Delle Chiaje, 1829) (Echinodermata: Ophiuroidea) from Chabahar Bay – northern Oman Sea Item Type article Authors Attaran-Fariman, G.; Beygmoradi, A. Download date 03/10/2021 21:12:16 Link to Item http://hdl.handle.net/1834/37693 Iranian Journal of Fisheries Sciences 15(3)1254-1261 2016 The first report of Amphipholis squamata (Delle Chiaje, 1829) (Echinodermata: Ophiuroidea) from Chabahar Bay – northern Oman Sea Attaran-Fariman G. *; Beygmoradi A. Received: December 2014 Accepted: April 2016 Chabahar Maritime University, Faculty of Marine Sciences, Department of Marine Biology, Daneshgah Avenue, 99717-56499, Chabahar, Iran. *Corresponding author's email: [email protected] Keywords: Echinoderms, Amphiuridae, Morphology, Taxonomy, Chabahar Bay; Oman Sea Introduction the cognates of this species (Deheyn Amphipholis squamata is an important and Jangoux, 1999). Also, this species Ophiuroid species belonging to the is one of the most important family Amphiuridae which is widely echinoderms in terms of used in biotechnological and molecular bioluminescence (Deheyn et al., 1997). studies. It is a cosmopolitan species and Bioluminescence echinoderms were capable to inhabit a wide variety of identified about two centuries ago habitats except the polar regions, from (Viviani, 1805), consisting 4 out of 5 subtidal zone to the depth of 2000 class of Echinodermata (Herring, 1987). meters (Hendler, 1995). According to The only class without bioluminescence Fell (1962) its widespread distribution ability is Echinoidea (Herring, 1987). all over the world is the result of its In the present study, Amphipholis costal migration. A. squamata is squamata was reported for the first time characterized by its small body size, from the subtidal zone of Chabahar Bay hermaphroditic reproduction, lack of in northern part of the Oman Sea.
    [Show full text]
  • Echinodermata of Lakshadweep, Arabian Sea with the Description of a New Genus and a Species
    Rec. zool. Surv. India: Vol 119(4)/ 348-372, 2019 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v119/i4/2019/144963 ISSN (Print) : 0375-1511 Echinodermata of Lakshadweep, Arabian Sea with the description of a new genus and a species D. R. K. Sastry1*, N. Marimuthu2* and Rajkumar Rajan3 1Erstwhile Scientist, Zoological Survey of India (Ministry of Environment, Forest and Climate Change), FPS Building, Indian Museum Complex, Kolkata – 700016 and S-2 Saitejaswini Enclave, 22-1-7 Veerabhadrapuram, Rajahmundry – 533105, India; [email protected] 2Zoological Survey of India (Ministry of Environment, Forest and Climate Change), FPS Building, Indian Museum Complex, Kolkata – 700016, India; [email protected] 3Marine Biology Regional Centre, Zoological Survey of India (Ministry of Environment, Forest and Climate Change), 130, Santhome High Road, Chennai – 600028, India Zoobank: http://zoobank.org/urn:lsid:zoobank.org:act:85CF1D23-335E-4B3FB27B-2911BCEBE07E http://zoobank.org/urn:lsid:zoobank.org:act:B87403E6-D6B8-4ED7-B90A-164911587AB7 Abstract During the recent dives around reef slopes of some islands in the Lakshadweep, a total of 52 species of echinoderms, including four unidentified holothurians, were encountered. These included 12 species each of Crinoidea, Asteroidea, Ophiuroidea and eightspecies each of Echinoidea and Holothuroidea. Of these 11 species of Crinoidea [Capillaster multiradiatus (Linnaeus), Comaster multifidus (Müller), Phanogenia distincta (Carpenter), Phanogenia gracilis (Hartlaub), Phanogenia multibrachiata (Carpenter), Himerometra robustipinna (Carpenter), Lamprometra palmata (Müller), Stephanometra indica (Smith), Stephanometra tenuipinna (Hartlaub), Cenometra bella (Hartlaub) and Tropiometra carinata (Lamarck)], four species of Asteroidea [Fromia pacifica H.L. Clark, F. nodosa A.M. Clark, Choriaster granulatus Lütken and Echinaster luzonicus (Gray)] and four species of Ophiuroidea [Gymnolophus obscura (Ljungman), Ophiothrix (Ophiothrix) marginata Koehler, Ophiomastix elegans Peters and Indophioderma ganapatii gen et.
    [Show full text]
  • Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea)
    Review Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea) Sabine Sto¨ hr1*, Timothy D. O’Hara2, Ben Thuy3 1 Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden, 2 Museum Victoria, Melbourne, Victoria, Australia, 3 Department of Geobiology, Geoscience Centre, University of Go¨ttingen, Go¨ttingen, Germany fossils has remained relatively low and constant since that date. Abstract: This review presents a comprehensive over- The use of isolated skeletal elements (see glossary below) as the view of the current status regarding the global diversity of taxonomic basis for ophiuroid palaeontology was systematically the echinoderm class Ophiuroidea, focussing on taxono- introduced in the early 1960s [5] and initiated a major increase in my and distribution patterns, with brief introduction to discoveries as it allowed for complete assemblages instead of their anatomy, biology, phylogeny, and palaeontological occasional findings to be assessed. history. A glossary of terms is provided. Species names This review provides an overview of global ophiuroid diversity and taxonomic decisions have been extracted from the literature and compiled in The World Ophiuroidea and distribution, including evolutionary and taxonomic history. It Database, part of the World Register of Marine Species was prompted by the near completion of the World Register of (WoRMS). Ophiuroidea, with 2064 known species, are the Marine Species (http://www.marinespecies.org) [6], of which the largest class of Echinodermata. A table presents 16 World Ophiuroidea Database (http://www.marinespecies.org/ families with numbers of genera and species. The largest ophiuroidea/index.php) is a part. A brief overview of ophiuroid are Amphiuridae (467), Ophiuridae (344 species) and anatomy and biology will be followed by a systematic and Ophiacanthidae (319 species).
    [Show full text]
  • The Development of Ophiothrix Fragilis. 557
    THE DEVELOPMENT OF OPHIOTHRIX FRAGILIS. 557 The Development of Ophiothrix fragilis. By E. W. ftlacBridc, M.A., D.Sc, F.R.S., Professor of Zoology in McGill University, Montreal. With Plates 31—36, and 4 Text-figures. CONTENTS. PAGE Introduction ..... 557 Historical Sketch . .558 Material and Methods .... 567 Normal and Abnormal Development . 570 Tlie Development of the Full-grown Larva . 575 Metamorphosis of the Larva into the Brittle-star . 5S0 Comparison with Development in other Classes of Echino- dermata . 590 Summary and Conclusion .... 596 INTRODUCTION. THE present work, which has occupied my attention for the last four years, was begun with the object of extending to other classes of Echinoderms the researches which I had already made on the development of Asteroidea (18) and Echinoidea (19). It has proved to be a task of extraordinary difficulty owing to the minute and refractory character of the larvas oE Ophiuroidea. Nevertheless, the results obtained will, I think, bear fair comparison with those which I have already published concerning the development of Asteroidea and Echinoidea, whilst a number of new and unexpected facts have disclosed themselves which possess interest for a 558 E. W. MAOBRIDE. wider range of students than specialists in the class Echino- dermata. The most interesting result which was obtained from the study of the development of Asteroidea and Bchinoidea was the discovery that the ccelom of the larva showed distinct traces of metameric segmentation, a division into three somites being clearly indicated. The pioneer in this work is Bury, to whose stimulating papers (4, 5, and 6) I wish on this occasion, as formerly, to express my deep indebtedness.
    [Show full text]