Biodiversity Subtidal Ecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
The Development and Use of Ground-Based Rat Eradication Techniques in the UK
E.A. Bell Bell, E.A. It’s not all up in the air: the development and use of ground-based rat eradication techniques in the UK It’s not all up in the air: the development and use of ground-based rat eradication techniques in the UK E.A. Bell Wildlife Management International Ltd, P.O. Box 607, Blenheim 7201, New Zealand, <[email protected]>. Abstract Eradication techniques using ground-based devices were developed in New Zealand in the early 1970s to target invasive rodents. Since then, diff erent bait station designs, monitoring tools and rodenticide baits have been developed, and changes in fi eld techniques have improved and streamlined these operations. The use of these techniques has been taken around the world to eradicate rodents from islands. Eradication technology has moved rapidly from ground-based bait station operations to aerial application of rodenticides. However, regulations, presence of and attitudes of island- communities and presence of a variety of non-target species precludes the aerial application of rodenticides on islands in many countries. As such, ground-based operations are the only option available to many agencies for the eradication of invasive rodents from islands. It is important to recognise that the use of ground-based operations should be a valid option during the assessment phase of any eradication proposal even in countries that can legally apply bait from the air; in many instances the use of ground-based techniques can be as economic and rapid. The use of ground-based operations can also facilitate opportunities for in-depth monitoring of both target and non-target species. -
Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000). -
Consultation on the Designation of Inshore Marine Nature Reserves
Consultation on the designation of inshore Marine Nature Reserves Department of Environment, Food and Agriculture Rheynn Chymmltaght, Bee as Eirinys Consultation Paper June 2017 1 Contents 1. Introduction 3 2. Objectives of consultation 4 3. Background 5 4. Designation of current Conservation Zones as Marine Nature Reserves: 7 Little Ness 8 Langness 9 Calf of Man and Wart Bank 10 West Coast 11 5. Extension of protection of Fisheries Closed Areas and Fisheries Restricted Areas: 12 Port Erin 13 Douglas 14 Baie ny Carrickey 15 Niarbyl 17 Laxey 18 6. Proposed additional management measures for Ramsey Marine Nature Reserve 19 7. References 21 8. Feedback on consultation 23 9. Consultation response form 24 10. Appendix 1 – Features of Conservation Importance 29 11. Appendix 2 – List of consultees 31 2 1. Introduction “We have a natural and built environment which we conserve and cherish and which is adapted to cope with the threats from climate change.” Isle of Man Programme for Government, 2016-2021. The work of the Department of Environment, Food and Agriculture (DEFA) is guided by the core principles of environmental, economic and social sustainability. Seeking to apply these principles to the fisheries sector, the Department is progressing options for protecting the marine environment and supporting sustainable fisheries in the Isle of Man territorial sea. In the DEFA delivery plan for the Programme for Government 2016-2021 there is a commitment to increase the proportion of territorial seabed which is protected as marine nature reserve, from the current level of 3% to at least 6%. This target is aligned to the Programme for Government outcome “We have a diverse economy where people choose to work and invest” and the policy statement “Maximise the social and economic value of our territorial seabed.” The Isle of Man Government is a signatory to the OSPAR Convention for the Protection of the Marine Environment and the Convention on Biological Diversity was extended to the Isle of Man in 2012. -
Amphipholis Squamata MICHAEL P
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1990, p. 2436-2440 Vol. 56, No. 8 0099-2240/90/082436-05$02.00/0 Copyright C) 1990, American Society for Microbiology Description of a Novel Symbiotic Bacterium from the Brittle Star, Amphipholis squamata MICHAEL P. LESSERt* AND RICHARD P. BLAKEMORE Department of Microbiology, University of New Hampshire, Durham, New Hampshire 03824 Received 8 November 1989/Accepted 3 June 1990 A gram-negative, marine, facultatively anaerobic bacterial isolate designated strain AS-1 was isolated from the subcuticular space of the brittle star, Amphipholis squamata. Its sensitivity to 0/129 and novobiocin, overall morphology, and biochemical characteristics and the moles percent guanine-plus-cytosine composition of its DNA (42.9 to 44.4) suggest that this isolate should be placed in the genus Vibrio. Strain AS-1 was not isolated from ambient seawater and is distinct from described Vibrio species. This symbiotic bacterium may assist its host as one of several mechanisms of nutrient acquisition during the brooding of developing embryos. The biology of bacterium-invertebrate symbiotic associa- isopropyl alcohol for 30 s and two rinses in sterile ASW. tions has elicited considerable interest, particularly since the Logarithmic dilutions were plated on Zobell modified 2216E discoveries during the past decade of chemoautotrophic medium (ASW, 1 g of peptone liter-1, 1 g of yeast extract symbiotic bacteria associated with several invertebrate spe- liter-' [pH 7.8 to 8.4]) (29), as were samples of ambient cies in sulfide-rich habitats (4, 5). Bacterial-invertebrate seawater from the site of collection and ASW controls. All symbioses (mutualistic) have been reported from many materials and equipment were sterilized, and all procedures invertebrate taxa, examples of which include cellulolytic were performed by aseptic techniques. -
Of Corncobs and Flat Artichokes (Pdf) [Neptunea]
Of Corncobs and Flat Artichokes by Ronald L. Shimek, Ph. D. Here in the Pacific Northwest many shell collectors tend to think that we have been short-changed with regard to large-shelled snails. A couple of larger snail species are relatively common, Ceratostoma foliatum (Gmelin, 1791) and Fusitriton oregonesis (Redfield, 1848) come to mind but, by and large, the sizes of most local shelled gastropods range from small to smaller. There is, however, one relatively diverse group that contains several species whose individuals may become relatively large. Even better, depending on the area where they are found, some individuals are spectacularly- colored with interesting sculpture. These animals are, of course, the larger species in the genus Neptunea. The mention of Neptunea in a recent issue of The Dredgings, prompted me to write this essay. For some time I’ve wanted to contribute a short article and I guess it just took the necessary stimulus. A B C Figure A. Neptunea pribiloffensis. Specimen is about 10 cm (4 inches) long. Collected from the eastern Bering Sea. Figure B. Neptunea lyrata. Specimen is about 12 cm (5 inches) long. Collected from the Strait of Juan de Fuca, south of San Juan Island, Washington. Figure C. Neptunea heros (Gray, 1850) is one of the more “flashy” northern Neptunea species. This specimen was about 19 cm (7 inches) long and, when living, the shell color was an intense magenta. Figure D. Neptunea pribiloffensis female depositing her egg-capsule mass. The snail is about 75 mm (3 inches) long. Note the flaccid, baby- sitting anemone in the lower left corner. -
Manx Place-Names: an Ulster View
37 Manx Place-Names: an Ulster View Kay Muhr In this chapter I will discuss place-name connections between Ulster and Man, beginning with the early appearances of Man in Irish tradition and its association with the mythological realm of Emain Ablach, from the 6th to the I 3th century. 1 A good introduction to the link between Ulster and Manx place-names is to look at Speed's map of Man published in 1605.2 Although the map is much later than the beginning of place-names in the Isle of Man, it does reflect those place-names already well-established 400 years before our time. Moreover the gloriously exaggerated Manx-centric view, showing the island almost filling the Irish sea between Ireland, Scotland, England and Wales, also allows the map to illustrate place-names from the coasts of these lands around. As an island visible from these coasts Man has been influenced by all of them. In Ireland there are Gaelic, Norse and English names - the latter now the dominant language in new place-names, though it was not so in the past. The Gaelic names include the port towns of Knok (now Carrick-) fergus, "Fergus' hill" or "rock", the rock clearly referring to the site of the medieval castle. In 13th-century Scotland Fergus was understood as the king whose migration introduced the Gaelic language. Further south, Dundalk "fort of the small sword" includes the element dun "hill-fort", one of three fortification names common in early Irish place-names, the others being rath "ring fort" and lios "enclosure". -
By C. M. Yonge, D.Se. University of Bristol
453 EVOLUTION OF CILIARY FEEDING IN THE PROSOBRANCHIA, WITH AN ACCOUNT OF FEEDING IN GAPULUS UNGAR/GUS By C. M. Yonge, D.Se. University of Bristol (Text-figs. 1-6) CONTENTS PAGE Introduction 453 Rejection Currents in the Mantle Cavity of the Prosobranchia 453 Evolution of Ciliary Feeding 455 Vermetus novae-hollandiae . 456 Crepidula fornicata and other Calyptraeidae 457 Capulus ungaricus 459 Modification of gill filaments 461 Discussion. 465 Summary 467 References. 468 INTRODUCTION Ciliary feeding, of such widespread occurrence in the Lamellibranchia, is confined in the Gastropoda to a few scattered groups. In freshwater Pul- monata, such as Limnaea, cilia on the foot assist in feeding when the animal is creeping suspended from the surface film (Brockmeier, 1898). Thecoso- matous Pteropoda feed exclusively by the aid of cilia on the unpaired middle lobe and the paired side lobes of the foot, and an evolutionary series- Cavolinia-Cymbulia-Gleba-can be traced in which there is a progressive elaboration in the perfection of this mechanism and an accompanying reduc- tion in the buccal mass and associated structures handed down from carni- vorous ancestors (Yonge, 1926). Only in the few prosobranchs which have acquired ciliary feeding mechanisms do these represent a modification of the ctenidia as in the Lamellibranchia. They also, as it is the aim of this paper to show, represent a modification of the rejection currents present in the mantle cavity of typical prosobranchs. REJECTION CURRENTS IN THE MANTLE CAVITY OF THE PROSOBRANCHIA In typical Prosobranchia a respiratory current, created by the beating of the lateral cilia on the gill filaments, is drawn into the mantle cavity by way of the inhalent opening (frequently prolonged into a siphon, e.g. -
Distribution and Abundance of Some Epibenthic Invertebrates of the Northeastern Gulf of Alaska with Notes on the Feeding Biology of Selected Species
DISTRIBUTION AND ABUNDANCE OF SOME EPIBENTHIC INVERTEBRATES OF THE NORTHEASTERN GULF OF ALASKA WITH NOTES ON THE FEEDING BIOLOGY OF SELECTED SPECIES by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 5 August 1978 357 We thank Max Hoberg, University of Alaska, and the research group from the Northwest Fisheries Center, Seattle, Washington, for assistance aboard the MV North Pucijk. We also thank Lael Ronholt, Northwest Fisheries Center, for data on commercially important invertebrates. Dr. D. P. Abbott, of the Hopkins Marine Station, Stanford University, identified the tunicate material. We appreciate the assistance of the Marine Sorting Center and Max Hoberg of the University of Alaska for taxonomic assistance. We also thank Rosemary Hobson, Data Processing, University of Alaska, for help with coding problems and ultimate resolution of those problems. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environmental Assessment Program. SUMMARY OF OBJEC!CIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT The objectives of this study were to obtain (1) a qualitative and quantitative inventory of dominant epibenthic species within the study area, (2) a description of spatial distribution patterns of selected benthic invertebrate species, and (3) preliminary observations of biological interrelationships between selected segments of the benthic biota. The trawl survey was effective, and excellent spatial coverage was obtained, One hundred and thirty-three stations were successfully occupied, yielding a mean epifaunal invertebrate biomass of 2.6 g/mz. -
ABSTRACT Title of Dissertation: PATTERNS IN
ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range. -
Lack of Taxonomic Differentiation in An
ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2005) xxx–xxx www.elsevier.com/locate/ympev Lack of taxonomic diVerentiation in an apparently widespread freshwater isopod morphotype (Phreatoicidea: Mesamphisopidae: Mesamphisopus) from South Africa Gavin Gouws a,¤, Barbara A. Stewart b, Conrad A. Matthee a a Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa b Centre of Excellence in Natural Resource Management, University of Western Australia, 444 Albany Highway, Albany, WA 6330, Australia Received 20 December 2004; revised 2 June 2005; accepted 2 June 2005 Abstract The unambiguous identiWcation of phreatoicidean isopods occurring in the mountainous southwestern region of South Africa is problematic, as the most recent key is based on morphological characters showing continuous variation among two species: Mesam- phisopus abbreviatus and M. depressus. This study uses variation at 12 allozyme loci, phylogenetic analyses of 600 bp of a COI (cyto- chrome c oxidase subunit I) mtDNA fragment and morphometric comparisons to determine whether 15 populations are conspeciWc, and, if not, to elucidate their evolutionary relationships. Molecular evidence suggested that the most easterly population, collected from the Tsitsikamma Forest, was representative of a yet undescribed species. Patterns of diVerentiation and evolutionary relation- ships among the remaining populations were unrelated to geographic proximity or drainage system. Patterns of isolation by distance were also absent. An apparent disparity among the extent of genetic diVerentiation was also revealed by the two molecular marker sets. Mitochondrial sequence divergences among individuals were comparable to currently recognized intraspeciWc divergences. Sur- prisingly, nuclear markers revealed more extensive diVerentiation, more characteristic of interspeciWc divergences.