The Role of Environment in Fueling Seyfert AGN

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Environment in Fueling Seyfert AGN The Role of Environment in Fueling Seyfert AGN Erin K. S. Hicks University of Alaska Anchorage Francisco Müller-Sánchez (CASA), Matt Malkan (UCLA), Po-Chieh Yu (UCLA), Richard Davies (MPE) * Support from NSF AAG under award AST-1008042. UAA Goal: Trace inflow mechanisms on scales of Physics & Astronomy 1kpc down to tens of parsecs. Potential Seyfert AGN fueling mechanisms: i. Major mergers ii. Minor mergers iii. Accretion of gas streamers vi. Secular evolution Erin K. S. Hicks IAU August 2015 UAA Goal: Trace inflow mechanisms on scales of Physics & Astronomy 1kpc down to tens of parsecs. Potential Seyfert AGN fueling mechanisms: i. Major mergers Several studies suggest not major mergers: ª Over 50% of z~2 AGN in undisturbed ii. Minor mergers host galaxies (Koceviski et al. 2012) ª AGN at z~2 not in galaxies with iii. Accretion of enhanced star formation (Rosario et gas streamers al. 2013) vi. Secular evolution Erin K. S. Hicks IAU August 2015 UAA Goal: Trace inflow mechanisms on scales of Physics & Astronomy 1kpc down to tens of parsecs. Potential Seyfert AGN fueling mechanisms: i. Major mergers ª Minor mergers may be associated with low and intermediate luminosity AGN ii. Minor mergers (Neistein & Netzer 2014) ª Number required to account for iii. Accretion of dust in early type galaxies is gas streamers 250 times greater than predicted (Simões Lopes et al 2007, Martini et al 2013) vi. Secular evolution Erin K. S. Hicks IAU August 2015 UAA Goal: Trace inflow mechanisms on scales of Physics & Astronomy 1kpc down to tens of parsecs. Potential Seyfert AGN fueling mechanisms: i. Major mergers ii. Minor mergers iii. Accretion of gas streamers We focus on these using circumnuclear H2 kinematics vi. Secular evolution Erin K. S. Hicks IAU August 2015 UAA Detailed Kinematics Required Physics & Astronomy ² Imaging studies cannot differentiate between the relative roles of minor mergers, gas accretion (due to interactions or streamers), and secular evolution ² Detailed studies of the kinematics are needed ² Also need to look at spatial scales with relevant timescales: ü AGN duty cycle is 100 Myrs with flickering on scales of 1-10 Myrs (e.g. Hickox et al. 2014) ü At r=100pc v=100-150 km s-1 (Hicks et al. 2013) à Dynamical timescale of 2-3 Myrs, comparable to duty cycle With local galaxies we can probe the central few hundred parsecs at the resolution needed to accurately measure the nuclear gas and stellar kinematics Erin K. S. Hicks IAU August 2015 Summary of Observations PSF FWHM ID Galaxy (pc) OSIRIS 1a NGC 6814 18 1q NGC 864 12 UAA 2a NGC 4151 8 2q NGC 5383 32 Matched Sample: Seyfert & Quiescent3a NGCGalaxies 7469 35 Physics & 3q NGC 5614 47 Astronomy 4a NGC 3227 6 Galaxy pairs (from Martini et al. 2003) Summary4q NGC of Observations 2406 -- matched in large scale (>kpc) host galaxy 5a NGC 4593 PSF FWHM-- ID5q NGCGalaxy 5614 (pc)-- properties: SINFONIOSIRIS 1a NGC 32276814 5618 1q ICNGC 5267 864 9012 galaxy type, optical luminosity, angular & 2a NGC 56434151 408 2q NGC 53834030 3287 size, inclination, and distance 3a NGC 74696300 3540 et 2014et al. 3q NGC 56143368 4730 VLT SINFONI: 5 pairs <PSF FWHM>=58±25 pc 4a NGC 32276814 576 Daives Hicks et al.2013 Summary4q NGC of Observations 2406628 28-- Keck OSIRIS: 3 pairs <PSF FWHM>=23±16 pc 5a NGC 45937743 PSF FWHM50-- ID5q NGCGalaxy 5614357 (pc)97-- OSIRISSINFONI 1a1a NGCNGC 68143227 1856 1q1q NGCIC 5267 864 1290 2a2a NGCNGC 41515643 408 2q2q NGCNGC 53834030 3287 3a3a NGCNGC 74696300 3540 3q3q NGCNGC 56143368 4730 4a4a NGCNGC 32276814 576 extended extended high resolution sample 4q4q NGCNGC 2406628 --28 5a5a NGCNGC 45937743 --50 5q5q NGCNGC 5614357 --97 SINFONI 1a NGC 3227 56 1q IC 5267 90 2a NGC 5643 40 Erin K. S. Hicks 2q NGCIAU 4030 August 201587 3a NGC 6300 40 3q NGC 3368 30 4a NGC 6814 57 4q NGC 628 28 5a NGC 7743 50 5q NGC 357 97 UAA Comparison of Integrated Properties Physics & Astronomy Seyferts systematically have: AGN (1) a more centrally concentrated nuclear stellar surface brightness (2) a lower central stellar inactive velocity dispersion (r < 200 pc) Stars traced by CO 2.3µm bandheads Hicks et al. 2013 Erin K. S. Hicks IAU August 2015 UAA Comparison of Integrated Properties Physics & Astronomy OSIRIS extended high resolution sample Seyferts systematically have: AGN (1) a more centrally concentrated nuclear stellar surface brightness (2) a lower central stellar inactive velocity dispersion (r < 200 pc) Stars traced by CO 2.3µm bandheads Hicks et al. 2013 Erin K. S. Hicks IAU August 2015 The Astrophysical Journal,768:107(17pp),2013May10 Hicks et al. UAA Comparison of Integrated Properties Physics & Figure 18. Mean uniformly weighted CO velocity dispersion of all pixels within apertures of radius (a) 0–100 pc and (b) 100–250 pc and (c) the ratio of these two. The Astronomy triangles represent Seyfert galaxies while circles are quiescent galaxies. The error bars represent the standard deviation of the dispersion measured in the pixels within the aperture considered. The probability that the two subsamples are drawn from different parent populations based on both the r 0–100 pc and r 100–250 pc apertures is 93.8%. = = Seyferts systematically have: (A color version of this figure is available in the online journal.) (1) a more centrally AGN concentrated nuclear stellar surface brightness (2) a lower central stellar velocity dispersion inactive (r < 200 pc) (3) more centrally Hicks et al. 2013 concentrated H2 surface brightness profiles Figure 19. Mean H2 luminosity as a function of radius (a) intrinsic values and (b) normalized to 250 pc. The error bars are the standard deviations of measurements (4) elevated central within each aperture. The triangles represent Seyfert galaxies while circles are quiescent galaxies. The dashed curves and arrows represent upper limits. The label on the curve for each galaxy is as given in Table 1. Molecular gas (A color version of this figure is available in the online journal.) H2 1-0 S(1) luminosity traced by (r < 250 pc) H2 1-0 S(1) Erin K. S. Hicks IAU August 2015 Figure 20. Total H2 luminosity in an apertures of radius (a) 0–100 pc and (b) 100–250 pc and (c) the ratio of these two. The triangles represent Seyfert galaxies while circles and upper limits are quiescent galaxies. The error bars represent the 10% systematic uncertainty of the flux calibration. The probability that the two subsamples are drawn from different parent populations based on the r 0–100 pc aperture is 96.9%. = (A color version of this figure is available in the online journal.) 14 The Astrophysical Journal,768:107(17pp),2013May10 Hicks et al. UAA Comparison of Integrated Properties Physics & Figure 18. Mean uniformly weighted CO velocity dispersion of all pixels within apertures of radius (a) 0–100 pc and (b) 100–250 pc and (c) the ratio of these two. The Astronomy triangles represent Seyfert galaxies while circles are quiescent galaxies. The error bars represent the standard deviation of the dispersion measured in the pixels within the aperture considered. The probability that the two subsamples are drawnOSIRIS from extended different parenthigh populations based on both the r 0–100 pc and r 100–250 pc apertures is 93.8%. resolution sample = = Seyferts systematically have: (A color version of this figure is available in the online journal.) (1) a more centrally AGN concentrated nuclear stellar surface brightness (2) a lower central stellar velocity dispersion inactive (r < 200 pc) (3) more centrally Hicks et al. 2013 concentrated H2 surface brightness profiles Figure 19. Mean H2 luminosity as a function of radius (a) intrinsic values and (b) normalized to 250 pc. The error bars are the standard deviations of measurements (4) elevated central within each aperture. The triangles represent Seyfert galaxies while circles are quiescent galaxies. The dashed curves and arrows represent upper limits. The label on the curve for each galaxy is as given in Table 1. Molecular gas (A color version of this figure is available in the online journal.) H2 1-0 S(1) luminosity traced by (r < 250 pc) H2 1-0 S(1) Erin K. S. Hicks IAU August 2015 Figure 20. Total H2 luminosity in an apertures of radius (a) 0–100 pc and (b) 100–250 pc and (c) the ratio of these two. The triangles represent Seyfert galaxies while circles and upper limits are quiescent galaxies. The error bars represent the 10% systematic uncertainty of the flux calibration. The probability that the two subsamples are drawn from different parent populations based on the r 0–100 pc aperture is 96.9%. = (A color version of this figure is available in the online journal.) 14 UAA Comparison of Integrated Properties Physics & Astronomy Seyferts systematically have: Ø dynamically cold (in (1) a more centrally comparison to the bulge) concentrated nuclear component of gas and stellar surface brightness stars on scales of hundreds of parsecs in (2) a lower central stellar Seyferts velocity dispersion (r < 200 pc) Ø significant gas reservoir and a relatively young stellar population (3) more centrally concentrated H2 surface Ø nuclear stellar population brightness profiles requires a supply of gas (4) elevated central from which to form à inflow required H2 1-0 S(1) luminosity (r < 250 pc) Hicks et al. 2013 Erin K. S. Hicks IAU August 2015 8 8 Davies et al. Davies et al. Fueling AGN II: Spatially Resolved Molecular Inflows and Outflows 9 8 Davies et al. Fig. 3.— Molecular gas as traced by the 1-0 S(1) line in NGCFig. 3.—3227,Molecular showing the gassame as traced region by as the in 1-0 Fig.
Recommended publications
  • Interstellarum 52 • Juni/Juli 2007 1 Inhalt
    Editorial fokussiert Liebe Leserinnen und Leser, gibt es tatsächlich Planeten um andere Sterne, die die Vorrausset- zungen für die Entwicklung von Leben erfüllen? Eine derartige Mel- dung machte Ende April die Runde, als die ESO die Entdeckung eines Planeten in der »bewohnbaren«, weil möglicherweise die Existenz fl üs- sigen Wassers erlaubenden Zone um den Stern Gliese 581 bekanntgab (Seite 18). Solche Berichte machen den Eindruck, die Entdeckung von Leben in anderen Sonnensystemen stehe unmittelbar bevor – doch Daniel Fischers Blick hinter die Kulissen zeigt, dass wir noch am Anfang der Suche nach Exoplaneten stehen (Seite 12). Wenn interstellarum Teleskope testet, dann richtig – mit mehrmo- natigem Praxistest und optischer Bank. Diesmal stehen drei apochro- Ronald Stoyan, Chefredakteur matische Refraktoren der neuen Generation auf dem Prüfstand, die die Entscheidung besonders schwer machen – und die Beurteilung zu einem Vergnügen für den Tester. In diesem Heft steht die visuelle Leis- tungsfähigkeit im Vordergrund (Seite 50), in der kommenden Ausgabe werden die fotografi schen Fähigkeiten nachgereicht. Übrigens: Falls Sie einen Fernrohr-Kauf planen, empfehle ich Ihnen unsere Neuer- scheinung »Fernrohrwahl«. Dort sind praktisch alle auf dem deutschen Markt erhältlichen Modelle tabellarisch aufgelistet. Neu im Verlagsprogramm ist ebenfalls eine neue Ausgabe der inter- stellarum Archiv-CD, diesmal mit PDF-Dokumenten der Heftnummern 32 bis 49 – bestellbar über unsere Internetseite www.interstellarum.de. Dort laden wir Sie auch zur Teilnahme an der bisher größten Leserum- frage unserer Geschichte ein, denn wir wollen mehr über Sie und Ihre astronomischen Vorlieben erfahren – natürlich anonym. Bitte helfen Sie uns, interstellarum noch mehr auf Ihre Bedürfnisse auszurichten. Ihr Titelbild: Wie ein Planet eines anderen Sterns aussieht ist reine Spekulation – doch die künstlerische Darstellung der ESO hilft der Vorstellungskraft auf die Sprünge.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Arp Catalogue.Xlsx
    ATLAS OF PECULIAR GALAXIES CATALOGUE 1 ATLAS OF PECULIAR GALAXIES CATALOGUE Object Name Mag RA Dec Constellation ARP 1 NGC 2857 12.2 09:24:37 49:21:00 Ursa Major ARP 2 13.2 16:16:18 47:02:00 Hercules ARP 3 13.4 22:36:34 ‐02:54:00 Aquarius ARP 4 13.7 01:48:25 ‐12:22:00 Cetus ARP 5 NGC 3664 12.8 11:24:24 03:19:00 Leo ARP 6 NGC 2537 12.3 08:13:14 45:59:00 Lynx ARP 7 14.5 08:50:17 ‐16:34:00 Hydra ARP 8 NGC 0497 13 01:22:23 ‐00:52:00 Cetus ARP 9 NGC 2523 11.9 08:14:59 73:34:00 Camelopardalis ARP 10 13.8 02:18:26 05:39:00 Cetus ARP 11 14.4 01:09:23 14:20:00 Pisces ARP 12 NGC 2608 12.2 08:35:17 28:28:00 Cancer ARP 13 NGC 7448 11.6 23:00:02 15:59:00 Pegasus ARP 14 NGC 7314 10.9 22:35:45 ‐26:03:00 Pisces Austrinus ARP 15 NGC 7393 12.6 22:51:39 ‐05:33:00 Aquarius ARP 16 M66 8.9 11:20:14 12:59:00 Leo ARP 17 14.7 07:44:32 73:49:00 Camelopardalis ARP 17 07:44:38 73:48:00 Camelopardalis ARP 18 NGC 4088 10.5 12:05:35 50:32:00 Ursa Major ARP 19 NGC 0145 13.2 00:31:45 ‐05:09:00 Cetus ARP 20 14.4 04:19:53 02:05:00 Taurus ARP 21 14.7 11:04:58 30:01:00 Leo Minor ARP 22 14.9 11:59:29 ‐19:19:00 Corvus ARP 22 NGC 4027 11.2 11:59:30 ‐19:15:00 Corvus ARP 23 NGC 4618 10.8 12:41:32 41:09:00 Canes Venatici ARP 24 NGC 3445 12.6 10:54:36 56:59:00 Ursa Major ARP 24 12.8 10:54:45 56:57:00 Ursa Major ARP 25 NGC 2276 11.4 07:27:13 85:45:00 Cepheus ARP 26 M101 7.9 14:03:12 54:21:00 Ursa Major ARP 27 NGC 3631 10.4 11:21:02 53:10:00 Ursa Major ARP 28 NGC 7678 11.8 23:28:27 22:25:00 Pegasus ARP 29 NGC 6946 8.8 20:34:52 60:09:00 Cygnus ARP 30 NGC 6365 12.2 17:22:42 62:10:00
    [Show full text]
  • Atlante Grafico Delle Galassie
    ASTRONOMIA Il mondo delle galassie, da Kant a skylive.it. LA RIVISTA DELL’UNIONE ASTROFILI ITALIANI Questo è un numero speciale. Viene qui presentato, in edizione ampliata, quan- [email protected] to fu pubblicato per opera degli Autori nove anni fa, ma in modo frammentario n. 1 gennaio - febbraio 2007 e comunque oggigiorno di assai difficile reperimento. Praticamente tutte le galassie fino alla 13ª magnitudine trovano posto in questo atlante di più di Proprietà ed editore Unione Astrofili Italiani 1400 oggetti. La lettura dell’Atlante delle Galassie deve essere fatto nella sua Direttore responsabile prospettiva storica. Nella lunga introduzione del Prof. Vincenzo Croce il testo Franco Foresta Martin Comitato di redazione e le fotografie rimandano a 200 anni di studio e di osservazione del mondo Consiglio Direttivo UAI delle galassie. In queste pagine si ripercorre il lungo e paziente cammino ini- Coordinatore Editoriale ziato con i modelli di Herschel fino ad arrivare a quelli di Shapley della Via Giorgio Bianciardi Lattea, con l’apertura al mondo multiforme delle altre galassie, iconografate Impaginazione e stampa dai disegni di Lassell fino ad arrivare alle fotografie ottenute dai colossi della Impaginazione Grafica SMAA srl - Stampa Tipolitografia Editoria DBS s.n.c., 32030 metà del ‘900, Mount Wilson e Palomar. Vecchie fotografie in bianco e nero Rasai di Seren del Grappa (BL) che permettono al lettore di ripercorrere l’alba della conoscenza di questo Servizio arretrati primo abbozzo di un Universo sempre più sconfinato e composito. Al mondo Una copia Euro 5.00 professionale si associò quanto prima il mondo amatoriale. Chi non è troppo Almanacco Euro 8.00 giovane ricorderà le immagini ottenute dal cielo sopra Bologna da Sassi, Vac- Versare l’importo come spiegato qui sotto specificando la causale.
    [Show full text]
  • Kinematic Scaling Relations of CALIFA Galaxies: a Dynamical Mass Proxy
    MNRAS 479, 2133–2146 (2018) doi:10.1093/mnras/sty1522 Advance Access publication 2018 June 11 Kinematic scaling relations of CALIFA galaxies: A dynamical mass proxy for galaxies across the Hubble sequence Downloaded from https://academic.oup.com/mnras/article-abstract/479/2/2133/5035840 by Inst. Astrofisica Andalucia CSIC user on 20 November 2019 E. Aquino-Ort´ız,1‹ O. Valenzuela,1 S. F. Sanchez,´ 1 H. Hernandez-Toledo,´ 1 V. Avila-Reese,´ 1 G. van de Ven,2,3 A. Rodr´ıguez-Puebla,1 L. Zhu,2 B. Mancillas,4 M. Cano-D´ıaz1 and R. Garc´ıa-Benito5 1Instituto de Astronom´ıa, Universidad Nacional Autonoma´ de Mexico,´ A.P. 70-264, 04510 CDMX, Mexico 2 Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg, Germany 3 European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching b. Munchen, Germany 4 LERMA, CNRS UMR 8112, Observatoire de Paris, 61 Avenue de l’Observatoire, F-75014 Paris, France 5 Instituto de Astrof´ısica de Andaluc´ıa (CSIC), PO Box 3004, E-18080 Granada, Spain Accepted 2018 June 6. Received 2018 May 26; in original form 2018 April 25 ABSTRACT We used ionized gas and stellar kinematics for 667 spatially resolved galaxies publicly available from the Calar Alto Legacy Integral Field Area survey (CALIFA) third Data Release with the aim of studying kinematic scaling relations as the Tully & Fisher (TF) relation using rotation velocity, Vrot, the Faber & Jackson (FJ) relation using velocity dispersion, σ , and 2 = 2 + 2 also a combination of Vrot and σ through the SK parameter defined as SK KVrot σ with constant K.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • DSO List V2 Current
    7000 DSO List (sorted by name) 7000 DSO List (sorted by name) - from SAC 7.7 database NAME OTHER TYPE CON MAG S.B. SIZE RA DEC U2K Class ns bs Dist SAC NOTES M 1 NGC 1952 SN Rem TAU 8.4 11 8' 05 34.5 +22 01 135 6.3k Crab Nebula; filaments;pulsar 16m;3C144 M 2 NGC 7089 Glob CL AQR 6.5 11 11.7' 21 33.5 -00 49 255 II 36k Lord Rosse-Dark area near core;* mags 13... M 3 NGC 5272 Glob CL CVN 6.3 11 18.6' 13 42.2 +28 23 110 VI 31k Lord Rosse-sev dark marks within 5' of center M 4 NGC 6121 Glob CL SCO 5.4 12 26.3' 16 23.6 -26 32 336 IX 7k Look for central bar structure M 5 NGC 5904 Glob CL SER 5.7 11 19.9' 15 18.6 +02 05 244 V 23k st mags 11...;superb cluster M 6 NGC 6405 Opn CL SCO 4.2 10 20' 17 40.3 -32 15 377 III 2 p 80 6.2 2k Butterfly cluster;51 members to 10.5 mag incl var* BM Sco M 7 NGC 6475 Opn CL SCO 3.3 12 80' 17 53.9 -34 48 377 II 2 r 80 5.6 1k 80 members to 10th mag; Ptolemy's cluster M 8 NGC 6523 CL+Neb SGR 5 13 45' 18 03.7 -24 23 339 E 6.5k Lagoon Nebula;NGC 6530 invl;dark lane crosses M 9 NGC 6333 Glob CL OPH 7.9 11 5.5' 17 19.2 -18 31 337 VIII 26k Dark neb B64 prominent to west M 10 NGC 6254 Glob CL OPH 6.6 12 12.2' 16 57.1 -04 06 247 VII 13k Lord Rosse reported dark lane in cluster M 11 NGC 6705 Opn CL SCT 5.8 9 14' 18 51.1 -06 16 295 I 2 r 500 8 6k 500 stars to 14th mag;Wild duck cluster M 12 NGC 6218 Glob CL OPH 6.1 12 14.5' 16 47.2 -01 57 246 IX 18k Somewhat loose structure M 13 NGC 6205 Glob CL HER 5.8 12 23.2' 16 41.7 +36 28 114 V 22k Hercules cluster;Messier said nebula, no stars M 14 NGC 6402 Glob CL OPH 7.6 12 6.7' 17 37.6 -03 15 248 VIII 27k Many vF stars 14..
    [Show full text]
  • Age Consistency Between Exoplanet Hosts and Field Stars
    A&A 585, A5 (2016) Astronomy DOI: 10.1051/0004-6361/201527297 & c ESO 2015 Astrophysics Age consistency between exoplanet hosts and field stars A. Bonfanti1;2, S. Ortolani1;2, and V. Nascimbeni2 1 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy e-mail: [email protected] 2 Osservatorio Astronomico di Padova, INAF, Vicolo dell’Osservatorio 5, 35122 Padova, Italy Received 2 September 2015 / Accepted 3 November 2015 ABSTRACT Context. Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photo- metric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. Aims. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform deriva- tion of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Methods. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of 0 log RHK and v sin i, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density ρ? allows us to compute stellar luminosity even if the distance is not available, by combining ρ? with the spectroscopic log g.
    [Show full text]
  • Some Galaxy Properties
    Galaxies- Please Read CH 1 in! • What is a galaxy? – Observationally S+G – Theoretically • Observationally – A lot of matter in 'one' place • historically matter was traced by ellipticals optical light (due mostly to stars) • Now can find and study galaxies spirals by radio and mm emission from ionized gas, IR emission from dust and by x-ray emission from their ISM+ black holes • Theoretically – A bound system with a mass between Galaxies come in a huge range 6 that of a globular cluster (~10 M of shapes and sizes and a group of galaxies ~1013 M ) Generically divided into 3 – Most of the mass (>65%) is dark matter (>10x more DM than stars) generalized morphologies • e.g. compact condensation of spirals baryons near the center of dark ellipticals 1 matter halos(https://en.wikipedia.org/ wiki/Dark_matter_halo) irregulars Welcome! • What is this course about? • Logistics – Textbook, web pages – Pre-requisites – Assignments, exams, grading – Academic integrity – Semester plan • Discussion – galaxies the big picture 2 Textbook & web pages • Required text: Galaxies in the Universe: An Introduction (2nd Edition) by L. Sparke & J. Gallagher Authors web page http://www.astro.wisc.edu/~sparke/book/galaxybook.html • Secondary book: Galaxy Formation & Evolution (very complete but dense) Mo, van den Bosch and White http://www.physics.utah.edu/~vdbosch/astro5580.html – the first two chapters of MBW are on-line at http://www.astro.umass.edu/~hjmo/astro330/htmldir/ reading.pdf For reference Galactic Dynamics (2nd Edition) by J. Binney & S. Tremaine Course web page: – Information, syllabus, lecture schedule – Assignments – Past lectures • Lectures will be posted on the web page after they are given 3 Other books Extragalactic Astronomy and Cosmology: An Introduction by P.
    [Show full text]
  • Seen Galaxies Count Ref1 Ref2 Con Visual Scale Mag SBR SIZE M Distance Rv Dist COMMENTS
    Seen galaxies Count ref1 ref2 con visual_scale mag SBR SIZE_M Distance Rv dist COMMENTS 1. NGC 224 M 31 AND 5 3.4 13.5 189 2.6 -14 Very large and bright 2. NGC 3031 M 81 UMA 4 6.9 13.2 24.9 12 -3 Fine large galaxy 3. NGC 598 M 33 TRI 3 5.7 14.2 68.7 2.8 -10 Large faint glow in square of stars 4. NGC 4594 M 104 VIR 3 8.0 11.6 8.6 30 48 Moon therefore little detail 5. NGC 221 M 32 AND 3 8.1 12.4 8.5 2.6 -10 Small but easy to see 6. NGC 4472 M 49 VIR 3 8.4 13.2 9.8 53 43 Lovely fuzzy galaxy 7. NGC 3034 M 82 UMA 3 8.4 12.5 10.5 12 13 Could make out bright and dark patches 8. NGC 4258 M 106 CVN 3 8.4 13.6 17.4 24 21 Fine large oval galaxy. So much brighter than most I have been looking at recently. 9. NGC 4826 M 64 COM 3 8.5 12.7 10.3 24 21 Easy galaxy to see 10. NGC 4486 M 87 VIR 3 8.6 13 8.7 51 57 Bright ball 11. NGC 4649 M 60 VIR 3 8.8 12.9 7.6 54 49 Lovely view with three galaxies visible. M60 is the brightest of the three. A nice bright ball of stars 12. NGC 3115 MCG - 1-26- 18 SEX 3 8.9 11.9 7.3 33 29 Bright spindle 13.
    [Show full text]