viruses Review Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton I-Hsuan Wang 1,† ID , Christoph J. Burckhardt 2,†, Artur Yakimovich 3 ID and Urs F. Greber 4,* ID 1 Division of Virology, Institute of Medical Science, the University of Tokyo, Tokyo 108-8639, Japan;
[email protected] 2 Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
[email protected] 3 MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK;
[email protected] 4 Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland * Correspondence:
[email protected]; Tel.: +41-44-635-4841, Fax: +41-44-635-6817 † These authors contributed equally to this work. Received: 8 February 2018; Accepted: 28 March 2018; Published: 31 March 2018 Abstract: Viruses have a dual nature: particles are “passive substances” lacking chemical energy transformation, whereas infected cells are “active substances” turning-over energy. How passive viral substances convert to active substances, comprising viral replication and assembly compartments has been of intense interest to virologists, cell and molecular biologists and immunologists. Infection starts with virus entry into a susceptible cell and delivers the viral genome to the replication site. This is a multi-step process, and involves the cytoskeleton and associated motor proteins. Likewise, the egress of progeny virus particles from the replication site to the extracellular space is enhanced by the cytoskeleton and associated motor proteins. This overcomes the limitation of thermal diffusion, and transports virions and virion components, often in association with cellular organelles.