Phylogeny and Wood Anatomy of Nandina

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Wood Anatomy of Nandina PHYLOGENY AND WOOD ANATOMY OF NANDINA by YU-FENGSHEN Nqndina is a monotypic genus of great botanical interest. Its only species, Nan­ dina domestica Tbunb. is an upright shrub of central China. It is commonly cultivated in China, known as Tien-chu (~~) or Heavenly bamboo, and is chiefly valued for its evergreen graceful foliage and its large panicle of bright red fruits. Taxonomically it is of disputable position. It is generally included in the Berberi­ daceae. Aside from a few herbaceous genera, such as Podophyllum, jejJersonia, Diphylleia, Achlys, the only woody genera of the family are Berberis, Mahonia, and Nandina. These genera are sometimes considered as constituting two subfamilies: Podophylloideae which comprise the above mentioned herbaceous genera and Berberi­ oideae, which comprise Berberis, Malwnia, Nandina as well as other herbaceous genera like Epimedium and Le01ltice (Rendle 1925). The two subfamilies are considered by some authers as representing distinct families (Kumazawa 1930, 1938). Berberis and Mahonia are closely related. Actually they differ from each other only in the leaves being always simple in the former and simple pinnate in the latter. Some authors express the opinion that the two should be treated as a single genus. Among all berberidaceous genera, the genus Nandina is .generally considered as deviate farthest phylogenetically. The aerial stem of this plant elongates monopodially until it terminates in as inflorescence, producing two to four foliar and one to three scales each year. As the monopodial stem terminates in an inflorescence, the axillary bud elongates to form a new axis which in turn terminates in an inflorescence in the following year. The slender shrubby stem of the adult plant is, therefore, represented by a sympodial axis. (Kumazawa 1938). Kumazawa (1937) also investigates the ovular structures and types of dehiscence of the anther and finds that these characters are also unique among the berberidaceous genera. This genus, together with the other herbaceous genera such as EPimedium, Achlys, jejJersonia, etc. are included in the tribe Epimedieae by Prantl (1891) Tischler (1902), Himmelbaur (1913), and Engler-Diels (1936). Heintze (1927) establishes a Subfamily Nandinoideae for its sole accomodation and Nakai (1936; a family Nandinaceae. Ku· mazawa (1938) supports Nakai's view and considers it, together with Paeonia, as the most primitive members of the Berberidaceae and Ranunculaceae. Various phases of morphological, anatomical, and biological studies on the Berberi­ daceae have been made by Citerne (1893), Tischler (1902), Himmelbaur (1913), Schmidt (1928), Champan (1936), Kumazawa (1936, 1937, 1938) and others. Record and Hess (1943), describe the wood anatomy of Berberis. No investigation has been made on ; 86 the wood anatomy. of NaJldilla. As Xylotomy is now considered.as a helpful indicator of the phylogeny of woody plants, :the writer presents here the result of his investiga· tion on this problem. A description of the external characters of the three genera is as follows: . 1. Nandilla Thunb. Evergreen shrub: lvs. usually thrice pinnate; rachis articulate; Ifts. entire; tis. in large terminal panicles; sepals in numerous whorls of 3, gradually passing into the white petals; nectaries 3 or 6; anthers opening with longitudinal slit; fruit a 2-seeded globular berry. 2. MallOnia Nutl. Evergreen unarmed shrubs, rarely small trees: terminal buds with numerous persistent p·ointed scales; leaves alternate. oddpinnate. rarely 3-foliolate; Ifts. usually spinose·dentate, the lat~ral sessile; stipules minute, subulate; tis. yellow in usually many·tid. racemes or panicles springing from the axils of the bud·scales; .sepals 9; petals 6; ovary usually with few ovules; fr. dark blue and bloomy, rarely red or whitesh. About 50 species in North and Central Am. and in East and South Asia. 3. Berberis L. Evergreen or deciduous spiny shrubs rarely small trees: lvs. alter· nate, simple, those of the shoots changed into usually 3-parted spines, the normal Ivs. appearing in fascicles on short axillary SpUTS; tis. yellow in elongated or umbel·like, rarely compound racemes, or solitary or fascicled; sepals 6, with 2 or 3 bracttets below; petals 6, often a smaller than the sepals and usually with 2 nectariferous glands at , base; stamens 6, irritable, the anthers opening with 2 valves; ovary with 1 to many ovules; stigma sessile or on a short style; fro a 1- to several·seeded red to hlack berry. About 175 species, particularly well developed in E. and C. Asia and S. Am., few in N. Am., Eu. and N. Afr. For a study of the w90dy anatomy, radial, tangential, and transverse sections of the stem of Na",lilla domestica Thunb. are prepared from fresh material. Similar Sections of the stems of Berberis Kawakamii Hay. and Mahonia ~ommarifolia Takeda ar·o examined in order to corroborate Record and Hess's description (1943). They can· sid'~r the genus Berberis as including M~h'}nia and give the following description for the wood anatomy: "Pores small to minute, the large one zonate (ring·porous), the others arranged in an irregular pattern of wavy and zig.zag bands and patches. Vessels with simple perforations; members storied; spirals present; pitting fine, alternate. Rays nearly all large (Platnus type), giving ris~ to conspicuous silver grain on radial surface; not storied; nearly homogeneous; pits to vessel small, circular. Wood parenchyma sparse or absent. Wood fibers small, thick walled; pits very small. Ripple marks fairly distinct under lens". Their description fits very well the observation made by the present writer. Fur· thermore, the wood anatomy of Berberis and Mahonia does not reveal any essential differ~nces between the two' genera. The following is a description of the minute anatomy of the wood of Nalldina as studied by the present writer. Growth ring forming a semi·ring to diffuse porous condition. 87 Pore very smail (5 to 27 micro" in diameter), polygonal; numerous but not crowded laterally (48 to 56 per square millimeter); Pore wall thin, mostly 2-3 micron in thick­ ness; pores solitary or in radial multiples of 2 to 4. Vessel member storied, 184 to 328 micron in length; perforation plates simple, oblique. Intervessel pit-pairs bordered. very smal, 3.5 to 4 micron in diameter; alternate; distance between each pit l~terally 2 to 3. micron. Spiral thickening present in the inner wall of the vessel; tyloses thin-walled. Parenchyma terminal, metatracheal-diffuse, and paratracheal. Vvood rays, simple, aggregate, to oak type; not storied; homogeneous and hetero­ geneous; 1 to multi-seriate; 1 to 14 cells in thickness; 4 to many cells in height; crys­ tals absent; number" of rays per millimetre tangentially 2 to 5. Wood fibers with average length of 400--600 micron, middle diameter average 12 micron and with a wall thickness of 4--5 micron. Fiber long, tappering, sometimes with septate. Pits bordered, 2 to 3 micron in diameter; with lenticula to slitlike aper­ tures. The characters of the minute anatomy of the wood of M"Cllwnz"a and Berberz"s are very similar, but they differ from Nandina on the following three m~in accounts;- 1. Topography of wood. 2. Wood parenchyma. 3. Wood rays. The differences are as follows: (1) Nandina has diffused porosity, while Mahonia ~nd Berberis are all ring porous. (2) Nandina has more wood parenchyma; Berberis and'Mahonia has only little amount or even absent of parenchyma in the wood. ( 3) Nandina has very broad aggregate rays, mixed with parenchyma and fibers, while the rays of Mahonia and Berberz"s are simple and nearly homogeneouns. In "iew of these wide diff~rences, it may be concluded that in the wood anatomy Nandina is only remotely related to Berberz"s and MahlJnia. There differences are so great, that they seldom warrant to be included in the same family. Nandina differs greatly from Berberis and Mahonia in general external morphology. They also differ to a very large extent, as shown by the studies of various botanists mentioned above, in pollen morphology, ovular structure, and other minute anatomical features. The present author suports this view from a study of the wood anatomy and considers that Heintze (1927) and Nakai's (1936) proposales of establishing a subfamily Nandinoideae or a family Nandinaceae are worth considering. LITERATURE CITED (1) BAILEY, I. W. (1944): The development of vessels in angiosperms and its significance in morphological research. Arne!". Jour. Bot. 31: 421-428. (2) B--\RGHOORN, E. S., Jr. (1941): The ontogenetic development and phylogenetic specialization of rays in the Xylem of dicotyledons. I. The primitive ray structure. Amer. Jour. Bot. 27: 918-928. (3) '---, (1941a): The ontogenetic development and phylogenetic specialization of rays in 88 the Xylem of dicotyledons. n. Modification of the multiseriate and uniseriate rays. Amer. Jour. Bot. 28: 273-282. I (4) ---, (l941b): The ontogenetic development and phylogenetic speciation of rays in the Xylem of dicotyledons. III. The elimination of rays. Torrey Bot. Club. Bul. 68: 317-325. (5) CHALK, L. (1937): The phylogenetic value of certain anatomical tea,tures of dicotyledonous woods. Ann. Bot. 1: 409-428. ( 6 ) CHALK, L. and M. M. CHATTAWAY. (1934): Measur.ing the length of vessel members. Trop. Woods 1934 (40): 19-26. .. (7) CHAPMAN, M. (1936): Carpel anatomy of the Berberidaceae. Bot. Gaz. 23. (8) CITER~. P. E. (1893): Berberidees. et Erythrospennees. These Paris. (9) Committee on Nomenclature, International Association of Wood Anatomists. Glossary of tenns used in describing woods. Trap. Woods 1933 (36): 1-12.1933. (10) ENGLER, A. und L. DIELS (1936): Syllabus der Pflanzenfamilion. Autl. 11. Berlin. (11 ) Gilbert, S. G. (1940): Evolutionary significance of ~ing porosity in woody angiosperms. Bot. Gaz. 102: 105-120. ( 12) HANDLEY, W. R. C. (1936): Some observations on the problem of vessel length determination in woody dicotyledons. New Phytol. 35: 456-471. (13) HEINTZE, A. (1927): Cormofyternas fylogeni.
Recommended publications
  • APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program
    APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program Midtown Alliance launched the Tree Well Adoption program with the primary goal of enriching the experience of Midtown’s workers and residents while encouraging sustainability through the use of low-water, urban tolerant plant species. This list of plants was created to aid individuals and organizations in selecting plant material to plant in their adopted tree wells. This plant list is intended to encourage individual character in the tree wells, rather than restrict creativity in the selection of plants. The plants on the approved list were selected based on the following criteria: • Perennial. All plants listed are perennial, meaning they last for two or more growing seasons. Once established, these plants will require less water to maintain than annuals. • Heat tolerant. Plants in tree wells are exposed to high temperatures caused by vehicles and heat reflected from surrounding buildings, asphalt, and other urban surfaces. They must also be tolerant to high daytime temperatures, typical of Atlanta’s summer months, and cold hardy in the winter months. Atlanta is located in USDA Plant Hardiness Zone 7b/8a. • Water wise. Urban tree wells are surrounded by impervious surfaces and thus, are highly susceptible to periods of drought. Suitable plants must be able to survive periods of low rainfall. • Pollution tolerant. Vehicle exhaust may leave deposits and pollutants on plant foliage, which can kill sensitive plants. • Encourage wildlife. Flowering plants attract insects such as butterflies while others provide food sources for birds and other wildlife. • Grown locally. Many of the plants listed are native to the Atlanta area, and all can be found at local nurseries.
    [Show full text]
  • Title Studies in the Morphology and Systematics of Berberidaceae (V
    Studies in the Morphology and Systematics of Berberidaceae Title (V) : Floral Anatomy of Caulophyllum MICHX., Leontice L., Gymnospermium SPACH and Bongardia MEY Author(s) Terabayashi, Susumu Memoirs of the Faculty of Science, Kyoto University. Series of Citation biology. New series (1983), 8(2): 197-217 Issue Date 1983-02-28 URL http://hdl.handle.net/2433/258852 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University MEMolRs OF THE FAcuLTy ol" SclENCE, KyOTO UNIvERslTy, SERMS OF BIoLoGy Vol. VIII, pp. 197-217, March l983 Studies in the Morphology and Systematics of Berberidaceae V. Floral Anatomy ef Cauloplrytlum MICHX., Leontice L., Gymnospermium SpACH and Bongardia MEY. Susumu TERABAYASHI (Received iNovember 13, l981) Abstract The floral anatomy of CauloPh71tum, Leontice, G"mnospermittm and Bongardia are discussed with special reference given to vasculature. Comparisons offloral anatomy are made with the other genera og the tribe Epimedieae. The vasculature in the receptacle of Caulopnjilum, Leontice and G]mnospermiitm is similar, but that of Bongardia differs in the very thick xylem of the receptacular stele and in the independent origin ef the traces to the sepals, petals and stamens from the stele. A tendency is recognized in that the outer floral elements receive traces ofa sing]e nature in origin from the stele while the inner elements receive traces ofa double nature. The traces to the inner e}ements are often clerived from common bundles in Caulop/tyllttm, Leontice and G"mnospermittm. A similar tendency is observed in the trace pattern in the other genera of Epimedieae, but the adnation of the traces is not as distinct as in the genera treated in this study.
    [Show full text]
  • Epimedium L) – a Promising Source of Raw Materials for the Creation of Medicines for the Treatment of Erectile Dysfunction in Men
    Pharmacogn J. 2020; 12(6)Suppl:1710-1715 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Research Article www.phcogj.com Representatives of the Genus Goryanka (Epimedium L) – a Promising Source of Raw Materials for the Creation of Medicines for the Treatment of Erectile Dysfunction in Men Bukinich Darya Dmitrievna, Salova VG, Odintsova EB, Rastopchina OV, Solovyovа NL, Kozlova AM, Krasniuk II (jun), Krasniuk II, Kozlova Zh M* ABSTRACT Erectile dysfunction and multiple mechanisms of its development are one of the most pressing problems of modern medicine. In the twenty-first century, millions of men around the world suffer from sexual disorders, and the number of such patients is only growing from year to Bukinich Darya Dmitrievna, year. The flavonoid icariin, contained in plants of the genusEpimedium L., is a promising Salova VG, Odintsova EB, pharmacologically active substance used for erectile dysfunction, due to its ability to affect Rastopchina OV, Solovyovа type 5 phosphodiesterase, inhibiting its activity. To date, domestic and foreign pharmaceutical NL, Kozlova AM, Krasniuk II companies produce biologically active food additives and herbal preparations, which include (jun), Krasniuk II, Kozlova Zh Goryanka extract. But the range of standardized herbal medicines is very small. M* Key words: Drug, Epimedium Estrellita, Icariin, Impotence. First Moscow state medical university named after I.M. Sechenov, (Sechenov University), Moscow, RUSSIAN INTRODUCTION The purpose of this work is to theoretically FEDERATION. substantiate the possibility of using medicinal plant Erectile dysfunction (ED) is one of the most raw materials of the genus Goryanka (Epimedium Correspondence pressing problems of modern medicine. According L) to create medicines for the treatment of erectile Kozlova Zh.
    [Show full text]
  • Fair Use of This PDF File of Herbaceous
    Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut.
    [Show full text]
  • Number 35 July-September
    THE BULB NEWSLETTER Number 35 July-September 2001 Amana lives, long live Among! ln the Kew Scientist, Issue 19 (April 2001), Kew's Dr Mike Fay reports on the molecular work that has been carried out on Among. This little tulip«like eastern Asiatic group of Liliaceae that we have long grown and loved as Among (A. edulis, A. latifolla, A. erythroniolde ), but which took a trip into the genus Tulipa, should in fact be treated as a distinct genus. The report notes that "Molecular data have shown this group to be as distinct from Tulipa s.s. [i.e. in the strict sense, excluding Among] as Erythronium, and the three genera should be recognised.” This is good news all round. I need not change the labels on the pots (they still labelled Among), neither will i have to re~|abel all the as Erythronlum species tulips! _ Among edulis is a remarkably persistent little plant. The bulbs of it in the BN garden were acquired in the early 19605 but had been in cultivation well before that, brought back to England by a plant enthusiast participating in the Korean war. Although not as showy as the tulips, they are pleasing little bulbs with starry white flowers striped purplish-brown on the outside. It takes a fair amount of sun to encourage them to open, so in cool temperate gardens where the light intensity is poor in winter and spring, pot cultivation in a glasshouse is the best method of cultivation. With the extra protection and warmth, the flowers will open out almost flat.
    [Show full text]
  • A Systematic Study on DNA Barcoding of Medicinally Important Genus Epimedium L
    G C A T T A C G G C A T genes Article A Systematic Study on DNA Barcoding of Medicinally Important Genus Epimedium L. (Berberidaceae) Mengyue Guo 1 , Yanqin Xu 2, Li Ren 1, Shunzhi He 3 and Xiaohui Pang 1,* 1 Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; [email protected] (M.G.); [email protected] (L.R.) 2 College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; [email protected] 3 Department of Pharmacy, Guiyang College of Traditional Chinese Medicine, Guiyang 550002, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-57833051 Received: 27 October 2018; Accepted: 10 December 2018; Published: 17 December 2018 Abstract: Genus Epimedium consists of approximately 50 species in China, and more than half of them possess medicinal properties. The high similarity of species’ morphological characteristics complicates the identification accuracy, leading to potential risks in herbal efficacy and medical safety. In this study, we tested the applicability of four single loci, namely, rbcL, psbA-trnH, internal transcribed spacer (ITS), and ITS2, and their combinations as DNA barcodes to identify 37 Epimedium species on the basis of the analyses, including the success rates of PCR amplifications and sequencing, specific genetic divergence, distance-based method, and character-based method. Among them, character-based method showed the best applicability for identifying Epimedium species. As for the DNA barcodes, psbA-trnH showed the best performance among the four single loci with nine species being correctly differentiated.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument
    Schmidt, Drost, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2006-1163 Southwest Biological Science Center Open-File Report 2006-1163 November 2006 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument By Cecilia A. Schmidt, Charles A. Drost, and William L. Halvorson Open-File Report 2006-1163 November, 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 Note: This document contains information of a preliminary nature and was prepared primarily for internal use in the U.S. Geological Survey. This information is NOT intended for use in open literature prior to publication by the investigators named unless permission is obtained in writing from the investigators named and from the Station Leader. Suggested Citation Schmidt, C. A., C. A. Drost, and W. L. Halvorson 2006. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument. USGS Open-File Report 2006-1163.
    [Show full text]
  • Perennial Dividing Chart
    Dividing Perennials Page 1/8 Botanical Common Name Division When to divide * Additional notes Growth needed / 4 weeks before killing frost Root type habit years Achillea Yarrow Early spring as new Separate by cutting or pulling apart. Discard central woody core. 2 to 3 spreads growth emerges Aconitum Monkshood Spring or Early Fall * Resents disturbance. All parts of the plant are poisonous, so use no rubber gloves when dividing tuberous roots and handle with care. clumps tuber Aegopodium pod. Snow-On-The- Spring or Early Fall * Replant the divisions, making sure that each contains a bit of underground 1 to 3 spreads Mountain roots and a bit of top growth roots Agastache Anise Hyssop Spring Dig up and divide agastache every three to four years. Replant 3 to 4 the divisions, making sure that each contains a bit of roots and a clumps bit of top growth Ajuga reptans Bugleweed Spring or Early Fall * Can be divided any time of year, but spring and fall are best for 1 to 3 spreads stolons quick rooting. Alchemilla vulgaris Lady's Mantle Spring or Early Fall * Cut crown into sections with sharp spade or knife, making sure 6 to 10 clumps (mollis) that each contains a bit of roots and a bit of top growth Allium Ornamental After flowering Divide overcrowded clusters after foliage disappears and replant spreading bulb Onion at the same soil level. Amsonia Blue Star Spring or Early Fall * Seldom needs to be divided; grows slowly so will take tabernaemontana several years to establish from divisions. If you want a division no anyway, slice down the length of the root, making sure there is at clumps taproot least 1 eye, some of the taproot and a few sideroots Anemone tomentosa Grape-Leaf Spring It doesn't like to have main clump disturbed; sends out Anemone underground runners, so dig small new plants around the edges underground 5 to 10 running or any piece with an eye or sucker already forming for replanting.
    [Show full text]
  • Wet-Mesic Flatwoods Communitywet-Mesic Flatwoods, Abstract Page 1
    Wet-mesic Flatwoods CommunityWet-mesic Flatwoods, Abstract Page 1 Historical Range Prevalent or likely prevalent Infrequent or likely infrequent Absent or likely absent Photo by Suzan L. Campbell Overview: Wet-mesic flatwoods is a somewhat Rank Justification: The acreage of wet-mesic poorly drained to poorly drained forest on mineral flatwoods present in Michigan circa 1800 is difficult soils dominated by a mixture of lowland and upland to determine because the community type has hardwoods. The community occurs exclusively on characteristics that overlap those of several of the glacial lakeplain in southeastern Lower Michigan, forest types mapped based on General Land Office where an impermeable clay layer in the soil profile (GLO) survey notes, primarily hardwood swamp and contributes to poor internal drainage. Seasonal beech-sugar maple forest (Comer et al. 1995a, Kost hydrologic fluctuations and windthrow are important et al. 2007). Analysis of GLO survey notes reveals natural disturbances that influence community structure, that lowland forest dominated by hardwoods covered species composition, and successional trajectory of wet- approximately 570,000 ha (1,400,000 ac) of southern mesic flatwoods. Lower Michigan circa 1800 (Comer et al. 1995a). These stands were characterized by mixed hardwoods Global and State Rank: G2G3/S2 (490,000 ha or 1,200,000 ac), black ash (77,000 ha or 190,000 ac), elm (5,300 ha or 13,000 ac), and silver Range: Flatwoods communities characterized by maple-red maple (4,000 ha or 10,000 ac). The majority relatively flat topography, slowly permeable to of lowland forest acreage in southern Lower Michigan impermeable subsurface soil layers, and seasonal was associated with stream and river floodplains, hydrologic fluctuation occur scattered throughout the and is classified as floodplain forest (Tepley et al.
    [Show full text]
  • 2020 Plant List 1
    2020 issima Introductions Sesleria nitida Artemisia lactiflora ‘Smoke Show’ Succisella inflexa 'Frosted Pearls' Impatiens omeiana ‘Black Ice’ Thalictrum contortum Kniphofia ‘Corn Dog’ Thalictrum rochebrunianum var. grandisepalum Kniphofia ‘Dries’ Tiarella polyphylla (BO) Kniphofia ‘Takis Fingers’ Verbascum roripifolium hybrids Persicaria amplexicaulis ‘Ruby Woo’ Veronica austriaca 'Ionian Skies' Sanguisorba ‘Unicorn Tails’ Sanguisorba obtusa ‘Tickled Pink’ Stock Woody and Herbaceous Perennials, New & Returning for 2020 indexed alphabetically: Alchemilla alpina Acanthus ‘Summer Beauty’ Aletris farinosa Acanthus Hollard’s Gold’ Anemone nemorosa ‘Vestal’ Acanthus syriacus Anemone nemorosa Virescens Actaea pachypoda Anemone ranunculoides Actaea rubra leucocarpa Anemone seemannii Adenophora triphylla Berkheya purpurea Pink Flower Agastache ‘Linda’ Berkheya species (Silver Hill) Agastache ‘Serpentine’ Boehmeria spicata 'Chantilly' Ajuga incisa ‘Blue Enigma’ Callirhoe digitata Amorphophallus konjac Carex plantaginea Anemonella thalictroides ‘Cameo’ Carex scaposa Anemonella thalictroides ‘Oscar Schoaff’ Deinanthe caerulea x bifida Anemonopsis macrophylla – dark stems Dianthus superbus var. speciosus Anemonopsis macrophylla – White Flower Digitalis ferruginea Angelica gigas Disporum sessile ‘Variegatum’ Anthemis ‘Cally Cream’ Echium amoenum Anthericum ramosum Echium russicum Arisaema fargesii Echium vulgare Arisaema ringens Erigeron speciosus (KDN) Arisaema sikokianum Eriogonum annuum (KDN) Artemisia lactiflora ‘Elfenbein’ Geranium psilostemon
    [Show full text]
  • Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
    REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects.
    [Show full text]
  • Acer Macrophyllum Big Leaf Maple Aceraceae Acer Circinatum Vine
    Plant list updated by Cyndy Dillon, Carol Smith, Regina Johnson, Bob Wodsworth Sharon Berquist-Moody, and Lois Sweany - November 2012 Twahnoh Park (Union) Twahnoh Park (Union), Compiled by, Updated 2012 by * non-native Genus/Species Common Name Plant Family Acer macrophyllum Big leaf maple Aceraceae Acer circinatum Vine maple Aceraceae Achlys triphylla vanilla leaf Berberidaceae Actaea rubra Baneberry Ranunculaceae Adenocaulon bicolor pathfinder Asteraceae Adiantum aleuticum maidenhair fern Pteridaceae Alnus rubra red alder Betulaceae Arbutus menziesii Pacific madrone Ericaceae Asarum caudatum wild ginger Aristolochiaceae Athyrium filix-femina lady fern Dryopteridaceae Bellis perennis* English daisy Asteraceae Berberis (Mahonia) aquifolium tall Oregon grape Berberidaceae Berberis (Mahonia)nervosa dull Oregon-grape Berberidaceae Blechnum spicant deer fern Blechnaceae Cardamine hirsuta* hairy bittercress, shotweed Brassicaeae Chamerion angustifolium fireweed Onagraceae Chimophila umbellata pipsissewa, prince's pine Ericaceae Cirsium vulgare* bull thistle Asteraceae Claytonia sibirica Siberian miner's-lettuce Montiaceae Convolvus arvensis* field bindweed. morning glory Convolvulaceae Cornus nuttallii Pacific dogwood Cornaceae Cornus sericea red-osier dogwood Cornaceae Corylus cornuta beaked hazelnut Betulaceae Dactylis glomerata* orchard grass Festuceae Digitalis purpurea* purple foxglove Scrophulariaceae Dryopteris expansa spreading or spiny wood fern Dryopteridaceae Equisetum arvense common, field horsetail Equicetaceae Frangula (Rhamnus)
    [Show full text]