Centrosome Amplification and the Origin of Chromosomal Instability in Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Centrosome Amplification and the Origin of Chromosomal Instability in Breast Cancer Centrosome Amplification and the Origin of Chromosomal Instability in Breast Cancer Jeffrey L. Salisbury Introduction Aneuploidy and chromosomal instability (CIN) are defming features of most aggressive breast cancers (BC). One consequence of CIN is a constantly changing genetic makeup of cancer cells - this in turn is a major driving force behind cancer cell heterogeneity, tumor progression, and acquisition of resistance to chemotherapeutics. How CIN arises in cancer and the mechanisms underlying this process have become a topical focus of cancer research. Yet it was nearly a century ago that Theodor Boveri first recognized that aneuploidy in cancer cells could arise through defects in the machinery for chromosomal segregation (1). Based on observations of abnormal chromosomal segregation in early sea urchin embryo development following dispermic fertilization and similarities to chromosomal anomalies seen in cancer, Boveri proposed that malignant tumors arise through centrosome defects that result in improper cell division (1). At about this same time, Galeotti came to a similar conclusion from his studies on tumors (2). Despite these compelling arguments and a strident call to the medical research community in JAM by Maynard Metcalf a decade later (3) imploring that "Boveri 's workshould be the startingpoint for a9studies of causes, inheritance or cure of cancer" it was not until near the end of the last century that investigations on human tumors and mouse models began to comborate Boveri's astute prescience (4-8). In this article, a review of centrosome structure and function, and the regulation of centrosome duplication in normal cells will be presented. Using recent studies on BC as an exemplary model, a discussion will follow on how deregulation of centrosome behavior can arise, result in centrosome amplification, and lead to CIN in cancer. Centrosome Structure and Behavior in Normal Cells The centrosome resides near the cell center (hence its name) and consists of a pair of centrioles and a surrounding matrix of pericentriolar material (PCM) that anchor microtubule nucleation sites and consequently determines the number and organiza- Centrosome Amplification and Breast Cancer 107 tion of microtubules in interphase cells. Like chromosomes, centrosomes double in number once in each cell cycle in a process that is initiated with centriole duplication. The centriole pair embodies an intrinsic counting mechanism that establishes the number of centrosome equivalents in the cell such that a pair of centrioles equals one, and two pair of centrioles equals two centrosome equivalents (9). Centrosomes increase in size through the recruitment of PCM and centrosomes of G2M cells show a dramatic increase in microtubule nucleating activity. At the time of cell division the two centrosomes (one residing at each spindle pole) organize microtubules of the bipolar mitotic spindle. In normal cells, spindle architecture is such that the two oppositely oriented half-spindle microtubule arrays (each arising from one of the two spindle poles) cast microtubules outward to engage and orient chromosomes so that sister chromatids face and can engage microtubules originating from opposite spindle poles. When all chromosomes are appropriately oriented and attached to microtubules originating from both spindle poles, the sister chromatids separate and move toward opposite poles by a molecular motor-driven process and dynamic shortening of their attached microtubules. Two new daughter cells form by cytokinesis and each inherit a complete complement of chromosomes along with one of the spindle poles that acts as the centrosome in the next cell cycle. Centrosome Amplification in Cancer Recent studies implicate centrosome abnormalities in the pathogenesis of cancer (4, 10-14). The term "centrosome amplification" refers to centrosomes that appear larger than normal, centrosomes that contain more than four centrioles, andlor when more than two centrosomes are present within a cell. In addition to these structural abnormalities, amplified centrosomes also show protein hyperphosphorylationand altered functional properties such as an increased microtubule nucleating capacity (4, 8, 15-17). Electron microscope studies revealed supernumerary centrioles in centrosomes of humans and animal model tumors, including leiomyosarcoma, neuroblastoma, glioma, and thymic carcinoid tumors (1 8-23). Systematic analyses of centrosomes in human breast carcinomas and a mouse model for prostate cancer revealed a range of abnormalities in centrosome structure including: excess number of centrioles, increased pericentriolar material, abnormal centriole orientation, and inverted polarity of centrosome location (5, 24). These structural centrosome abnormalities have been implicated as a potential cause of loss of cell and tissue architecture seen in cancer (i. e., anaplasia) through altered centrosome function in microtubule nucleation and organization, and to result in chromosome missegregation during mitosis as a consequence of multipolar spindle formation. 108 J.L. Salisbury Correlation of Centrosome Amplification, Aneuploidy, and Chromosomal Instability A key question is whether or not centrosome amplification leads to CIN and aneuploidy or is a consequence of them; the proverbial chicken and egg riddle. Aneuploidy is characterized as the state of an abnormal karyotype, having gains andlor losses of whole chromosomes. Aneuploidy occurs early in the development of many tumor types, suggesting that it may play a role in both tumorigenesis and tumor progression. Indeed, aneuploidy is present in the great majority of malignant tumors, in contrast to benign tumors, which are most often diploid. Aneuploidy can be distinguished from the persistent generation of chromosomal variations, termed "CIN", which reflects the rate of change in karyotype (25). Quantitative analysis of CIN can be determined as the percent of cells with a chromosome number different from the modal chromosome number. Thus, tumors may show either "stable aneuploidy" (low CIN) or "unstable aneuploidy." Unstable karyotypes may lead to phenotypic heterogeneity in cancer, reflecting the persistent generation of new chromosomal variations (26,27). The development of aneuploidy may be a consequence of centrosome amplification, which can lead to the formation of multipolar spindles and miss- segregate sister chromatids during mitosis, and as a result to high CIN. CIN occur exclusively in aneuploid tumors and tumor-derived cell lines in contrast to diploid tumors, which contain centrosomes that are functionally and structurallynormal (4, 26,28). The degree of genomic instability in aneuploid tumors parallels the degree of centrosome abnormalities in cell lines fiom breast (29), pancreas (1 3), prostate (30), colon (28), and cervix tumors (31), from short-term culture of mouse mammary tumors (32), and from SV40 ST over-expressing fibroblasts (33). When tissues were examined, centrosome abnormalitieswere higher in high-grade prostate tumors (30) and high-grade cervical tumors (31) than in low-grade tumors. In prostate cancer, centrosome amplification has been implicated in the development of abnormal mitoses and CIN facilitating progression to advanced stages of the disease (30, 34, 35). Strong support for a direct mechanistic link between centrosome amplification and CIN is suggested by the significant linear correlation between centrosome amplification and the rate of change in karyotype (CIN) seen in human breast tumors (26). Although such correlation alone does not necessarily imply cause and effect, these observations have led many authors to propose the hypothesis that centrosome amplification is the primary cause of genomic instability observed in most tumors (13, 26, 31, 33). As discussed above, Boveri first recognized these features of cancer cells nearly a century ago and proposed that centrosome defects could lead to mitotic and subsequent chromosomal abnormalities (1). An alternative hypothesis has been proposed that CIN seen in cancer cells is caused by aneuploidy, that is that aneuploidy itself destabilizes the karyotype and thus initiates CIN leading to widespread heterogeneity in tumor cell phenotypes (36-39). Centrosome Amplification and Breast Cancer 109 Several independent lines of evidence support the proposition that centrosome abnormalities drive genomic instability. In a recent study of human breast tumors, all specimens of ductal carcinoma in-situ examined showed significant centrosome amplification, while aneuploidy is present, on average, suggesting that centrosome amplification is an early event that occurs prior to invasion in breast tumors (26). Furthermore, cells transfected to express the HPV E7 oncoprotein undergo centrosome amplification prior to developing nuclear morphology associated with aneuploidy (40,41). Finally, in a xenograft model of pancreatic cancer, metastatic foci showed a higher incidence of centrosome amplification than did the primary xenograft, and abnormal centrosome numbers were accompanied by a higher frequency of abnormal mitoses (42). Taken together, these studies suggest that centrosome amplification may be an early event in turnorigenesis that can drive CIN and lead to genotypic and phenotypic diversity of cells within a tumor. Coordination of the DNA, Cell, and Centrosome Cycles in Normal Cells Because the fidelity of equal segregation of sister chromatids into daughter cells depends on the bipolar nature of the mitotic spindle it is essential that cells maintain
Recommended publications
  • Centrosome Positioning in Vertebrate Development
    Commentary 4951 Centrosome positioning in vertebrate development Nan Tang1,2,*,` and Wallace F. Marshall2,` 1Department of Anatomy, Cardiovascular Research Institute, The University of California, San Francisco, USA 2Department Biochemistry and Biophysics, The University of California, San Francisco, USA *Present address: National Institute of Biological Science, Beijing, China `Authors for correspondence ([email protected]; [email protected]) Journal of Cell Science 125, 4951–4961 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.038083 Summary The centrosome, a major organizer of microtubules, has important functions in regulating cell shape, polarity, cilia formation and intracellular transport as well as the position of cellular structures, including the mitotic spindle. By means of these activities, centrosomes have important roles during animal development by regulating polarized cell behaviors, such as cell migration or neurite outgrowth, as well as mitotic spindle orientation. In recent years, the pace of discovery regarding the structure and composition of centrosomes has continuously accelerated. At the same time, functional studies have revealed the importance of centrosomes in controlling both morphogenesis and cell fate decision during tissue and organ development. Here, we review examples of centrosome and centriole positioning with a particular emphasis on vertebrate developmental systems, and discuss the roles of centrosome positioning, the cues that determine positioning and the mechanisms by which centrosomes respond to these cues. The studies reviewed here suggest that centrosome functions extend to the development of tissues and organs in vertebrates. Key words: Centrosome, Development, Mitotic spindle orientation Introduction radiating out to the cell cortex (Fig. 2A). In some cases, the The centrosome of animal cells (Fig.
    [Show full text]
  • Centrosome Impairment Causes DNA Replication Stress Through MLK3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.898684; this version posted January 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Centrosome impairment causes DNA replication stress through MLK3/MK2 signaling and R-loop formation Zainab Tayeh 1, Kim Stegmann 1, Antonia Kleeberg 1, Mascha Friedrich 1, Josephine Ann Mun Yee Choo 1, Bernd Wollnik 2, and Matthias Dobbelstein 1* 1) Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany 2) Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany *Lead Contact. Correspondence and requests for materials should be addressed to M. D. (e-mail: [email protected]; ORCID 0000-0001-5052-3967) Running title: Centrosome integrity supports DNA replication Key words: Centrosome, CEP152, CCP110, SASS6, CEP152, Polo-like kinase 4 (PLK4), DNA replication, DNA fiber assays, R-loops, MLK3, MK2 alias MAPKAPK2, Seckel syndrome, microcephaly. Highlights: • Centrosome defects cause replication stress independent of mitosis. • MLK3, p38 and MK2 (alias MAPKAPK2) are signalling between centrosome defects and DNA replication stress through R-loop formation. • Patient-derived cells with defective centrosomes display replication stress, whereas inhibition of MK2 restores their DNA replication fork progression and proliferation. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.898684; this version posted January 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • RACK1 Regulates Centriole Duplication Through Promoting the Activation Of
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs238931. doi:10.1242/jcs.238931 RESEARCH ARTICLE RACK1 regulates centriole duplication through promoting the activation of polo-like kinase 1 by Aurora A Yuki Yoshino1,2,3,*, Akihiro Kobayashi1,2,*, Huicheng Qi1,2, Shino Endo1,2, Zhenzhou Fang1,2, Kazuha Shindo1,3, Ryo Kanazawa1,3 and Natsuko Chiba1,2,3,‡ ABSTRACT Centrosomes consist of a pair of centrioles, termed the mother Breast cancer gene 1 (BRCA1) contributes to the regulation of centriole and the daughter centriole, and proteinaceous centrosome number. We previously identified receptor for activated C pericentriolar material surrounding the mother centriole (Conduit kinase 1 (RACK1) as a BRCA1-interacting partner. RACK1, a scaffold et al., 2015). The proper number of centrosomes is stably protein that interacts with multiple proteins through its seven WD40 maintained by a regulatory network that ensures duplication only domains, directly binds to BRCA1 and localizes to centrosomes. once per cell cycle (Conduit et al., 2015; Fujita et al., 2016; Nigg RACK1 knockdown suppresses centriole duplication, whereas and Holland, 2018). At entry into mitosis, a cell has two RACK1 overexpression causes centriole overduplication in a subset centrosomes, each containing a pair of tightly engaged centrioles. of mammary gland-derived cells. In this study, we showed that During mitosis, centrioles lose their connection in a process termed RACK1 binds directly to polo-like kinase 1 (PLK1) and Aurora A, and disengagement, and the two centrioles are joined by a flexible promotes the Aurora A–PLK1 interaction. RACK1 knockdown linker. In late G1 phase of the following cell cycle, a new daughter decreased phosphorylated PLK1 (p-PLK1) levels and the centrosomal centriole is generated on the side wall of each mother centriole.
    [Show full text]
  • Differential Expression of Centrosome Regulators in Her2+ Breast Cancer
    Lee et al. Cell Division 2014, 9:3 http://www.celldiv.com/content/9/1/3 RESEARCH Open Access Differential expression of centrosome regulators in Her2+ breast cancer cells versus non-tumorigenic MCF10A cells Mi-Young Lee1†, Mihaela Marina1†, Jamie L King1,2 and Harold I Saavedra1* Abstract Centrosome amplification (CA) amongst particular breast cancer subtypes (Her2+ subtype) is associated with genomic instability and aggressive tumor phenotypes. However, changes in signaling pathways associated with centrosome biology have not been fully explored in subtype specific models. Novel centrosome regulatory genes that are selectively altered in Her2+ breast cancer cells are of interest in discerning why CA is more prevalent in this subtype. To determine centrosome/cell cycle genes that are altered in Her2+ cells that display CA (HCC1954) versus non-tumorigenic cells (MCF10A), we carried out a gene microarray. Expression differences were validated by real-time PCR and Western blotting. After the microarray validation, we pursued a panel of upregulated and downregulated genes based on novelty/relevance to centrosome duplication. Functional experiments measuring CA and BrdU incorporation were completed after genetic manipulation of targets (TTK, SGOL1, MDM2 and SFRP1). Amongst genes that were downregulated in HCC1954 cells, knockdown of MDM2 and SFRP1 in MCF10A cells did not consistently induce CA or impaired BrdU incorporation. Conversely, amongst upregulated genes in HCC1954 cells, knockdown of SGOL1 and TTK decreased CA in breast cancer cells, while BrdU incorporation was only altered by SGOL1 knockdown. We also explored the Kaplan Meier Plot resource and noted that MDM2 and SFRP1 are positively associated with relapse free survival in all breast cancer subtypes, while TTK is negatively correlated with overall survival of Luminal A patients.
    [Show full text]
  • Centrosome Dynamics and Its Role in Inflammatory Response And
    biomolecules Review Centrosome Dynamics and Its Role in Inflammatory Response and Metastatic Process Massimo Pancione 1,*, Luigi Cerulo 1, Andrea Remo 2 , Guido Giordano 3 , Álvaro Gutierrez-Uzquiza 4,5, Paloma Bragado 4,5 and Almudena Porras 4,5 1 Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; [email protected] 2 Pathology Unit, Mater Salutis Hospital AULSS9, “Scaligera”, 37122 Verona, Italy; [email protected] 3 Department of Medical Oncology Unit, University of Foggia, 71122 Foggia, Italy; [email protected] 4 Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, 28040 Madrid, Spain; [email protected] (Á.G.-U.); [email protected] (P.B.); [email protected] (A.P.) 5 Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain * Correspondence: [email protected]; Tel.: +39-0824305116 Abstract: Metastasis is a process by which cancer cells escape from the location of the primary tumor invading normal tissues at distant organs. Chromosomal instability (CIN) is a hallmark of human cancer, associated with metastasis and therapeutic resistance. The centrosome plays a major role in organizing the microtubule cytoskeleton in animal cells regulating cellular architecture and cell division. Loss of centrosome integrity activates the p38-p53-p21 pathway, which results in cell-cycle arrest or senescence and acts as a cell-cycle checkpoint pathway. Structural and numerical centrosome Citation: Pancione, M.; Cerulo, L.; abnormalities can lead to aneuploidy and CIN. New findings derived from studies on cancer and rare Remo, A.; Giordano, G.; Gutierrez- Uzquiza, Á.; Bragado, P.; Porras, A.
    [Show full text]
  • Centrosome Separation Driven by Actin- Microfilaments During Mitosis Is Mediated by Centrosome-Associated Tyrosine-Phosphorylated Cortactin
    1334 Research Article Centrosome separation driven by actin- microfilaments during mitosis is mediated by centrosome-associated tyrosine-phosphorylated cortactin Wenqi Wang*, Luyun Chen*, Yubo Ding, Jing Jin and Kan Liao‡ State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, Peopleʼs Republic of China *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 31 January 2008 Journal of Cell Science 121, 1334-1343 Published by The Company of Biologists 2008 doi:10.1242/jcs.018176 Summary The regulation of protein tyrosine phosphorylation is an phosphorylation sites in the truncated C-terminus of cortactin important aspect during the cell cycle. From G2-M transition and found that the C-terminus could no longer interfere with to mitotic anaphase, phosphorylation of Tyr421, Tyr466 and centrosome separation process. Our study shows that, cortactin Tyr482 of cortactin, an actin-filament associated protein, is phosphorylated at Tyr421, Tyr466 and Tyr482 mediates the dramatically induced. The phosphorylated cortactin is almost actin-filament-driven centrosome separation at G2-M transition exclusively associated with centrosomes or spindle poles by providing a bridge between the centrosome and actin- during mitosis. At G2-M transition prior to the breakdown of filaments. the nuclear envelope, two duplicated centrosomes migrate towards opposite ends of the nucleus to form the spindle poles. This centrosome-separation process and also the start of mitosis Supplementary material available online at are inhibited or delayed by the depolymerization of actin http://jcs.biologists.org/cgi/content/full/121/8/1334/DC1 filaments.
    [Show full text]
  • STED Nanoscopy of the Centrosome Linker Reveals a CEP68-Organized, Periodic Rootletin Network Anchored to a C-Nap1 Ring at Centrioles
    STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles Rifka Vlijma,b,1, Xue Lic,d,1, Marko Panicc,d, Diana Rüthnickc, Shoji Hatac, Frank Herrmannsdörfere, Thomas Kunere, Mike Heilemanne,f,g, Johann Engelhardta,b, Stefan W. Hella,b,h,2, and Elmar Schiebelc,2 aDepartment of Optical Nanoscopy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; bDepartment of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany; cZentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Universität Heidelberg, 69120 Heidelberg, Germany; dHartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, Universität Heidelberg, 69120 Heidelberg, Germany; eDepartment of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Universität Heidelberg, 69120 Heidelberg, Germany; fBioQuant, Universität Heidelberg, 69120 Heidelberg, Germany; gInstitute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, 60438 Frankfurt, Germany; and hDepartment of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany Contributed by Stefan W. Hell, January 21, 2018 (sent for review September 25, 2017; reviewed by Laurence Pelletier and Jordan Raff) The centrosome linker proteins C-Nap1, rootletin, and CEP68 connect and the appearance of lagging chromosomes (16). Furthermore, the two centrosomes of a cell during interphase into one microtubule- a defective centrosome linker in interphase cells impairs Golgi organizing center. This coupling is important for cell migration, cilia organization and cell migration and influences the cellular po- formation, and timing of mitotic spindle formation. Very little is sition of cilia (17, 18). Interestingly, a truncating mutation in known about the structure of the centrosome linker.
    [Show full text]
  • Mechanisms of Centriole Duplication and Their Deregulation in Disease
    REVIEWS Once and only once: mechanisms of centriole duplication and their deregulation in disease Erich A. Nigg1 and Andrew J. Holland2 Abstract | Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease. Procentriole Centrosomes function in animal cells as microtubule Centrosome structure and assembly A newly constructed centriole organizing centres and thus have key roles in regulat­ Centriole duplication and centrosome assembly are that is unable to duplicate. ing cell shape, polarity and motility, as well as spindle complex processes that need to be tightly regulated dur­ formation, chromosome segregation and cyto kinesis1–4. ing proliferation and development. Key components A typical animal cell begins the cell cycle with a single involved in these processes have recently been identified, centrosome, comprising a pair of centrioles.
    [Show full text]
  • Downloads PDF/ Boveri 1895A.Pdf (Accessed on 23 September 2020)
    cells Review Principal Postulates of Centrosomal Biology. Version 2020 Rustem E. Uzbekov 1,2,* and Tomer Avidor-Reiss 3,4 1 Faculté de Médecine, Université de Tours, 10, Boulevard Tonnellé, 37032 Tours, France 2 Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye Gory 73, 119992 Moscow, Russia 3 Department of Biological Sciences, University of Toledo, 3050 W. Towerview Blvd., Toledo, OH 43606, USA; [email protected] 4 Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607, USA * Correspondence: [email protected]; Tel.: +33-2-3437-9692 Received: 24 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell’s progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review. Keywords: centrosome; centriole; cilia; flagella; microtubules 1. Introduction Nearly 150 years ago, almost simultaneously, three researchers described in dividing cells two symmetrically located structures that looked like a “radiance” and were called the centrosphere [1–3].
    [Show full text]
  • The Function of BARD1 in Centrosome Regulation in Cooperation with BRCA1/OLA1/RACK1
    G C A T T A C G G C A T genes Review The Function of BARD1 in Centrosome Regulation in Cooperation with BRCA1/OLA1/RACK1 Kei Otsuka 1,2, Yuki Yoshino 1,2,3, Huicheng Qi 1,3 and Natsuko Chiba 1,2,3,* 1 Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; [email protected] (K.O.); [email protected] (Y.Y.); [email protected] (H.Q.) 2 Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan 3 Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan * Correspondence: [email protected] Received: 1 July 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: Breast cancer gene 1 (BRCA1)-associated RING domain protein 1 (BARD1) forms a heterodimer with BRCA1, a tumor suppressor associated with hereditary breast and ovarian cancer. BRCA1/BARD1 functions in multiple cellular processes including DNA repair and centrosome regulation. Centrosomes are the major microtubule-organizing centers in animal cells and are critical for the formation of a bipolar mitotic spindle. BRCA1 and BARD1 localize to the centrosome during the cell cycle, and the BRCA1/BARD1 dimer ubiquitinates centrosomal proteins to regulate centrosome function. We identified Obg-like ATPase 1 (OLA1) and receptor for activated C kinase (RACK1) as BRCA1/BARD1-interating proteins that bind to BARD1 and BRCA1 and localize the centrosomes during the cell cycle.
    [Show full text]
  • The Polarity Protein Baz Forms a Platform for the Centrosome
    RESEARCH ARTICLE elifesciences.org The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline Mayu Inaba1,2*, Zsolt G Venkei1, Yukiko M Yamashita1,2* 1Life Sciences Institute, University of Michigan, Ann Arbor, United States; 2Department of Cell and Developmental Biology, School of Medicine, Howard Hughes Medical Institution, University of Michigan, Ann Arbor, United States Abstract Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD. DOI: 10.7554/eLife.04960.001 *For correspondence: minaba@ Introduction umich.edu (MI); yukikomy@ Asymmetric division of adult stem cells that produces a self-renewing stem cell and a differentiating umich.edu (YMY) daughter cell is crucial for tissue homeostasis in diverse systems (Morrison and Kimble, 2006).
    [Show full text]
  • Centrosomes Competent for Parthenogenesis in Xenopus Eggs
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 9929-9933, November 1991 Cell Biology Centrosomes competent for parthenogenesis in Xenopus eggs support procentriole budding in cell-free extracts (cell cycle/protein synthesis) FRE9DERIC TOURNIER*, MAREK CYRKLAFFt, ERIC KARSENTIt, AND MICHEL BORNENS* *Centre de Gdn6tique Mol6culaire, Centre National de la Recherche Scientifique, 2 Avenue de la terrasse, 91198 Gif/Yvette, France; and tEuropean Molecular Biology Laboratory, Postfach 102209, Meyerhofstrasse 1, D-6900 Heidelberg, Federal Republic of Germany Communicated by Andre Lwoff, August 1, 1991 (received for review April 22, 1991) ABSTRACT Heterologous centrosomes from diversed spe- cell cycle from which they have been isolated: centrosomes cies including humans promote egg cleavage when i iected into isolated from G1 or G2 human lymphoid cells (KE37 cell line) metaphase-arrested Xenopus eggs. We have recently isolated or from quiescent cells (peripheral human lymphocytes in Go) centrosomes from calf thymocytes and shown that they were were shown to possess a similar parthenogenetic activity (8). unable to induce egg cleavage, an inability that was apparently We have isolated (10) centrosomes from calf thymocytes correlated with the peculiar structure of these centrosomes (CTs) and shown that the two centrioles were linearly asso- rather than with a lack of microtubule-nucleating activity: the ciated by their proximal ends through a mass of dense two centrioles were associated in a colinear orientation by their material. Furthermore, they were unable to induce egg cleav- proximal ends. To promote cleavage, a heterologous cen- age, although centrosomes isolated from other bovine cells trosome probably is required to duplicate, although this has not and from thymocytes of other species could induce egg yet been demonstrated.
    [Show full text]