Quaternary Colonization of Sub-Antarctic Marion Island by the Limpet Genus Nacella (Patellogastropoda: Nacellidae)

Total Page:16

File Type:pdf, Size:1020Kb

Quaternary Colonization of Sub-Antarctic Marion Island by the Limpet Genus Nacella (Patellogastropoda: Nacellidae) CORE Metadata, citation and similar papers at core.ac.uk Provided by HAL-uB Polar Biol (2016) 39:77–89 DOI 10.1007/s00300-014-1620-9 ORIGINAL PAPER Out of Antarctica: quaternary colonization of sub-Antarctic Marion Island by the limpet genus Nacella (Patellogastropoda: Nacellidae) Claudio A. Gonza´lez-Wevar • Steven L. Chown • Simon Morley • Nestor Coria • Thomas Sauce´de • Elie Poulin Received: 29 January 2014 / Revised: 3 November 2014 / Accepted: 12 November 2014 / Published online: 29 November 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract The distribution of the Southern Ocean near- Nacella concinna and its sub-Antarctic relative Nacella shore marine benthic fauna is the consequence of major delesserti from Marion Island stands against this tenet. geologic, oceanographic, and climatic changes during the Here, we performed new phylogenetic reconstructions in last 50 Ma. As a result, a main biogeographic principle in Nacella with special emphasis on the relationship between the Southern Ocean is the clear distinction of the Antarctic N. concinna and N. delesserti. Similarly, we performed biota. The Antarctic Polar Front (APF) represents an population-based analyses in N. concinna and N. delesserti important barrier between Antarctica and other sub-Ant- to further understand the genetic legacy of the Quaternary arctic provinces. However, the high degree of genetic glacial cycles. Phylogenetic reconstructions recognized N. affinity between populations of the Antarctic limpet concinna and N. delesserti as two closely but distinct monophyletic entities and therefore as valid evolutionary units. The cladogenetic process separating them occurred This article is an invited contribution on Life in Antarctica: *0.35 Ma and is consistent with the origin of Marion Boundaries and Gradients in a Changing Environment as the main Island (*0.45 Ma). Exceptional long-distance dispersal theme of the XIth SCAR Biology Symposium. J.-M. Gili and R. Zapata Guardiola (Guest Editors). between provinces located inside and outside the APF, rather than revealing the permeability of the Antarctic C. A. Gonza´lez-Wevar Polar Front, seems to be related to latitudinal shift in the GAIA-Anta´rtica, Universidad de Magallanes, Avenida Bulnes position of the APF during coldest periods of the Quater- 01890, Punta Arenas 621-0427, Chile nary. Diversity indices, neutrality tests, haplotype net- C. A. Gonza´lez-Wevar (&) Á E. Poulin works, and demographic inference analysis showed that the Laboratorio de Ecologı´a Molecular (LEM), Instituto de Ecologı´a demography of both species exhibits a clear signal of ˜ y Biodiversidad (IEB), Las Palmeras 3425, Nun˜oa, Santiago, postglacial expansion. Chile e-mail: [email protected] Keywords Biogeography Á Southern Ocean Á Antarctic S. L. Chown Polar Front Á Long-distance dispersal Á Marion Island Á School of Biological Sciences, Monash University, Melbourne, Bayesian skyline plot VIC 3800, Australia S. Morley British Antarctic Survey, Madingley Road, High Cross, Introduction Cambridge, UK N. Coria Waters of the Southern Ocean encircling Antarctica are Departamento de Aves Marinas, Instituto Anta´rtico Argentino, moved around this continent by the strong eastward flow of Cerrito 1248, Buenos Aires, Argentina the Antarctic Circumpolar Current (ACC) that is delimited by two main boundaries: the Antarctic Polar Front (APF) to T. Sauce´de Bioge´osciences, UMR CNRS 6282, Universite´ de Bourgogne, the south and the sub-Antarctic Front (SAF) to the north Dijon 21000, France (Rintoul et al. 2001; Barker et al. 2007; Rintoul 2011). The 123 78 Polar Biol (2016) 39:77–89 positions of these fronts have major biogeographic conse- islands) and peri-Antarctic islands including South Geor- quences for the SO biota (Lawver and Gahagan 2003; gia, South Sandwich, and Bouvet (Bo¨lter et al. 2002). Mackensen 2004; Greve et al. 2005; Linse et al. 2006; Phylogenetic reconstructions based on mtDNA sequen- Griffiths et al. 2009; Pierrat et al. 2013). On the one hand, ces recognized marked divergences among lineages of the ACC constitutes a major oceanographic barrier for Nacella from Antarctica, sub-Antarctic Heard Island, and many invertebrate groups (Shaw et al. 2004; Gonza´lez- South America (Gonza´lez-Wevar et al. 2010). However, a Wevar et al. 2010, 2012a; Poulin et al. 2014) and delimits recent population-based study in the Antarctic limpet Antarctic and sub-Antarctic provinces. On the other hand, including western Antarctic Peninsula populations recog- the ACC can transport organisms between geographically nized high levels of genetic identity ([99 %) with a single distant sub-Antarctic areas of the Southern Ocean, espe- individual of N. delesserti from Marion Island (Gonza´lez- cially in those species with high dispersive potential such Wevar et al. 2011b). Levels of genetic identity recorded as marine invertebrates with planktotrophic larvae (Page between these nominal species fell within the range of and Linse 2002;Dı´az et al. 2011; Mortimer et al. 2011), intraspecific variation detected in nacellids (Goldstien et al. kelps (Fraser et al. 2009; Macaya and Zuccarello 2010), 2006; Bird et al. 2007) and Nacella species from the and kelp-dwelling organisms (Nikula et al. 2010; Cumming Magellanic Province (de Aranzamendi et al. 2011; Gon- et al. 2014). Recent biogeographic reviews highlighted za´lez-Wevar et al. 2012b). At the same time, some ecologic both the high level of endemism of the Antarctic biota and features of N. concinna, including reproductive strategy, the marked differentiation among sub-Antarctic, low Ant- predation avoidance, population density, and growth rate, arctic, and Antarctic/high Antarctic marine species (Linse are similar to the ones described in N. delesserti (Blankley et al. 2006; Griffiths et al. 2009; Terauds et al. 2012). and Branch 1985). Accordingly, the taxonomic status of N. Faunal relationships among provinces of the SO perfectly concinna and N. delesserti is still unclear and the latter match with the flows of the two main oceanographic cur- could just represent an eastward population of the Antarctic rents, the ACC and the Antarctic Coastal currents (Pierrat limpet. However, this statement is questionable consider- et al. 2013). ing that few epipelagic species, with the exception of True limpets of the genus Nacella (Patellogastropoda: mammals and birds, are distributed both inside and outside Nacellidae) are dominant organisms of inter- and sub-tidal the APF (Dell 1972; Aronson et al. 2007). rocky ecosystems of the Southern Ocean. Nacella currently In this study, we present new molecular reconstructions includes at least 11 nominal species distributed in different in Nacella using phylogenetic and phylogeographic provinces of the Southern Ocean: South America, sub- approaches with special emphasis on the relationship Antarctic Islands, and Antarctica (Powell 1973; Valdovi- between the Antarctic limpet and sub-Antarctic Marion nos and Ru¨th 2005; Fig. 1). Species of Nacella are dioe- Island N. delesserti. Using different DNA sources, we aim cious organisms with external fertilization, and their larval to examine the validity of these nominal species and life span can extend for more than 2 months (Bowden et al. thereby to determine whether the Antarctic Polar Front 2006). At least eight nominal species were described in constitutes an efficient barrier between Antarctic and sub- Patagonia (Powell 1973; Valdovinos and Ru¨th 2005) but Antarctic Nacella populations. At the same time, levels of recent molecular and morphometric analyses (de Aranza- genetic diversity and structure are expected to clarify the mendi et al. 2011; Gonza´lez-Wevar et al. 2011a) indicate influence of contemporary climate change over benthic that only four of them represent valid evolutionary units marine invertebrate populations of the Southern Ocean, (Gonza´lez-Wevar et al. 2011a). One South American spe- especially in remote island endemic lineages. These results cies, Nacella clypeater, expands its distribution up north to should help us to further understand the role of historic and the Peruvian Province following the cold waters of the recent processes in the distribution of the biota of the Humboldt Current System (Powell 1973; Valdovinos and Southern Ocean. Ru¨th 2005). Almost half of the species of the genus are endemic to one or two remote sub-Antarctic isolated islands including Kerguelen, Heard, Macquarie, Campbell, Materials and methods and Marion (Fig. 1). One of them, Nacella delesserti,is endemic to sub-Antarctic Marion Island, an extremely Sample collection isolated volcanic island located north of the APF close to South Africa (Chown and Froneman 2008; Hall 2009; Hall Specimens were collected between 2006 and 2012 from et al. 2011). Finally, the Antarctic limpet Nacella concinna maritime Antarctica, South Georgia Island, and sub-Ant- is one of the dominant macroinvertebrate species of ice- arctic Marion Island. New N. concinna individuals were free rocky ecosystems and is currently restricted to mari- collected at Signy Island (60°430S; 45°360W: n = 16) time Antarctica (Antarctic Peninsula and associated during the summer of 2012. Additionally, we include 16 123 Polar Biol (2016) 39:77–89 79 South America Central Chile Nacella clypeater Patagonia Falkland/Malvinas Is Nacella deaurata Nacella magellanica South Georgia Is Nacella mytilina Nacella flammea South Sandwich Is Antarctica Africa Nacella concinna Marion Is. Antarctica Nacella delesserti Campbell Is. Nacella terroris Heard Is. Macquarie Is. Kerguelen
Recommended publications
  • Title Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere
    Biogeography in Cellana (Patellogastropoda, Nacellidae) with Title Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species González-Wevar, Claudio A.; Nakano, Tomoyuki; Palma, Author(s) Alvaro; Poulin, Elie Citation PLOS ONE (2017), 12(1) Issue Date 2017-01-18 URL http://hdl.handle.net/2433/218484 © 2017 González-Wevar et al. This is an open access article distributed under the terms of the Creative Commons Right Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Type Journal Article Textversion publisher Kyoto University RESEARCH ARTICLE Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species Claudio A. GonzaÂlez-Wevar1,2*, Tomoyuki Nakano3, Alvaro Palma4, Elie Poulin1 1 GAIA-AntaÂrtica, Universidad de Magallanes, Punta Arenas, Chile, 2 Instituto de EcologõÂa y Biodiversidad Ä a1111111111 (IEB), Departamento de Ciencias EcoloÂgicas, Facultad de Ciencias, Universidad de Chile, Nuñoa, Santiago, Chile, 3 Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto University, a1111111111 Nishimuro, Wakayama, Japan, 4 Universidad Gabriela Mistral, Facultad de IngenierõÂa y Negocios, a1111111111 Providencia, Santiago, Chile a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Oceanic islands lacking connections to other land are extremely isolated from sources of Citation: GonzaÂlez-Wevar CA, Nakano T, Palma A, potential colonists and have acquired their biota mainly through dispersal from geographi- Poulin E (2017) Biogeography in Cellana cally distant areas. Hence, isolated island biota constitutes interesting models to infer bio- (Patellogastropoda, Nacellidae) with Special geographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species.
    [Show full text]
  • The Adaptations of Antarctic Dinosaurs "Exploration Is the Physical Expression of the Intellectual Passion
    The Adaptations of Antarctic Dinosaurs "Exploration is the physical expression of the Intellectual Passion. And I tell you, if you have the desire for knowledge and the power to give it physical expression, go out and explore. If you are a brave man you will do nothing: if you are fearful you may do much, for none but cowards have need to prove their bravery. Some will tell you that you are mad, and nearly all will say, "What is the use?" For we are a nation of shopkeepers, and no shopkeeper will look at research which does not promise him a financial return within a year. And so you will sledge nearly alone, but those with whom you sledge will not be shopkeepers: that is worth a good deal. If you march your Winter Journeys you will have your reward, so long as all you want is a penguin's egg." —Apsley Cherry-Garrard, "The Worst Journey in the World" Life Long Ago in the Antarctic Long ago during the age of the dinosaurs the basics of life and survival were not so different from today. Life was in great abundance and creatures of all sizes walked, stomped, crept and slunk all over the earth. Although many of the animals have changed and disappeared, the way all animals live have remained the same. They still need to eat, sleep and be safe. They still all strive to find way to raise a family and be happy. This was true even 185 million years ago in the continent we now call Antarctica.
    [Show full text]
  • Is It All Going South? Four Future Scenarios for Antarctica
    Polar Record 53 (5): 459–478 (2017). © Cambridge University Press 2017. This is an Open Access article, 459 distributed under the terms of the Creative Commons Attribution licence (http:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0032247417000390 Is it all going south? Four future scenarios for Antarctica Daniela Liggett Gateway Antarctica, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand Bob Frame Landcare Research, PO Box 69040, Lincoln 7640, New Zealand ([email protected]) Neil Gilbert Constantia Consulting, 310 Papanui Road, Christchurch 8052, New Zealand Fraser Morgan Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand Received December 2016; first published online 11 September 2017 ABSTRACT. The future is uncertain for Antarctica, with many possibilities – some more plausible, others more preferable. Indeed, the region and its governance regime may be reaching (or may have reached) a crossroads moment as a result of a series of challenges, including the changing Antarctic climate and environment, increasing human activity, shifting values among Antarctic states and a low-cost, somewhat benign governance regime (the Antarctic Treaty System). Within this context there are a number of interdependent drivers that are likely to influence Antarctica’s future over, say, 25 years: global environmental and socio-economic developments; Antarctic governance; Antarctic research, including national Antarctic programme operations; and Antarctic tourism. The research presented here involved a thorough examination of Antarctic literature on current Antarctic developments and challenges, and an assessment of global trends.
    [Show full text]
  • Version of the Manuscript
    Accepted Manuscript Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary charac- teristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia, Claudio A. González-Wevar, Elie Poulin, Leyla Cardenas PII: S1055-7903(17)30583-3 DOI: https://doi.org/10.1016/j.ympev.2018.10.036 Reference: YMPEV 6324 To appear in: Molecular Phylogenetics and Evolution Received Date: 15 August 2017 Revised Date: 23 July 2018 Accepted Date: 30 October 2018 Please cite this article as: Gaitán-Espitia, J.D., González-Wevar, C.A., Poulin, E., Cardenas, L., Antarctic and sub- Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.10.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Version: 23-07-2018 SHORT COMMUNICATION Running head: mitogenomes Nacella limpets Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia1,2,3*; Claudio A. González-Wevar4,5; Elie Poulin5 & Leyla Cardenas3 1 The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China 2 CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia.
    [Show full text]
  • A Molecular Phylogeny of the Patellogastropoda (Mollusca: Gastropoda)
    ^03 Marine Biology (2000) 137: 183-194 ® Spnnger-Verlag 2000 M. G. Harasevvych A. G. McArthur A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda) Received: 5 February 1999 /Accepted: 16 May 2000 Abstract Phylogenetic analyses of partiaJ J8S rDNA formia" than between the Patellogastropoda and sequences from species representing all living families of Orthogastropoda. Partial 18S sequences support the the order Patellogastropoda, most other major gastro- inclusion of the family Neolepetopsidae within the su- pod groups (Cocculiniformia, Neritopsma, Vetigastro- perfamily Acmaeoidea, and refute its previously hy- poda, Caenogastropoda, Heterobranchia, but not pothesized position as sister group to the remaining Neomphalina), and two additional classes of the phylum living Patellogastropoda. This region of the Í8S rDNA Mollusca (Cephalopoda, Polyplacophora) confirm that gene diverges at widely differing rates, spanning an order Patellogastropoda comprises a robust clade with high of magnitude among patellogastropod lineages, and statistical support. The sequences are characterized by therefore does not provide meaningful resolution of the the presence of several insertions and deletions that are relationships among higher taxa of patellogastropods. unique to, and ubiquitous among, patellogastropods. Data from one or more genes that evolve more uni- However, this portion of the 18S gene is insufficiently formly and more rapidly than the ISSrDNA gene informative to provide robust support for the mono- (possibly one or more
    [Show full text]
  • The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
    UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene.
    [Show full text]
  • Patterns and Processes in the Biogeography of the Limpet Nacella (Mollusca: Patellogastropoda) Across the Southern Ocean Claudio A
    Journal of Biogeography (J. Biogeogr.) (2017) 44, 861–874 ORIGINAL Following the Antarctic Circumpolar ARTICLE Current: patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean Claudio A. Gonzalez-Wevar1,2*, Mathias Hune€ 2, Nicolas I. Segovia2, Tomoyuki Nakano3, Hamish G. Spencer4, Steven L. Chown5, Thomas Saucede6, Glenn Johnstone7,Andres Mansilla1 and Elie Poulin2 1Universidad de Magallanes, Bulnes 01890, ABSTRACT Punta Arenas, Chile, 2Instituto de Ecologıa y Aim We use an integrative biogeographical approach to further understand the Biodiversidad (IEB), Departamento de evolution of an important Southern Ocean marine benthic element, the limpet Ciencias Ecologicas, Universidad de Chile, Las Palmeras 3425, Nu~ noa,~ Santiago, Chile, 3Seto genus Nacella (Mollusca: Patellogastropoda). Marine Biological Laboratory, Field Science Location Southern Ocean. Education and Research Centre, Kyoto University, Wakayama 649-2211, Japan, Methods We used multi-locus time-calibrated phylogeny of Nacella at the 4Allan Wilson Centre, Department of Zoology, scale of the whole Southern Ocean to elucidate the underlying processes University of Otago, Dunedin 9054, New involved in the origin and diversification of the genus. Zealand, 5School of Biological Sciences, Results Divergence-time estimates suggest that soon after its origin during the Monash University, Melbourne, VIC 3800, mid-Miocene (c. 12.5 Ma), Nacella separated into two main lineages currently Australia, 6Biogeosciences, UMR CNRS 6282, distributed in (1) South America and (2) Antarctica and the sub-Antarctic Universite de Bourgogne, Dijon 21000, islands. We identified two pulses of diversification, during the late Miocene (8 France, 7Australian Antarctic Division, < Kingston TAS 7050, Australia to 5.5 Ma) and the Pleistocene ( 1 Ma).
    [Show full text]
  • Climate Change and Southern Ocean Resilience REPORT from an INTERDISCIPLINARY SCIENTIFIC WORKSHOP
    POLAR PERSPECTIVES No. 5 Summary l June 2021 Icebergs with adélie penguins on top flow near Antarctic peninsula. ©Jo Crebbin/Shutterstock Climate Change and Southern Ocean Resilience REPORT FROM AN INTERDISCIPLINARY SCIENTIFIC WORKSHOP Introduction and Executive Summary for Policymakers I. INTRODUCTION BY EVAN T. BLOOM1 the Antarctic ice sheets and shelves. New research on the Antarctic Ice Sheet indicates that rapid sea- As the world prepares for the Glasgow Climate level rise from Antarctica will be triggered if Paris Change Conference in November 2021, there is Agreement targets (2°C warming in the twenty-first considerable focus on the Southern Ocean. The century) are exceeded. A recent article notes that, if international community has come to realize that the current emissions rates continue and put the world polar regions hold many of the keys to unlocking our on course towards 3°C warming, this tipping point understanding of climate-related phenomena - and will be reached by 2060, and no human intervention, thus polar science will influence policy decisions on including geoengineering, would be able to stop 17 to which our collective futures depend. 21 centimeters (cm) of sea-level rise from Antarctic ice melt alone by 21002. Global sea-level rise is linked to future melting of 2. R.M. DeConto, D. Pollard, R.B. Alley, I. Velicogna, E. Gasson, N. Gomez, S. Sadai, A. Condron, 1. Senior Fellow, Wilson Center Polar Institute and former U.S. Commissioner to D.M. Gilford, E.L. Ashe, R.E. Kopp, D. Li, A. Dutton, The Paris Climate Agreement and future sea-lev- CCAMLR.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • A Global Overview of Wetland and Marine Protected Areas on the World Heritage List
    A GLOBAL OVERVIEW OF WETLAND AND MARINE PROTECTED AREAS ON THE WORLD HERITAGE LIST A Contribution to the Global Theme Study of World Heritage Natural Sites Prepared by Jim Thorsell, Renee Ferster Levy and Todd Sigaty Natural Heritage Programme lUCN Gland, Switzerland September 1997 WORLD CONSERVATION MONITORING CENTRE lUCN The World Conservation Union 530S2__ A GLOBAL OVERVIEW OF WETLAND AND MARINE PROTECTED AREAS ON THE WORLD HERITAGE LIST A Contribution to the Global Theme Study of Wodd Heritage Natural Sites Prepared by Jim Thorsell. Renee Ferster Levy and Todd Sigaty Natural Heritage Program lUCN Gland. Switzerland September 1997 Working Paper 1: Earth's Geological History - A Contextual Framework Assessment of World Heritage Fossil Site Nominations Working Paper 2: A Global Overview of Wetland and Marine Protected Areas on the World Heritage List Working Paper 3; A Global Overview of Forest Protected Areas on the World Heritage List Further volumes (in preparation) on biodiversity, mountains, deserts and grasslands, and geological features. Digitized by tine Internet Arciiive in 2010 witii funding from UNEP-WCIVIC, Cambridge littp://www.arcliive.org/details/globaloverviewof97glob . 31 TABLE OF CONTE>rrS PAGE I. Executive Summary (e/f) II. Introduction 1 III. Tables & Figures Table 1 . Natural World Heritage sites with primary wetland and marine values 1 Table 2. Natural World Heritage sites with secondary wetland and marine values 12 Table 3. Natural World Heritage sites inscribed primarily for their freshwater wetland values 1 Table 4. Additional natural World Heritage sites with significant freshwater wetland values 14 Tables. Natural World Heritage sites with a coastal/marine component 15 Table 6.
    [Show full text]
  • Molecular Phylogeny and Historical Biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean
    Molecular Phylogenetics and Evolution 56 (2010) 115–124 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean Claudio A. González-Wevar a, Tomoyuki Nakano b, Juan I. Cañete c, Elie Poulin a,* a Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile b Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Japan c Departamento de Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile article info abstract Article history: The evolution and the historical biogeography of the Southern Ocean marine benthic fauna are closely Received 14 September 2009 related to major tectonic and climatic changes that occurred in this region during the last 55 million years Revised 29 January 2010 (Ma). Several families, genera and even species of marine organisms are shared between distant biogeo- Accepted 1 February 2010 graphic provinces in this region. This pattern of distribution in marine benthic invertebrates has been Available online 6 February 2010 commonly explained by vicariant speciation due to plate tectonics. However, recent molecular studies have provided new evidence for long-distance dispersion as a plausible explanation of biogeographical Keywords: patterns in the Southern Ocean. True limpets of the genus Nacella are currently distributed in different Antarctic Circumpolar Current biogeographic regions of the Southern Ocean such as Antarctica, Kerguelen Province, southern New Zea- Cellana Middle-Miocene climatic transition land Antipodean Province, North-Central Chile and South American Magellanic Province.
    [Show full text]
  • Benthic Field Guide 5.5.Indb
    Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates Invertebrates Benthic Moore Islands Kirrily and McDonald and Hibberd Ty Island Heard to Guide cation Identifi Field Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates A guide for scientifi c observers aboard fi shing vessels Little is known about the deep sea benthic invertebrate diversity in the territory of Heard Island and McDonald Islands (HIMI). In an initiative to help further our understanding, invertebrate surveys over the past seven years have now revealed more than 500 species, many of which are endemic. This is an essential reference guide to these species. Illustrated with hundreds of representative photographs, it includes brief narratives on the biology and ecology of the major taxonomic groups and characteristic features of common species. It is primarily aimed at scientifi c observers, and is intended to be used as both a training tool prior to deployment at-sea, and for use in making accurate identifi cations of invertebrate by catch when operating in the HIMI region. Many of the featured organisms are also found throughout the Indian sector of the Southern Ocean, the guide therefore having national appeal. Ty Hibberd and Kirrily Moore Australian Antarctic Division Fisheries Research and Development Corporation covers2.indd 113 11/8/09 2:55:44 PM Author: Hibberd, Ty. Title: Field identification guide to Heard Island and McDonald Islands benthic invertebrates : a guide for scientific observers aboard fishing vessels / Ty Hibberd, Kirrily Moore. Edition: 1st ed. ISBN: 9781876934156 (pbk.) Notes: Bibliography. Subjects: Benthic animals—Heard Island (Heard and McDonald Islands)--Identification.
    [Show full text]