Hindawi International Journal of Genomics Volume 2020, Article ID 4147615, 16 pages https://doi.org/10.1155/2020/4147615 Research Article Identification of Differentially Expressed Drought-Responsive Genes in Guar [Cyamopsis tetragonoloba (L.) Taub] Aref Alshameri , Fahad Al-Qurainy , Abdel-Rhman Gaafar , Salim Khan , Mohammad Nadeem , Saleh Alansi , Hassan O. Shaikhaldein , and Abdalrhaman M. Salih Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia Correspondence should be addressed to Aref Alshameri;
[email protected] Received 25 July 2020; Accepted 20 November 2020; Published 4 December 2020 Academic Editor: Atsushi Kurabayashi Copyright © 2020 Aref Alshameri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Drought remains one of the most serious environmental stresses because of the continuous reduction in soil moisture, which requires the improvement of crops with features such as drought tolerance. Guar [Cyamopsis tetragonoloba (L.) Taub], a forage and industrial crop, is a nonthirsty plant. However, the information on the transcriptome changes that occur under drought stress in guar is very limited; therefore, a gene expression analysis is necessary in this context. Here, we studied the differentially expressed genes (DEGs) in response to drought stress and their metabolic pathways. RNA-Seq via an expectation-maximization algorithm was used to estimate gene abundance. Subsequently, an Empirical Analysis of Digital Gene Expression Data in the R Bioconductor package was used to identify DEGs. Blast2GO, InterProScan, and the Kyoto Encyclopedia of Genes and Genomes were used to explore functional annotation, protein analysis, enzymes, and metabolic pathways.