Homotopy Type-Theoretic Interpretations of Constructive Set Theories

Total Page:16

File Type:pdf, Size:1020Kb

Homotopy Type-Theoretic Interpretations of Constructive Set Theories Homotopy Type-Theoretic Interpretations of Constructive Set Theories Cesare Gallozzi Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Mathematics July 2018 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledge- ment. c 2018, The University of Leeds and Cesare Gallozzi The right of Cesare Gallozzi to be identified as author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. To all my teachers. Acknowledgements I wish to thank all those who made this thesis possible. I thank all my teachers and in particular my supervisor Nicola Gambino for his tireless generosity and all the help and guidance he offered during the course of the PhD. I thank the University of Leeds and the School of Mathematics for their financial support. I thank all those who contributed to improve this thesis by answering my ques- tions or making comments on the material: my co-supervisor Michael Rathjen, and also Peter Hancock, John Truss, Stan Wainer, Martin Hofmann, Helmut Schwichtenberg, Michael Toppel, Anton Freund, Andrew Swan, Jakob Vidmar, Nicolai Kraus and Fredrik Nordvall Forsberg. I thank my parents and my grandmother for all their care and for encouraging my interests in science and mathematics since my early childhood. I also thank all my friends. iv Abstract This thesis deals primarily with type-theoretic interpretations of constructive set theories using notions and ideas from homotopy type theory. We introduce a family of interpretations · k;h for 2 ≤ k ≤ 1 and 1 ≤ h ≤ 1 of the set theory BCS into the type theory H,J inK which sets and formulas are inter- preted respectively as types of homotopy level k and h. Depending on the values of the parameters k and h we are able to interpret different theories, like Aczel's CZF and Myhill's CST. We relate the family · k;h to the other interpretations of CST into homotopy type theory already studiedJ K in the literature in [Uni13] and [Gyl16a]. We characterise a class of sentences valid in the interpretations · k;1 in terms of the ΠΣ axiom of choice, generalising the characterisation of [RT06]J K for Aczel's interpretation. We also define a proposition-as-hproposition interpretation in the context of logic-enriched type theories. The formulas valid in this interpretation are then characterised in terms of the axiom of unique choice. We extend the analysis of Aczel's interpretation provided in [GA06] to the in- terpretations of CST into homotopy type theory, providing a comparative analysis. This is done formulating in the logic-enriched type theory the key principles used in the proofs of the two interpretations. We also investigate the notion of feasible ordinal formalised in the context of a linear type theory equipped with a type of resources. This type theory was originally introduced by Hofmann in [Hof03]. We disprove Hofmann's conjecture on the definable ordinals, by showing that for any given k 2 N the ordinal !k is definable. v Contents Introduction 1 Background 1 Constructive set theories and type theories 2 Set theories 2 Type theories 2 Homotopy type theories 4 Linear type theories 6 The state of the literature 6 Outline of the thesis and main results 8 Chapter 1. Homotopy type-theoretic interpretations 13 1.1. Type-theoretic preliminaries 14 The type theory H 14 The type theory HoTT 19 1.2. The homotopy type-theoretic interpretations 21 1.3. Interpreting constructive set theories 23 Some lemmas on equality and formulas 24 Validity of the set-theoretic axioms 29 1.4. An alternative interpretation of equality 36 Chapter 2. A characterisation of the interpretations · k;1 41 2.1. Set-theoretic preliminariesJ K 42 2.2. Proof-theoretic preliminaries 43 2.3. Relating the interpretations · 1;1 and · k;1 45 J K J K 2.4. ΠΣ-AC is valid in the interpretations · k;1 48 Injectively presented setsJ K 49 Strong bases 50 2.5. The proof-theoretic characterisation 53 2.6. A side question: ΠΣI-AC and hsets 55 Chapter 3. Equivalence between some interpretations 57 3.1. Preliminaries on setoids and the epi-mono factorisation 58 3.2. Equivalence with Gylterud's interpretation 61 vii viii CONTENTS 3.3. Equivalence with the HoTT book interpretation 65 3.4. Equivalence with the interpretations · k;1 69 3.5. Logical aspectsJ K 71 Chapter 4. A characterisation of the · PHP interpretation 77 4.1. Logic-enriched type theoriesJ K 78 4.2. The propositions-as-hprops interpretation 81 4.3. Characterisation of the formulas valid in · PHP 82 J K From the interpretation · PHP to the PaHP principle 83 Characterisation of the principleJ K PaHP 84 4.4. A logic-enriched type theory for · 1;1 87 Other principles for a logic-enrichedJ K type theory 87 0 Validity of the principles under · PHP 90 J K Chapter 5. Analysis of the interpretations via logic-enriched type theories 93 5.1. The combinatorial interpretation 95 5.2. The hybrid interpretation 100 5.3. Relating logic-enriched type theories 104 5.4. Conclusions 108 Chapter 6. Feasible ordinals 111 6.1. Ordinal notations in LFPL 112 Syntax of LFPL + O 113 6.2. Comparing systems 118 6.3. Definable ordinals 121 6.4. Conclusions 126 Chapter 7. Future research 131 Appendix 133 A. Constructive set theories 133 Axioms of BCS 133 Axioms of CST 134 Axioms of CZF 134 The Fullness axiom 134 B. Type-theoretic rules 136 Martin-L¨oftype theory 136 Logic-enriched type theories 141 C. Set-theoretic semantics of LFPL + O 143 Bibliography 147 Introduction Background The topic of this thesis belongs to the general area of the study of the found- ations of mathematics, and focuses on how different foundational frameworks are related. The expression `foundations of mathematics' suggests often a reductionist approach in which some concepts are seen as fundamental and all other mathem- atical concepts ought to be defined in their terms. Here, however, we consider foundations in the sense of an approach and lan- guage for the development of mathematics. From a pragmatic viewpoint, different languages and concepts are suited to study and be applied to different areas of mathematics. The three main options for developing the foundations of mathematics are set theory, category theory and type theory, with a lot of diversity within each one. Other foundational theories are systems of arithmetic used in reverse mathematics [Sim09] and untyped formal systems, for example Feferman's system of explicit mathematics [Fef75]. When using the language and techniques of set theory, category theory or type theory, the mathematics developed there has distinct flavours, different ideas come into play and different questions arise naturally. In other words, the mathemat- ics we do and the way we do it depend on the foundational framework. One can argue that any single perspective has a blind spot, from which comes the import- ance of having available different foundational frameworks, and to understand their relationships. Despite the diversity of different foundational theories nearly all of what is used by the working mathematician can be developed in these different frameworks and to a large extent also in subsystems of second order arithmetic. This underlines the interconnectedness of these quite different foundational frameworks. In particular there are various ways to relate set theory, category theory and type theory with each other. See [Fef88] for the foundational and conceptual implications of inter- preting a theory into another one. See also [MP02] and [Awo11] for more details on relating set theory, category theory and type theory. 1 2 INTRODUCTION In this thesis we interpret constructive set theories into type theories taking inspiration from concepts and ideas from homotopy type theory. We are also in- terested in understanding how these different interpretations relate to each other. Constructive set theories and type theories Here we give some context and an introduction to the theories we consider in this thesis. Set theories. The set theories we consider are Myhill's constructive set theory CST [Myh75] and Aczel's Constructive Zermelo-Fraenkel CZF [Acz78]. We also consider for convenience the theory that we call Basic Constructive Set Theory, BCS for short, which comprises of the axioms shared by both CST and CZF. See appendix A for their axioms. The only difference between CST and CZF is that the Replacement and Exponentiation axioms of CST are replaced in CZF by the Strong Collection and Subset Collection axioms, which are stronger (see [AR10, Section 5.1]). The theories CST and CZF are constructive at two levels: in the sense that the underlying logic is intuitionistic rather than classical, and also because they are predicative theories. At the first level, one can see them intuitively as the result of the process that starts from ZFC and either removes or reformulates the axioms that are incompatible with intuitionistic logic. The axiom of choice is removed and the Foundation axiom is reformulated as the 2-induction axiom, since they both imply the law of excluded middle. Moreover, CST and CZF are predicative, meaning that sets are conceived as being constructed from already constructed sets. Definitions of a set that use a collection to which the set belongs are prevented by further restrictions on the axioms. For example the usual definition of closure in a topological space is im- predicative: `given a subset of a space S ⊆ X, the closure S¯ is the smallest closed set containing S'.
Recommended publications
  • Sets in Homotopy Type Theory
    Predicative topos Sets in Homotopy type theory Bas Spitters Aarhus Bas Spitters Aarhus Sets in Homotopy type theory Predicative topos About me I PhD thesis on constructive analysis I Connecting Bishop's pointwise mathematics w/topos theory (w/Coquand) I Formalization of effective real analysis in Coq O'Connor's PhD part EU ForMath project I Topos theory and quantum theory I Univalent foundations as a combination of the strands co-author of the book and the Coq library I guarded homotopy type theory: applications to CS Bas Spitters Aarhus Sets in Homotopy type theory Most of the presentation is based on the book and Sets in HoTT (with Rijke). CC-BY-SA Towards a new design of proof assistants: Proof assistant with a clear (denotational) semantics, guiding the addition of new features. E.g. guarded cubical type theory Predicative topos Homotopy type theory Towards a new practical foundation for mathematics. I Modern ((higher) categorical) mathematics I Formalization I Constructive mathematics Closer to mathematical practice, inherent treatment of equivalences. Bas Spitters Aarhus Sets in Homotopy type theory Predicative topos Homotopy type theory Towards a new practical foundation for mathematics. I Modern ((higher) categorical) mathematics I Formalization I Constructive mathematics Closer to mathematical practice, inherent treatment of equivalences. Towards a new design of proof assistants: Proof assistant with a clear (denotational) semantics, guiding the addition of new features. E.g. guarded cubical type theory Bas Spitters Aarhus Sets in Homotopy type theory Formalization of discrete mathematics: four color theorem, Feit Thompson, ... computational interpretation was crucial. Can this be extended to non-discrete types? Predicative topos Challenges pre-HoTT: Sets as Types no quotients (setoids), no unique choice (in Coq), ..
    [Show full text]
  • A Taste of Set Theory for Philosophers
    Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics.
    [Show full text]
  • Categorical Semantics of Constructive Set Theory
    Categorical semantics of constructive set theory Beim Fachbereich Mathematik der Technischen Universit¨atDarmstadt eingereichte Habilitationsschrift von Benno van den Berg, PhD aus Emmen, die Niederlande 2 Contents 1 Introduction to the thesis 7 1.1 Logic and metamathematics . 7 1.2 Historical intermezzo . 8 1.3 Constructivity . 9 1.4 Constructive set theory . 11 1.5 Algebraic set theory . 15 1.6 Contents . 17 1.7 Warning concerning terminology . 18 1.8 Acknowledgements . 19 2 A unified approach to algebraic set theory 21 2.1 Introduction . 21 2.2 Constructive set theories . 24 2.3 Categories with small maps . 25 2.3.1 Axioms . 25 2.3.2 Consequences . 29 2.3.3 Strengthenings . 31 2.3.4 Relation to other settings . 32 2.4 Models of set theory . 33 2.5 Examples . 35 2.6 Predicative sheaf theory . 36 2.7 Predicative realizability . 37 3 Exact completion 41 3.1 Introduction . 41 3 4 CONTENTS 3.2 Categories with small maps . 45 3.2.1 Classes of small maps . 46 3.2.2 Classes of display maps . 51 3.3 Axioms for classes of small maps . 55 3.3.1 Representability . 55 3.3.2 Separation . 55 3.3.3 Power types . 55 3.3.4 Function types . 57 3.3.5 Inductive types . 58 3.3.6 Infinity . 60 3.3.7 Fullness . 61 3.4 Exactness and its applications . 63 3.5 Exact completion . 66 3.6 Stability properties of axioms for small maps . 73 3.6.1 Representability . 74 3.6.2 Separation . 74 3.6.3 Power types .
    [Show full text]
  • Implicit Versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi
    Implicit versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi To cite this version: Manuel Rebuschi. Implicit versus Explicit Knowledge in Dialogical Logic. Ondrej Majer, Ahti-Veikko Pietarinen and Tero Tulenheimo. Games: Unifying Logic, Language, and Philosophy, Springer, pp.229-246, 2009, 10.1007/978-1-4020-9374-6_10. halshs-00556250 HAL Id: halshs-00556250 https://halshs.archives-ouvertes.fr/halshs-00556250 Submitted on 16 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Implicit versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi L.P.H.S. – Archives H. Poincar´e Universit´ede Nancy 2 [email protected] [The final version of this paper is published in: O. Majer et al. (eds.), Games: Unifying Logic, Language, and Philosophy, Dordrecht, Springer, 2009, 229-246.] Abstract A dialogical version of (modal) epistemic logic is outlined, with an intuitionistic variant. Another version of dialogical epistemic logic is then provided by means of the S4 mapping of intuitionistic logic. Both systems cast new light on the relationship between intuitionism, modal logic and dialogical games. Introduction Two main approaches to knowledge in logic can be distinguished [1]. The first one is an implicit way of encoding knowledge and consists in an epistemic interpretation of usual logic.
    [Show full text]
  • Relevant and Substructural Logics
    Relevant and Substructural Logics GREG RESTALL∗ PHILOSOPHY DEPARTMENT, MACQUARIE UNIVERSITY [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ Abstract: This is a history of relevant and substructural logics, written for the Hand- book of the History and Philosophy of Logic, edited by Dov Gabbay and John Woods.1 1 Introduction Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye to models.2 Relevant and substructural logics are no different: you can focus on notions of proof, inference rules and structural features of deduction in these logics, or you can focus on interpretations of the language in other structures. This essay is structured around the bifurcation between proofs and mod- els: The first section discusses Proof Theory of relevant and substructural log- ics, and the second covers the Model Theory of these logics. This order is a natural one for a history of relevant and substructural logics, because much of the initial work — especially in the Anderson–Belnap tradition of relevant logics — started by developing proof theory. The model theory of relevant logic came some time later. As we will see, Dunn's algebraic models [76, 77] Urquhart's operational semantics [267, 268] and Routley and Meyer's rela- tional semantics [239, 240, 241] arrived decades after the initial burst of ac- tivity from Alan Anderson and Nuel Belnap. The same goes for work on the Lambek calculus: although inspired by a very particular application in lin- guistic typing, it was developed first proof-theoretically, and only later did model theory come to the fore.
    [Show full text]
  • Towards a Proof-Irrelevant Calculus of Inductive Constructions Philipp Haselwarter
    Towards a Proof-Irrelevant Calculus of Inductive Constructions Philipp Haselwarter To cite this version: Philipp Haselwarter. Towards a Proof-Irrelevant Calculus of Inductive Constructions. Programming Languages [cs.PL]. 2014. hal-01114573v2 HAL Id: hal-01114573 https://hal.inria.fr/hal-01114573v2 Submitted on 4 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards a Proof-Irrelevant Calculus of Inductive Constructions Philipp Haselwarter under the supervision of Matthieu Sozeau, PPS and 휋푟2 2nd September 2014 Summary The general context Through the Curry-Howard correspondence, dependent type theories are ap- pealing to both the mathematical and the programming community. To the first, they provide an expressive logical framework, in which mathematics can be developed. To the second, they offer a functional programming lan- guage that allows to state precise invariants programs have to respect and to build certified proofs thereof. Several dependent type systems have been investigated and implemented, with some early ones geared more towards the mathematical community [Con+86; Pol94; Coq12], called proof-assistants, and later putting a stronger accent on their viability as a programming environment [McB99; Nor07; Soz08]. The Calculus of Inductive Constructions (pCIC) is one such theory that attempts to stay faithful to the correspondence and bridge the two worlds of programming and proving.
    [Show full text]
  • From Axioms to Rules — a Coalition of Fuzzy, Linear and Substructural Logics
    From Axioms to Rules — A Coalition of Fuzzy, Linear and Substructural Logics Kazushige Terui National Institute of Informatics, Tokyo Laboratoire d’Informatique de Paris Nord (Joint work with Agata Ciabattoni and Nikolaos Galatos) Genova, 21/02/08 – p.1/?? Parties in Nonclassical Logics Modal Logics Default Logic Intermediate Logics (Padova) Basic Logic Paraconsistent Logic Linear Logic Fuzzy Logics Substructural Logics Genova, 21/02/08 – p.2/?? Parties in Nonclassical Logics Modal Logics Default Logic Intermediate Logics (Padova) Basic Logic Paraconsistent Logic Linear Logic Fuzzy Logics Substructural Logics Our aim: Fruitful coalition of the 3 parties Genova, 21/02/08 – p.2/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Linear Logic: Cut Elimination Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Linear Logic: Cut Elimination A logic without cut elimination is like a car without engine (J.-Y. Girard) Genova, 21/02/08 – p.3/?? Outcome We classify axioms in Substructural and Fuzzy Logics according to the Substructural Hierarchy, which is defined based on Polarity (Linear Logic). Genova, 21/02/08 – p.4/?? Outcome We classify axioms in Substructural and Fuzzy Logics according to the Substructural Hierarchy, which is defined based on Polarity (Linear Logic). Give an automatic procedure to transform axioms up to level ¼ È È ¿ ( , in the absense of Weakening) into Hyperstructural ¿ Rules in Hypersequent Calculus (Fuzzy Logics).
    [Show full text]
  • Constructive Set Theory
    CST Book draft Peter Aczel and Michael Rathjen CST Book Draft 2 August 19, 2010 Contents 1 Introduction 7 2 Intuitionistic Logic 9 2.1 Constructivism . 9 2.2 The Brouwer-Heyting-Kolmogorov interpretation . 11 2.3 Counterexamples . 13 2.4 Natural Deductions . 14 2.5 A Hilbert-style system for intuitionistic logic . 17 2.6 Kripke semantics . 19 2.7 Exercises . 21 3 Some Axiom Systems 23 3.1 Classical Set Theory . 23 3.2 Intuitionistic Set Theory . 24 3.3 Basic Constructive Set Theory . 25 3.4 Elementary Constructive Set Theory . 26 3.5 Constructive Zermelo Fraenkel, CZF ................ 26 3.6 On notations for axiom systems. 27 3.7 Class Notation . 27 3.8 Russell's paradox . 28 4 Basic Set constructions in BCST 31 4.1 Ordered Pairs . 31 4.2 More class notation . 32 4.3 The Union-Replacement Scheme . 35 4.4 Exercises . 37 5 From Function Spaces to Powerset 41 5.1 Subset Collection and Exponentiation . 41 5.2 Appendix: Binary Refinement . 44 5.3 Exercises . 45 3 CST Book Draft 6 The Natural Numbers 47 6.1 Some approaches to the natural numbers . 47 6.1.1 Dedekind's characterization of the natural numbers . 47 6.1.2 The Zermelo and von Neumann natural numbers . 48 6.1.3 Lawv`ere'scharacterization of the natural numbers . 48 6.1.4 The Strong Infinity Axiom . 48 6.1.5 Some possible additional axioms concerning ! . 49 6.2 DP-structures and DP-models . 50 6.3 The von Neumann natural numbers in ECST . 51 6.3.1 The DP-model N! .....................
    [Show full text]
  • Bunched Hypersequent Calculi for Distributive Substructural Logics
    EPiC Series in Computing Volume 46, 2017, Pages 417{434 LPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning Bunched Hypersequent Calculi for Distributive Substructural Logics Agata Ciabattoni and Revantha Ramanayake Technische Universit¨atWien, Austria fagata,[email protected]∗ Abstract We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut- elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large class of logics extending the dis- tributive commutative Full Lambek calculus DFLe and Bunched Implication logic BI. The methodology is then used to formulate new logics equipped with a cutfree calculus in the vicinity of Boolean BI. 1 Introduction The wide applicability of logical methods and their use in new subject areas has resulted in an explosion of new logics. The usefulness of these logics often depends on the availability of an analytic proof calculus (formal proof system), as this provides a natural starting point for investi- gating metalogical properties such as decidability, complexity, interpolation and conservativity, for developing automated deduction procedures, and for establishing semantic properties like standard completeness [26]. A calculus is analytic when every derivation (formal proof) in the calculus has the property that every formula occurring in the derivation is a subformula of the formula that is ultimately proved (i.e. the subformula property). The use of an analytic proof calculus tremendously restricts the set of possible derivations of a given statement to deriva- tions with a discernible structure (in certain cases this set may even be finite).
    [Show full text]
  • Applications of Non-Classical Logic Andrew Tedder University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-8-2018 Applications of Non-Classical Logic Andrew Tedder University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Tedder, Andrew, "Applications of Non-Classical Logic" (2018). Doctoral Dissertations. 1930. https://opencommons.uconn.edu/dissertations/1930 Applications of Non-Classical Logic Andrew Tedder University of Connecticut, 2018 ABSTRACT This dissertation is composed of three projects applying non-classical logic to problems in history of philosophy and philosophy of logic. The main component concerns Descartes’ Creation Doctrine (CD) – the doctrine that while truths concerning the essences of objects (eternal truths) are necessary, God had vol- untary control over their creation, and thus could have made them false. First, I show a flaw in a standard argument for two interpretations of CD. This argument, stated in terms of non-normal modal logics, involves a set of premises which lead to a conclusion which Descartes explicitly rejects. Following this, I develop a multimodal account of CD, ac- cording to which Descartes is committed to two kinds of modality, and that the apparent contradiction resulting from CD is the result of an ambiguity. Finally, I begin to develop two modal logics capturing the key ideas in the multi-modal interpretation, and provide some metatheoretic results concerning these logics which shore up some of my interpretive claims. The second component is a project concerning the Channel Theoretic interpretation of the ternary relation semantics of relevant and substructural logics. Following Barwise, I de- velop a representation of Channel Composition, and prove that extending the implication- conjunction fragment of B by composite channels is conservative.
    [Show full text]
  • Local Constructive Set Theory and Inductive Definitions
    Local Constructive Set Theory and Inductive Definitions Peter Aczel 1 Introduction Local Constructive Set Theory (LCST) is intended to be a local version of con- structive set theory (CST). Constructive Set Theory is an open-ended set theoretical setting for constructive mathematics that is not committed to any particular brand of constructive mathematics and, by avoiding any built-in choice principles, is also acceptable in topos mathematics, the mathematics that can be carried out in an arbi- trary topos with a natural numbers object. We refer the reader to [2] for any details, not explained in this paper, concerning CST and the specific CST axiom systems CZF and CZF+ ≡ CZF + REA. CST provides a global set theoretical setting in the sense that there is a single universe of all the mathematical objects that are in the range of the variables. By contrast a local set theory avoids the use of any global universe but instead is formu- lated in a many-sorted language that has various forms of sort including, for each sort α a power-sort Pα, the sort of all sets of elements of sort α. For each sort α there is a binary infix relation ∈α that takes two arguments, the first of sort α and the second of sort Pα. For each formula φ and each variable x of sort α, there is a comprehension term {x : α | φ} of sort Pα for which the following scheme holds. Comprehension: (∀y : α)[ y ∈α {x : α | φ} ↔ φ[y/x] ]. Here we use the notation φ[a/x] for the result of substituting a term a for free oc- curences of the variable x in the formula φ, relabelling bound variables in the stan- dard way to avoid variable clashes.
    [Show full text]
  • An Outline of Algebraic Set Theory
    An Outline of Algebraic Set Theory Steve Awodey Dedicated to Saunders Mac Lane, 1909–2005 Abstract This survey article is intended to introduce the reader to the field of Algebraic Set Theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, admitting adjustment in several respects to model different theories including classical, intuitionistic, bounded, and predicative ones. Under this scheme some familiar set theoretic properties are related to algebraic ones, like freeness, while others result from logical constraints, like definability. The overall theory is complete in two important respects: conventional elementary set theory axiomatizes the class of algebraic models, and the axioms provided for the abstract algebraic framework itself are also complete with respect to a range of natural models consisting of “ideals” of sets, suitably defined. Some previous results involving realizability, forcing, and sheaf models are subsumed, and the prospects for further such unification seem bright. 1 Contents 1 Introduction 3 2 The category of classes 10 2.1 Smallmaps ............................ 12 2.2 Powerclasses............................ 14 2.3 UniversesandInfinity . 15 2.4 Classcategories .......................... 16 2.5 Thetoposofsets ......................... 17 3 Algebraic models of set theory 18 3.1 ThesettheoryBIST ....................... 18 3.2 Algebraic soundness of BIST . 20 3.3 Algebraic completeness of BIST . 21 4 Classes as ideals of sets 23 4.1 Smallmapsandideals . .. .. 24 4.2 Powerclasses and universes . 26 4.3 Conservativity........................... 29 5 Ideal models 29 5.1 Freealgebras ........................... 29 5.2 Collection ............................. 30 5.3 Idealcompleteness . .. .. 32 6 Variations 33 References 36 2 1 Introduction Algebraic set theory (AST) is a new approach to the construction of models of set theory, invented by Andr´eJoyal and Ieke Moerdijk and first presented in [16].
    [Show full text]