Cyanobacterial Populations That Build 'Kopara' Microbial Mats in Rangiroa, Tuamotu Archipelago, French Polynesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DOMAIN Bacteria PHYLUM Cyanobacteria
DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub -
(Cyanobacterial Genera) 2014, Using a Polyphasic Approach
Preslia 86: 295–335, 2014 295 Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach Taxonomické hodnocení cyanoprokaryot (cyanobakteriální rody) v roce 2014 podle polyfázického přístupu Jiří K o m á r e k1,2,JanKaštovský2, Jan M a r e š1,2 & Jeffrey R. J o h a n s e n2,3 1Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-37982 Třeboň, Czech Republic, e-mail: [email protected]; 2Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic; 3Department of Biology, John Carroll University, University Heights, Cleveland, OH 44118, USA Komárek J., Kaštovský J., Mareš J. & Johansen J. R. (2014): Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. – Preslia 86: 295–335. The whole classification of cyanobacteria (species, genera, families, orders) has undergone exten- sive restructuring and revision in recent years with the advent of phylogenetic analyses based on molecular sequence data. Several recent revisionary and monographic works initiated a revision and it is anticipated there will be further changes in the future. However, with the completion of the monographic series on the Cyanobacteria in Süsswasserflora von Mitteleuropa, and the recent flurry of taxonomic papers describing new genera, it seems expedient that a summary of the modern taxonomic system for cyanobacteria should be published. In this review, we present the status of all currently used families of cyanobacteria, review the results of molecular taxonomic studies, descriptions and characteristics of new orders and new families and the elevation of a few subfamilies to family level. -
Common Benthic Algae and Cyanobacteria in Southern California Tidal Wetlands
UC San Diego Scripps Institution of Oceanography Technical Report Title Common benthic algae and cyanobacteria in southern California tidal wetlands Permalink https://escholarship.org/uc/item/21c8f9f0 Author Janousek, Christopher N Publication Date 2011-07-11 eScholarship.org Powered by the California Digital Library University of California Scripps Institution of Oceanography Technical Report Common benthic algae and cyanobacteria in southern California tidal wetlands Christopher N. Janousek Scripps Institution of Oceanography, University of California, San Diego 11 July 2011 Janousek 2011: Algae and cyanobacteria of southern California marine wetlands. 1 Abstract Benthic algae and photosynthetic bacteria are important components of coastal wetlands, contributing to primary productivity, nutrient cycling, and other ecosystem functions. Despite their key roles in mudflat and salt marsh food webs, the extent and patterns of diversity of these organisms is poorly known. Sediments from intertidal marshes in San Diego County, California host a variety of cyanobacteria, diatoms, and multi-cellular algae. This flora describes approximately 40 taxa of common and notable cyanobacteria, microalgae and macroalgae observed in wetland sediments, principally from a small tidal marsh in Mission Bay. Cyanobacteria included coccoid and heterocyte and non-heterocyte bearing filamentous genera. A phylogenetically-diverse assemblage of pennate and centric diatoms, euglenoids, green algae, red algae, tribophytes and brown seaweeds was also observed. Most taxa are illustrated with photographs. Key words alpha diversity • cyanobacteria • diatoms • euglenoids • Kendall-Frost Mission Bay Marsh Reserve • macroalgae • microphytobenthos • salt marsh • Tijuana Estuary • Vaucheria Introduction The sediments of coastal marine wetlands in California are inhabited by a variety of algal and bacterial primary producers in addition to the more conspicuous vascular plants that provide most of the physical structure of coastal salt marshes and seagrass meadows. -
Characterization of Algal-Invertebrate Mats at Offshore Platforms and the Assessment of Methods for Artificial Substrate Studies
OCS Study MMS 2005-038 Coastal Marine Institute Characterization of Algal-Invertebrate Mats at Offshore Platforms and the Assessment of Methods for Artificial Substrate Studies Final Report U.S. Department of the Interior Cooperative Agreement Minerals Management Service Coastal Marine Institute Gulf of Mexico OCS Region Louisiana State University OCS Study MMS 2005-038 Coastal Marine Institute Characterization of Algal-Invertebrate Mats at Offshore Platforms and the Assessment of Methods for Artificial Substrate Studies Final Report Author R.S. Carney June 2005 Prepared under MMS Contract 14-35-0001-30660-19932 by Coastal Marine Institute Louisiana State University Baton Rouge, Louisiana 70803 Published by U.S. Department of the Interior Cooperative Agreement Minerals Management Service Coastal Marine Institute Gulf of Mexico OCS Region Louisiana State University DISCLAIMER This report was prepared under contract between the Minerals Management Service (MMS) and Louisiana State University. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with MMS editorial standards. REPORT AVAILABILITY Extra copies of the report may be obtained from the Public Information Office (Mail Stop 5034) at the following address: U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region Public Information Office (MS 5034) 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394 Telephone Number: (504) 736-2519 1-800-200-GULF CITATION Suggested citation: Carney, R.S. -
Johannesbaptistia Floridana Sp. Nov. (Chroococcales, Cyanobacteria), a Novel Marine Cyanobacterium from Coastal South Florida (USA)
152 Fottea, Olomouc, 20(2): 152–159, 2020 DOI: 10.5507/fot.2020.008 Johannesbaptistia floridana sp. nov. (Chroococcales, Cyanobacteria), a novel marine cyanobacterium from coastal South Florida (USA) David E. Berthold1, Forrest W. Lefler1, Vera R. Werner2 & H. Dail Laughinghouse IV1* 1Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida / IFAS, 3205 College Avenue, Davie, FL 33314, USA; *Corresponding author e–mail: [email protected], Tel: +1–954–577–6382, ORCID#: 0000–0003–1018–6948 2Museum of Natural Sciences, Secretary of the Environment and Infrastructure, Rua Dr. Salvador França 1427, 90690–000, Porto Alegre, RS, Brazil Abstract: Mat dwelling species of cyanobacteria are diverse and integral to coastal marine sediment systems. Though observed throughout the globe, much of this diversity remains undescribed, especially on South Florida coast where cyanobacteria are pronounced. To help elucidate this diversity, one species of cyanobacteria from the marine sediments of South Florida was studied. Typical morphological features including uniseriate pseu- dofilaments with facultative intercellular gaps and cell division in one plane, transversely to the longer cell axis, indicated that the species belonged to the genus Johannesbaptistia De Toni. The combination of 16S rRNA gene and 16S–23S rRNA internal transcriber spacer (ITS), along with the diagnosable morphological charac- teristics suggest uniqueness from previously described species, thus supports the erection of the novel species Johannesbaptistia floridanasp. nov. Key words: benthic, Cyanothrichaceae, ecology, epipelic, morphology, new species, North America, subtropi- cal, 16S rRNA, 16S–23S rRNA ITS Introduction described as Hormospora pellucida (Dickie 1874). Gardner (1927) designated this genus as Cyanothrix, Johannesbaptistia De Toni (synonym Cyanothrix Gardner, while Taylor (1928) erroneously named it Nodularia Heterohormogonium Copeland) is a cosmopolitan genus (?) fusca.