Random Walk Simulation of Pn Junctions

Total Page:16

File Type:pdf, Size:1020Kb

Random Walk Simulation of Pn Junctions Random Walk Simulation of p-n Junctions by Jennifer Wang Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Bachelor of Arts in Physics at WELLESLEY COLLEGE May 2020 c Wellesley College 2020. All rights reserved. Author.............................................................. Department of Physics May 6th, 2020 Certified by. Yue Hu Professor of Physics Thesis Supervisor Accepted by . Yue Hu Chair, Department of Physics Random Walk Simulation of p-n Junctions by Jennifer Wang Submitted to the Department of Physics on May 6th, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Arts in Physics Abstract Random walks rely on stochastic sampling instead of analytical calculations to simulate complex processes; thus, these methods are flexible and mathematically simple. In the semiconductor field, random walks are often utilized to model bulk transport of charge carriers. However, junction transport models generally rely on more complex numerical methods, which are computationally unwieldy and opaque to a general audience. To aim for greater accessibility, this thesis applies random walks to simulate carrier transport in p-n junctions. We first show that our random walk methods are consistent with finite-difference methods to model drift-diffusion processes. Next, we apply a basic random walk to model a p-n junction at equilibrium. This demonstrates successful proof-of-concept simulation of the depletion layer, as well as calculation of the the electric field and potential of a typical p-n junction. Additionally, because the basic random walk assumption cannot incorporate different mobility parameters for electrons and holes, we develop an improved compound p- n junction model. We demonstrate that the compound model is consistent with the basic model, and that it is adaptable to realistic material parameters for both electrons and holes. Thesis Supervisor: Yue Hu Title: Professor of Physics 2 Acknowledgments I wish to express my deepest gratitude to my thesis advisor, Professor Yue Hu, for her constant guidance throughout my undergraduate experience. She has been incredibly patient and supportive, helping me with crucial obstacles and offering invaluable life advice. This thesis draws heavily from her ideas and quite literally would not be possible without her. I am also profoundly grateful to Professor Robbie Berg, my major advisor, for setting me on the path to a research career; Professor Rebecca Belisle, for sparking my interest in materials science; and Professor Brian Tjaden, for providing a much- needed computer science perspective. Thank you all for agreeing to serve as my thesis reviewers. Thanks also to Hope Anderson, my thesis mate, for thought-provoking discussions and moral support throughout our senior year. I would also like to thank my friends Jackie Ehrlich, Maddy Buxton and Maya Igarashi for their edits and camaraderie, as well as my parents for their love and care. 3 Contents 1 Introduction 6 1.1 Overview . .7 1.1.1 Semiconductor junction structure . .7 1.1.2 Random walk simulation process . 12 1.2 Research motivation . 14 2 Depletion approximation for p-n junctions 17 2.1 Setup and assumptions of depletion approximation . 17 2.2 Mathematical process . 20 2.2.1 Charge distribution, electric field and electrostatic potential di- agrams . 20 2.2.2 Depletion width calculation . 22 3 Random walks and the diffusion process 25 3.1 The drift-diffusion equation . 26 3.1.1 Derivation of drift-diffusion equation from random walk . 27 3.1.2 Derivation of carrier motion probability . 29 3.2 The finite difference method . 32 3.3 Random walk simulation implementation . 33 3.3.1 Simulation mechanics . 33 3.3.2 Simulation cases . 34 3.4 Comparing random walk and finite difference methods . 34 4 4 Simulation method for p-n junctions 37 4.1 Simulation overview . 37 4.1.1 Finding discretized electric field . 39 4.1.2 Calculating carrier motion probabilities . 41 4.1.3 Running the simulation . 42 4.2 Material parameters for p-n simulations . 44 4.3 Scaling parameter derivations . 44 4.3.1 Fixed physical dimension (∆x) and time scale (∆t)...... 44 4.3.2 Doping concentration: fixed A and variable init ........ 46 4.3.3 Electric field: fixed scaling parameter and E-field unit . 47 4.4 Simulation strategy . 48 4.4.1 Basic p-n junction case . 48 4.4.2 Limitation of basic p-n junction case . 49 4.4.3 Compound p-n junction case . 50 5 Results 51 5.1 Basic p-n junction simulation . 52 5.2 Realistic diffusion coefficient issue . 58 5.3 Compound p-n junction simulation . 59 6 Conclusions and future work 62 A Simulation code for random walks 65 A.1 Basic random walk . 65 A.2 Biased random walk . 68 A.3 Compound random walk . 70 B Simulation code for p-n junctions 74 B.1 Basic p-n junction . 74 B.2 Compound p-n junction . 80 5 Chapter 1 Introduction The p-n junction is an interface structure between semiconductor materials, which forms the basis for electronic devices such as diodes, transistors, and solar cells. This junction occurs at the boundary between a p-type material, with excess positive charge carriers, and a n-type material, with excess negative charge carriers. This allows electrical current to flow through the junction in only one direction. Depending on external controls, such as a directional voltage bias, it is possible to achieve precise control of the current flow, thus creating an `on' and ‘off' state and enabling the p-n junction to function as a diode. Due to their ubiquitous use in technology infrastructure, p-n junctions and semi- conductors in general are well-studied; many commercial software packages exist to model junction behavior. However, most of these models are highly complex, in- volving multiple coupled differential equations and inherent assumptions that remain opaque to a general audience. This thesis will lay out a simple method of simulating p-n junctions using the Monte Carlo random walk. Through this investigation, I will endeavor to demonstrate three points: firstly, the random walk method achieves a level of accuracy comparable to that of analytical methods, and results in a more realistic solution than a conventional approximation treatment. Secondly, investigat- ing junction structures using a random walks enables semiconductor simulations to achieve a high degree of flexibility when incorporating external conditions. Thirdly, the random walk method is easily understandable by a broader audience, which bodes 6 well for technology outreach in the computing and clean energy industries. In this first chapter, I will provide necessary background and elaborate on the mo- tivation for using random walks to simulate p-n junctions. Chapter 2 will delineate the theoretical analysis of p-n junctions through the depletion approximation. Chap- ter 3 will justify how random walks can be used to model drift-diffusion processes, as well as how to simulate random walks using Monte Carlo methods. Next, Chapter 4 will introduce the setup and parameter analysis for p-n junctions simulations. In Chapter 5, we present simulation results for several different p-n junction models, to evaluate the accuracy, flexibility and applicability of our methods to the p-n junction system. Finally, Chapter 6 will conclude the thesis with a discussion of limitations and potential future explorations. 1.1 Overview 1.1.1 Semiconductor junction structure Electrical conductivity is a measure of how easily a material conducts electricity, often calculated as the ratio of current density to electric field within the material.[1] It is a fundamental material property and can be qualitatively understood with concepts from energy band theory. Every material has a distinctive band gap determined by internal structure. The size of the band gap is defined as the energy difference between the lowest energy of electrons in the conduction band, in which electrons are free to move around, and the highest energy of electrons in the valance band, in which electrons are bound close to the nuclei in the atoms. We can characterize material conductivity based on the size of this band gap. For example, as shown in Figure. 1-1, metals are conductors because the conduction band (blue) and valance band (red) overlap, which means electrons with that energy level are free to flow away from their original nuclei. Insulators, like rubber, have a large band gap, which indicates that electron flow in the material is not easy to achieve; in order to escape their bindings from the nuclei, electrons in the valance band have to absorb a large 7 amount of energy to reach the conduction band. Semiconductors like monocrystalline silicon have a small band gap, which means they have a conductivity between that of metals and insulators. We note that the Fermi energy (indicated with dashed line) is the highest energy of electrons if the material is kept at a temperature of 0 Kelvin; it provides a benchmark for the general energy region in which the conduction and valance band reside. Figure 1-1: Metals are conductors, since they have overlapping conduction and valance bands (zero band gap). Insulators have large band gaps (commonly greater than 9 eV). Semiconductors have smaller, easily tunable band gaps, which indicates that they have a conductivity between that of metals and insulators. Semiconductor band gaps are small enough (usually around 1.1 eV for silicon) that a tiny shift in energy level can have a large effect on electronic properties within the material.[2] Thus, the key advantage of using semiconductors to engineer devices is that their conductivity can be tuned by external factors, such as doping, which is the introduction of impurities into the material structure. In Figure. 1-2, we take a closer look at both the positive and negative doping of silicon, which lends the p-n junction its name.
Recommended publications
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • Lecture 19: Polymer Models: Persistence and Self-Avoidance
    Lecture 19: Polymer Models: Persistence and Self-Avoidance Scribe: Allison Ferguson (and Martin Z. Bazant) Martin Fisher School of Physics, Brandeis University April 14, 2005 Polymers are high molecular weight molecules formed by combining a large number of smaller molecules (monomers) in a regular pattern. Polymers in solution (i.e. uncrystallized) can be characterized as long flexible chains, and thus may be well described by random walk models of various complexity. 1 Simple Random Walk (IID Steps) Consider a Rayleigh random walk (i.e. a fixed step size a with a random angle θ). Recall (from Lecture 1) that the probability distribution function (PDF) of finding the walker at position R~ after N steps is given by −3R2 2 ~ e 2a N PN (R) ∼ d (1) (2πa2N/d) 2 Define RN = |R~| as the end-to-end distance of the polymer. Then from previous results we q √ 2 2 ¯ 2 know hRN i = Na and RN = hRN i = a N. We can define an additional quantity, the radius of gyration GN as the radius from the centre of mass (assuming the polymer has an approximately 1 2 spherical shape ). Hughes [1] gives an expression for this quantity in terms of hRN i as follows: 1 1 hG2 i = 1 − hR2 i (2) N 6 N 2 N As an example of the type of prediction which can be made using this type of simple model, consider the following experiment: Pull on both ends of a polymer and measure the force f required to stretch it out2. Note that the force will be given by f = −(∂F/∂R) where F = U − TS is the Helmholtz free energy (T is the temperature, U is the internal energy, and S is the entropy).
    [Show full text]
  • 8 Convergence of Loop-Erased Random Walk to SLE2 8.1 Comments on the Paper
    8 Convergence of loop-erased random walk to SLE2 8.1 Comments on the paper The proof that the loop-erased random walk converges to SLE2 is in the paper \Con- formal invariance of planar loop-erased random walks and uniform spanning trees" by Lawler, Schramm and Werner. (arxiv.org: math.PR/0112234). This section contains some comments to give you some hope of being able to actually make sense of this paper. In the first sections of the paper, δ is used to denote the lattice spacing. The main theorem is that as δ 0, the loop erased random walk converges to SLE2. HOWEVER, beginning in section !2.2 the lattice spacing is 1, and in section 3.2 the notation δ reappears but means something completely different. (δ also appears in the proof of lemma 2.1 in section 2.1, but its meaning here is restricted to this proof. The δ in this proof has nothing to do with any δ's outside the proof.) After the statement of the main theorem, there is no mention of the lattice spacing going to zero. This is hidden in conditions on the \inner radius." For a domain D containing 0 the inner radius is rad0(D) = inf z : z = D (364) fj j 2 g Now fix a domain D containing the origin. Let be the conformal map of D onto U. We want to show that the image under of a LERW on a lattice with spacing δ converges to SLE2 in the unit disc. In the paper they do this in a slightly different way.
    [Show full text]
  • Random Walk in Random Scenery (RWRS)
    IMS Lecture Notes–Monograph Series Dynamics & Stochastics Vol. 48 (2006) 53–65 c Institute of Mathematical Statistics, 2006 DOI: 10.1214/074921706000000077 Random walk in random scenery: A survey of some recent results Frank den Hollander1,2,* and Jeffrey E. Steif 3,† Leiden University & EURANDOM and Chalmers University of Technology Abstract. In this paper we give a survey of some recent results for random walk in random scenery (RWRS). On Zd, d ≥ 1, we are given a random walk with i.i.d. increments and a random scenery with i.i.d. components. The walk and the scenery are assumed to be independent. RWRS is the random process where time is indexed by Z, and at each unit of time both the step taken by the walk and the scenery value at the site that is visited are registered. We collect various results that classify the ergodic behavior of RWRS in terms of the characteristics of the underlying random walk (and discuss extensions to stationary walk increments and stationary scenery components as well). We describe a number of results for scenery reconstruction and close by listing some open questions. 1. Introduction Random walk in random scenery is a family of stationary random processes ex- hibiting amazingly rich behavior. We will survey some of the results that have been obtained in recent years and list some open questions. Mike Keane has made funda- mental contributions to this topic. As close colleagues it has been a great pleasure to work with him. We begin by defining the object of our study. Fix an integer d ≥ 1.
    [Show full text]
  • Particle Filtering Within Adaptive Metropolis Hastings Sampling
    Particle filtering within adaptive Metropolis-Hastings sampling Ralph S. Silva Paolo Giordani School of Economics Research Department University of New South Wales Sveriges Riksbank [email protected] [email protected] Robert Kohn∗ Michael K. Pitt School of Economics Economics Department University of New South Wales University of Warwick [email protected] [email protected] October 29, 2018 Abstract We show that it is feasible to carry out exact Bayesian inference for non-Gaussian state space models using an adaptive Metropolis-Hastings sampling scheme with the likelihood approximated by the particle filter. Furthermore, an adaptive independent Metropolis Hastings sampler based on a mixture of normals proposal is computation- ally much more efficient than an adaptive random walk Metropolis proposal because the cost of constructing a good adaptive proposal is negligible compared to the cost of approximating the likelihood. Independent Metropolis-Hastings proposals are also arXiv:0911.0230v1 [stat.CO] 2 Nov 2009 attractive because they are easy to run in parallel on multiple processors. We also show that when the particle filter is used, the marginal likelihood of any model is obtained in an efficient and unbiased manner, making model comparison straightforward. Keywords: Auxiliary variables; Bayesian inference; Bridge sampling; Marginal likeli- hood. ∗Corresponding author. 1 Introduction We show that it is feasible to carry out exact Bayesian inference on the parameters of a general state space model by using the particle filter to approximate the likelihood and adaptive Metropolis-Hastings sampling to generate unknown parameters. The state space model can be quite general, but we assume that the observation equation can be evaluated analytically and that it is possible to generate from the state transition equation.
    [Show full text]
  • A Course in Interacting Particle Systems
    A Course in Interacting Particle Systems J.M. Swart January 14, 2020 arXiv:1703.10007v2 [math.PR] 13 Jan 2020 2 Contents 1 Introduction 7 1.1 General set-up . .7 1.2 The voter model . .9 1.3 The contact process . 11 1.4 Ising and Potts models . 14 1.5 Phase transitions . 17 1.6 Variations on the voter model . 20 1.7 Further models . 22 2 Continuous-time Markov chains 27 2.1 Poisson point sets . 27 2.2 Transition probabilities and generators . 30 2.3 Poisson construction of Markov processes . 31 2.4 Examples of Poisson representations . 33 3 The mean-field limit 35 3.1 Processes on the complete graph . 35 3.2 The mean-field limit of the Ising model . 36 3.3 Analysis of the mean-field model . 38 3.4 Functions of Markov processes . 42 3.5 The mean-field contact process . 47 3.6 The mean-field voter model . 49 3.7 Exercises . 51 4 Construction and ergodicity 53 4.1 Introduction . 53 4.2 Feller processes . 54 4.3 Poisson construction . 63 4.4 Generator construction . 72 4.5 Ergodicity . 79 4.6 Application to the Ising model . 81 4.7 Further results . 85 5 Monotonicity 89 5.1 The stochastic order . 89 5.2 The upper and lower invariant laws . 94 5.3 The contact process . 97 5.4 Other examples . 100 3 4 CONTENTS 5.5 Exercises . 101 6 Duality 105 6.1 Introduction . 105 6.2 Additive systems duality . 106 6.3 Cancellative systems duality . 113 6.4 Other dualities .
    [Show full text]
  • ONE-DIMENSIONAL RANDOM WALKS Definition 1. a Random Walk on the Integers with Step Distribution F and Initial State X ∈ Is A
    ONE-DIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK Definition 1. A random walk on the integers Z with step distribution F and initial state x Z is a sequence Sn of random variables whose increments are independent, identically distributed2 random variables ξi with common distribution F , that is, n X (1) Sn = x + ξi . i =1 The definition extends in an obvious way to random walks on the d dimensional integer lat- d d tice Z : the increments are then random d vectors. Simple random walk− on Z is the particular case where the step distribution is the uniform− distribution on the 2d nearest neighbors of the 1 origin; in one dimension, this is the Rademacher- 2 distribution, the distribution that puts mass 1=2 at each of the two values 1. The moves of a simple random walk in 1D are determined by independent fair coin tosses:± For each Head, jump one to the right; for each Tail, jump one to the left. 1.1. Gambler’s Ruin. Simple random walk describes (among other things) the fluctuations in a speculator’s wealth when he/she is fully invested in a risky asset whose value jumps by either 1 in each time period. Although this seems far too simple a model to be of any practical value, when± the unit of time is small (e.g., seconds) it isn’t so bad, at least over periods on the order of days or weeks, and in fact it is commonly used as the basis of the so-called tree models for valuing options.
    [Show full text]
  • Stochastic Processes: Theory and Methods. Handbook of Statistics 19 (Ed
    Stochastic Processes: Theory and Methods. Handbook of Statistics 19 (ed. C. R. Rao & D. N. Shanbhag) 171-213, Elsevier, 2001) RANDOM WALK AND FLUCTUATION THEORY N. H. BINGHAM CONTENTS PART I: RANDOM WALKS ON EUCLIDEAN SPACE x1. Introduction x2. Simple random walk on ZZ x3. Recurrence and transience x4. Simple random walk on ZZd; P¶olya's theorem x5. Random walk on IRd x6. Harmonic analysis x7. Potential theory x8. Coupling x9. Renewal theory x10. Limit theorems and Brownian motion x11. Conditioned random walk PART II: RANDOM WALK IN MORE GENERAL CONTEXTS x1. Random walk and electrical networks x2. Random walk on graphs x3. Random walk on groups x4. Brownian motion on Riemannian manifolds x5. Random walk on homogeneous spaces, Gelfand pairs, hypergroups and semigroups x6. Random walk on graphs with special structure x7. Variants on random walk PART III: FLUCTUATION THEORY x1. Spitzer's identity x2. Ladder epochs and heights x3. Spitzer's arc-sine law x4. Ballot theorems x5. Queues x6. Continuous time x7. Barrier problems x8. Fluctuation theory in higher dimensions and algebraic generalisations x9. Distribution-free results and non-parametric statistics x10. Postscript 1 PART I: RANDOM WALK ON EUCLIDEAN SPACE x1. Introduction. The theory and applications of random walks are ubiquitous in the modern prob- ability literature, and random walks form perhaps the simplest and most important exam- ples of stochastic processes - random phenomena unfolding with time. The term `random walk' can be traced back (at least) to P¶olya (1921) (`zufÄallige Irrfahrt' in the German), but the context is much older. If we think of X1;X2;::: as the gains or losses of a gambler on successive plays of a gambling game, and the partial sums Sn := X1 + ¢ ¢ ¢ + Xn (S0 := 0) as his cumulative gain or loss to date (by time n), then the behaviour of the stochastic 1 process (Sn)n=0 - the random walk with steps Xn - describes the evolution of the gambler's fortune.
    [Show full text]
  • Simple Random Walks: Improbability of Profitable Stopping
    SIMPLE RANDOM WALKS: IMPROBABILITY OF PROFITABLE STOPPING EMILY GENTLES Abstract. This paper introduces the basics of the simple random walk with a flair for the statistical approach. Applications in biology and game theory will be discussed. The Impossibility of Profitable Stopping will be explored and proven. Contents 1. Introduction 1 2. What it looks like 2 3. Brownian Motion 3 4. Game Theory 5 Acknowledgments 6 References 6 1. Introduction Imagine you are on an integer number line, standing at zero. You flip a fair coin and if it comes up heads you move one step right to +1 and if it comes up tails you move one step left to -1. You continue this process, moving one step right or left for each coin toss, until you have returned to your starting position or have taken a predetermined number of steps. You have just executed a symmetric simple random walk. This simple random walk spans many fields of study and was first noticed by the Romans in 60BC. However, one of the subject's most notable beginnings occurred in biology when Scottish botanist Robert Brown rediscovered the phenomena in 1827. While studying pollen suspended in water Brown noticed the jittery motion of the pollen's organelles. At the time Brown speculated that the organelles were tiny organisms, alive and moving. Although his hypothesis was later disproved, the movement was coined Brownian motion. Since its start the subject has been fundamental in economics and physics with less significant uses in various other courses of study. In this paper we will explore the basic attributes of simple random walks in Section 2, how they relate to Brownian motion and the various distributions they can be described with in Section 3, and we will touch on their role in game theory in Section 4.
    [Show full text]
  • CONDITIONAL EXPECTATION and MARTINGALES 1.1. Definition of A
    CONDITIONAL EXPECTATION AND MARTINGALES 1. DISCRETE-TIME MARTINGALES 1.1. Definition of a Martingale. Let {Fn}n 0 be an increasing sequence of σ algebras in a ¸ ¡ probability space (­,F ,P). Such a sequence will be called a filtration. Let X0, X1,... be an adapted sequence of integrable real-valued random variables, that is, a sequence with the prop- erty that for each n the random variable X is measurable relative to F and such that E X n n j nj Ç . The sequence X0, X1,... is said to be a martingale relative to the filtration {Fn}n 0 if it is 1 ¸ adapted and if for every n, (1) E(Xn 1 Fn) Xn. Å j Æ Similarly, it is said to be a supermartingale (respectively, submartingale) if for every n, (2) E(Xn 1 Fn) ( )Xn. Å j · ¸ Observe that any martingale is automatically both a submartingale and a supermartingale. 1.2. Martingales and Martingale Difference Sequences. The most basic examples of martin- gales are sums of independent, mean zero random variables. Let Y0,Y1,... be such a sequence; then the sequence of partial sums n X (3) Xn Y j Æ j 1 Æ is a martingale relative to the natural filtration generated by the variables Yn. This is easily verified, using the linearity and stability properties and the independence law for conditional expectation: E(Xn 1 Fn) E(Xn Yn 1 Fn) Å j Æ Å Å j E(Xn Fn) E(Yn 1 Fn) Æ j Å Å j Xn EYn 1 Æ Å Å X .
    [Show full text]
  • Random Walk Methods for Modeling Hydrodynamic Transport in Porous and Fractured Media from Pore to Reservoir Scale
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Noname manuscript No. (will be inserted by the editor) Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale Benoit Noetinger · Delphine Roubinet · Anna Russian · Tanguy Le Borgne · Frederick Delay · Marco Dentz · Jean-Raynald de Dreuzy · Philippe Gouze Abstract Random walk (RW) methods are recurring Monte Carlo methods used to model convective and diffusive transport in complex heterogeneous media. Many applications can be found, including fluid mechanic, hydrology, and chemical re- actors modeling. These methods are easy to implement, very versatile and flexible enough to become appealing for many applications because they generally overlook or deeply simplify the building of explicit complex meshes required by deterministic methods. RW provide a good physical understanding of the interactions between the space scales of heterogeneities and the transport phenomena under consider- ation. In addition, they can result in efficient up-scaling methods, especially in the context of flow and transport in fractured media. In the present study, we review the applications of RW to several situations that cope with diverse spatial scales, and different insights into up-scaling problems. The advantages and down- B. Noetinger IFPEN 1-4 avenue de Bois Pr´eau,92852, France E-mail: [email protected] D. Roubinet Applied and Environmental Geophysics Group, Institute of Earth Sciences, University of Lau- sanne, 1015 Lausanne, Switzerland A. Russian G´eosciences,Universit´ede Montpellier 2, CNRS T. le Borgne Universit´ede Rennes 1, CNRS, G´eosciencesRennes, UMR 6118, Rennes, France F.
    [Show full text]
  • Martingale Theory Problem Set 3, with Solutions Martingales
    Martingale Theory Problem set 3, with solutions Martingales The solutions of problems 1,2,3,4,5,6, and 11 are written down. The rest will come soon. 3.1 Let ξj, j = 1; 2;::: be i.i.d. random variables with common distribution P ξi = +1 = p; P ξi = −1 = q := 1 − p; and , , their natural ltration. Denote Pn , . Fn = σ(ξj; 0 ≤ j ≤ n) n ≥ 0 Sn := j=1 ξj n ≥ 0 Sn (a) Prove that Mn := (q=p) is an (Fn)n≥0-martingale. (b) For λ > 0 determine C = C(λ) so that λ n Sn Zn := C λ be an (Fn)n≥0-martingale. SOLUTION: (a) ξn+1 ξn+1 E Mn+1 Fn = E Mn(q=p) Fn = MnE (q=p) Fn ξn+1 = MnE (q=p) = Mn (p(q=p) + q(p=q)) = Mn: (b) −1 C = C(λ) = Eλξ = λp + λ−1q: 3.2 Gambler's Ruin, 1 A gambler wins or looses one pound in each round of betting, with equal chances and independently of the past events. She starts betting with the rm determination that she will stop gambling when either she won a pounds or she lost b pounds. (a) What is the probability that she will be winning when she stops playing further. 1 (b) What is the expected number of her betting rounds before she will stop playing further. SOLUTION: Model the experiment with simple symmetric random walk. Let ξj, j = 1; 2;::: be i.i.d. random variables with common distribution 1 Pξ = +1 = = Pξ = −1; i 2 i and Fn = σ(ξj; 0 ≤ j ≤ n), n ≥ 0, their natural ltration.
    [Show full text]