Restoration of E-Cadherin-Based Cell ± Cell Adhesion by Overexpression of Nectin in HSC-39 Cells, a Human Signet Ring Cell Gastric Cancer Cell Line

Total Page:16

File Type:pdf, Size:1020Kb

Restoration of E-Cadherin-Based Cell ± Cell Adhesion by Overexpression of Nectin in HSC-39 Cells, a Human Signet Ring Cell Gastric Cancer Cell Line Oncogene (2002) 21, 4108 ± 4119 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Restoration of E-cadherin-based cell ± cell adhesion by overexpression of nectin in HSC-39 cells, a human signet ring cell gastric cancer cell line Ying-Feng Peng1, Kenji Mandai1, Hiroyuki Nakanishi1, Wataru Ikeda1, Masanori Asada1, Yumiko Momose1, Sayumi Shibamoto3,6, Kazuyoshi Yanagihara4, Hitoshi Shiozaki2,7, Morito Monden2, Masatoshi Takeichi5 and Yoshimi Takai*,1 1Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan; 2Department of Surgery and Clinical Oncology, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan; 3Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan; 4Central Animal Laboratory, National Cancer Center Research Institute, Tokyo 104-0045, Japan; 5Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan Nectin is an immunoglobulin-like adhesion molecule that Introduction comprises a family consisting of four members, nectin-1, -2, -3, and -4. Nectin is associated with the actin In about 50% of carcinomas with highly invasive and cytoskeleton through afadin, a nectin- and actin ®lament- metastatic nature, mutations of the components of the binding protein. The nectin-afadin and cadherin-catenin E-cadherin-catenin system have been reported (Shioza- systems are associated with each other and cooperatively ki et al., 1991). E-Cadherin functions as a key cell ± cell form cell ± cell adherens junctions in intact epithelial adhesion molecule in a Ca2+-dependent manner at cells. HSC-39 cells, a human signet ring cell gastric cell ± cell adherens junctions (AJs) in intact epithelial cancer cell line, express E-cadherin but do not form cells (Takeichi, 1991; Kemler, 1992; Marrs and Nelson, cell ± cell adhesion. The b-catenin gene has been shown to 1996; Yap et al., 1997). The cytoplasmic region of E- be truncated at the N-terminal region including the a- cadherin is directly associated with b-catenin which catenin-binding domain in HSC-39 cells, but overexpres- directly interacts with a-catenin (Ozawa et al., 1989; sion of normal b-catenin failed to form cell ± cell McCrea et al., 1991; Nagafuchi et al., 1991; Oda et al., adhesion. HSC-39 cells expressed nectin-1, -2, and 1993). a-Catenin directly binds to actin ®laments (F- afadin, but not nectin-3. Overexpression of nectin-3 or actin) (Rimm et al., 1995) and two other F-actin- -2 formed cell ± cell adhesion and accumulation of E- binding proteins, vinculin and a-actinin (Knudsen et cadherin, but not actin ®laments, at the cell ± cell al., 1995; Watabe-Uchida et al., 1998; Weiss et al., adhesion sites. Overexpression of a truncated form of 1998). Thus, E-cadherin is indirectly linked to the actin nectin-2 incapable of interacting with afadin failed to cytoskeleton through these peripheral membrane form cell ± cell adhesion. However, the nectin-formed proteins. These peripheral membrane proteins together cell ± cell adhesion was not so strong as that observed in with E-cadherin play important roles in the formation epithelial cells, such as CaCo-2 cells. Co-expression of and maintenance of cell ± cell AJs (Takeichi, 1991). The nectin-2 and normal b-catenin did not form strong cell ± E-cadherin-catenin system is furthermore required for cell adhesion. These results suggest that an unidenti®ed organization of tight junctions (TJs) and desmosomes mechanism, by which nectin and E-cadherin form the in epithelial cells (Gumbiner and Simons, 1986; actin cytoskeleton-associated adherens junctions to form Gumbiner et al., 1988; Watabe et al., 1994). Thus, strong cell ± cell adhesion, is impaired in HSC-39 cells. the mutational inactivation or reduced function of the Oncogene (2002) 21, 4108 ± 4119. doi:10.1038/sj.onc. E-cadherin-catenin system inevitably leads to abnormal 1205517 E-cadherin-mediated cell ± cell adhesion. However, in the carcinomas of which the E-cadherin-catenin system Keywords: nectin; afadin; cadherin; catenin; cell ± cell is intact, the causative gene mutations responsible for adhesion their highly invasive and metastatic nature have not been identi®ed. The nectin-afadin system is another cell ± cell adhe- sion system at AJs (Mandai et al., 1997; Takahashi et *Correspondence: Y Takai; al., 1999; Miyahara et al., 2000; Satoh-Horikawa et al., 2+ E-mail: [email protected] 2000). Nectin is a Ca -independent immunoglobulin- Current addresses: 6Department of Molecular Oncology, Genentech, like cell ± cell adhesion molecule (Aoki et al., 1997; Inc., South San Francisco, California 94080-4990, USA; 7First Lopez et al., 1998; Takahashi et al., 1999). This Department of Surgery, Kinki University School of Medicine, adhesion molecule was originally isolated as the Osaka-Sayama, Osaka 589-8511, Japan Received 21 January 2002; revised 1 March 2002; accepted 22 poliovirus receptor-related protein and has recently March 2002 been shown to serve as an a-herpes virus entry and The nectin-afadin system in cancer cells Y-F Peng et al 4109 a1 a2 a3 b1 b2 b3 Figure 1 Morphology of HSC-39 cells. (a1 ± a3) Phase contrast imaging. (a1) Clustered cells. The cells were cultured under normal culture conditions and the photograph was taken; (a2) Single cells. The clustered cells were scattered by pipetting and cultured in suspension. The photograph was taken immediately after pipetting; and (a3) Reclustered cells. The scattered cells were cultured in suspension for 1 h and the photograph was taken. (b1 ± b3) E-Cadherin staining. (b1) Low magni®cation; and (b2 ± b3) High magni®cation. (b2), a lateral view; and (b3), an apical view. Arrows, bud-like structures. Bars, 100 mm(a1 ± a3); 20 mm(b1); and 10 mm(b2 ± b3). The results shown are representative of three independent experiments cell ± cell spread mediator (Cocchi et al., 1998; 2000; afadins. 1-Afadin, a larger splicing variant, is an F-actin- Geraghty et al., 1998; Warner et al., 1998; Lopez et al., binding protein with one PDZ domain and three 2000; Sakisaka et al., 2001). Nectin comprises a family proline-rich domains and connects nectin to the actin consisting of four members, nectin-1, -2, -3, and -4, cytoskeleton (Mandai et al., 1997; Takahashi et al., and each of nectin-1, -2, and -3 has two or three 1999). s-Afadin, a smaller splicing variant, has one PDZ splicing variants: nectin-1a,-1b,-2a,-2d,-3a,-3b,and domain but lacks the F-actin-binding domain and the -3g (Morrison and Racaniello, 1992; Aoki et al., 1994; third proline-rich domain (Mandai et al., 1997). Human Lopez et al., 1995; Eberle et al., 1995; Cocchi et al., s-afadin is identical to the product of the AF-6 gene that 1998; Satoh-Horikawa et al., 2000; Reymond et al., has been identi®ed as an ALL-1 fusion partner involved 2001). Each member of the nectin family forms a in acute myeloid leukemia (Prasad et al., 1993). For the homo-cis-dimer, followed by formation of a homo- purpose of this study, we will refer to 1-afadin simply as trans-dimer, causing cell ± cell adhesion (Lopez et al., afadin. The nectin-afadin system is ubiquitously ex- 1998; Miyahara et al., 2000; Satoh-Horikawa et al., pressed not only in epithelial cells but also in non- 2000; Sakisaka et al., 2001; Reymond et al., 2001). epithelial cells lacking TJs, such as ®broblasts and Nectin-3 furthermore forms a hetero-trans-dimer with neurons (Mandai et al., 1997; Takahashi et al., 1999; either nectin-1 or -2 and the formation of each hetero- Nishioka et al., 2000; Mizoguchi et al., 2002). trans-dimer is stronger than that of each homo-trans- We have obtained several lines of evidence that the dimer (Satoh-Horikawa et al., 2000). Nectin-4 also nectin-afadin system plays an important role in the forms a hetero-trans-dimer with nectin-1 and the formation of AJs in cooperation with the E-cadherin- formation of the hetero-trans-dimer is stronger than catenin system: (1) the nectin-afadin system is strictly that of the homo-trans-dimer (Reymond et al., 2001). con®ned to AJs, which are undercoated with F-actin All the members except nectin-1b,-3g and -4 have a C- bundles in polarized epithelial cells, whereas the E- terminal conserved motif of four amino acid (aa) cadherin-catenin system is more widely distributed residues (E/A-X-Y-V) which interacts with the PDZ from AJs to the basal area along the lateral membrane domain of afadin (Takahashi et al., 1999; Satoh- (Mandai et al., 1997; Takahashi et al., 1999); (2) Horikawa et al., 2000). Nectin-4 does not have the studies using afadin (7/7) mice and (7/7) embryoid conserved motif, but interacts with the PDZ domain of bodies indicate that the proper organization of AJs and afadin through its C-terminus (Reymond et al., 2001). TJs are markedly impaired in epithelial cells (Ikeda et Afadin has at least two splicing variants, 1- and s- al., 1999); (3) cadherin-de®cient L ®broblasts stably Oncogene The nectin-afadin system in cancer cells Y-F Peng et al 4110 a c b Figure 2 Expression of the components of the E-cadherin-catenin and nectin-afadin systems in HSC-39 cells. (a,b) Western blotting. The lysates (100 mg of protein for nectin-1a and 30 mg of protein for others) of HSC-39 and the control cells were subjected to SDS-polyacrylamide gel electrophoresis (8% polyacrylamide gel), followed by Western blotting with the indicated Abs. CaCo-2, NS20Y, nectin-1a-L, nectin-2a-L, and nectin-3a-L cells were used as control cells.
Recommended publications
  • Adhesion Molecules in Non-Melanoma Skin Cancers: a Comprehensive Review JOANNA POGORZELSKA-DYRBUS 1 and JACEK C
    in vivo 35 : 1327-1336 (2021) doi:10.21873/invivo.12385 Review Adhesion Molecules in Non-melanoma Skin Cancers: A Comprehensive Review JOANNA POGORZELSKA-DYRBUS 1 and JACEK C. SZEPIETOWSKI 2 1“Estevita” Specialist Medical Practice, Tychy, Poland; 2Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland Abstract. Basal cell carcinoma (BCC) and squamous cell of NMSC develops from basal epithelial cells of hair carcinoma (SCC) are the most frequently diagnosed cancers, follicles or pluripotent epidermal basal cells and has a generating significant medical and financial problems. metastatic rate of only 0.0028-0.05% (1). Depending on the Cutaneous carcinogenesis is a very complex process different features of tumor cells, there are many characterized by genetic and molecular alterations, and histological types of BCC, with different, but still low mediated by various proteins and pathways. Cell adhesion metastatic potential (2). SCC develops from the molecules (CAMs) are transmembrane proteins responsible proliferating squamous layer of the epidermis, shows a for cell-to-cell and cell-to-extracellular matrix adhesion, metastatic rate of 0,1-9,9% and contributes to engaged in all steps of tumor progression. Based on their approximately 75% of deaths due to NMSC (3, 4). structures they are divided into five major groups: cadherins, Although both skin cancers generally have a good integrins, selectins, immunoglobulins and the CD44 family. prognosis, due to their high prevalence, they generate Cadherins,
    [Show full text]
  • Cdh2 Coordinates Myosin-II Dependent Internalisation of the Zebrafish Neural Plate
    www.nature.com/scientificreports Corrected: Publisher Correction OPEN Cdh2 coordinates Myosin-II dependent internalisation of the zebrafsh neural plate Received: 4 June 2018 Claudio Araya1,2, Hanna-Maria Häkkinen 1, Luis Carcamo1, Mauricio Cerda3,4, Thierry Savy5,6, Accepted: 7 December 2018 Christopher Rookyard7, Nadine Peyriéras5,6 & Jonathan D. W. Clarke7 Published online: 12 February 2019 Tissue internalisation is a key morphogenetic mechanism by which embryonic tissues generate complex internal organs and a number of studies of epithelia have outlined a general view of tissue internalisation. Here we have used quantitative live imaging and mutant analysis to determine whether similar mechanisms are responsible for internalisation in a tissue that apparently does not have a typical epithelial organisation – the zebrafsh neural plate. We found that although zebrafsh embryos begin neurulation without a conventional epithelium, medially located neural plate cells adopt strategies typical of epithelia in order to constrict their dorsal surface membrane during cell internalisation. Furthermore, we show that Myosin-II activity is a signifcant driver of this transient cell remodeling which also depends on Cdh2 (N-cadherin). Abrogation of Cdh2 results in defective Myosin-II distribution, mislocalised internalisation events and defective neural plate morphogenesis. Our work suggests Cdh2 coordinates Myosin-II dependent internalisation of the zebrafsh neural plate. Te internalisation of superfcial sheets of cells is a widely used developmental strategy to generate complex three-dimensional structures with well-defned shape and size. Trough this mechanism, animal tissues form a number of internal organs including the vertebrate central nervous system1,2. In recent years, live imaging studies and mutant analysis has begun to defne the cellular, molecular, and biomechanical mechanisms responsible for tissue internalisation in a growing number of tractable model systems3,4.
    [Show full text]
  • The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail.
    [Show full text]
  • The Intrinsically Disordered Proteins of Myelin in Health and Disease
    cells Review Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease Arne Raasakka 1 and Petri Kursula 1,2,* 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway; [email protected] 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland * Correspondence: [email protected] Received: 30 January 2020; Accepted: 16 February 2020; Published: 18 February 2020 Abstract: Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved. Keywords: myelin; intrinsically disordered protein; multiple sclerosis; peripheral neuropathies; myelination; protein folding; protein–membrane interaction; protein–protein interaction 1.
    [Show full text]
  • Binding Mode of the Side-By-Side Two-Igv Molecule CD226/DNAM-1 to Its Ligand CD155/Necl-5
    Binding mode of the side-by-side two-IgV molecule CD226/DNAM-1 to its ligand CD155/Necl-5 Han Wanga, Jianxun Qib, Shuijun Zhangb,1, Yan Lib, Shuguang Tanb,2, and George F. Gaoa,b,2 aResearch Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences (CAS), 100101 Beijing, China; and bCAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China Edited by K. Christopher Garcia, Stanford University School of Medicine, Stanford, CA, and approved December 3, 2018 (received for review September 11, 2018) Natural killer (NK) cells are important component of innate immu- CD226, also known as DNAM-1, belongs to the Ig superfamily nity and also contribute to activating and reshaping the adaptive and contains two extracellular Ig-like domains (CD226-D1 and immune responses. The functions of NK cells are modulated by CD226-D2), and is widely expressed in monocytes, platelets, multiple inhibitory and stimulatory receptors. Among these recep- T cells, and most of the resting NK cells (8, 13, 19, 20). The tors, the activating receptor CD226 (DNAM-1) mediates NK cell intracellular domain of CD226 does not contain a tyrosine-based activation via binding to its nectin-like (Necl) family ligand, CD155 activation motif, which is accepted as responsible for activating (Necl-5). Here, we present a unique side-by-side arrangement signal transduction of stimulatory molecules (13). Instead, it pattern of two tandem immunoglobulin V-set (IgV) domains transmits the downstream signaling by phosphorylation of in- deriving from the ectodomains of both human CD226 (hCD226- tracellular phosphorylation sites and subsequent association with ecto) and mouse CD226 (mCD226-ecto), which is substantially integrin lymphocyte function-associated antigen 1 (21).
    [Show full text]
  • CDH1 Gene Cadherin 1
    CDH1 gene cadherin 1 Normal Function The CDH1 gene provides instructions for making a protein called epithelial cadherin or E-cadherin. This protein is found within the membrane that surrounds epithelial cells, which are the cells that line the surfaces and cavities of the body, such as the inside of the eyelids and mouth. E-cadherin belongs to a family of proteins called cadherins whose function is to help neighboring cells stick to one another (cell adhesion) to form organized tissues. Another protein called p120-catenin, produced from the CTNND1 gene, helps keep E-cadherin in its proper place in the cell membrane, preventing it from being taken into the cell through a process called endocytosis and broken down prematurely. E-cadherin is one of the best-understood cadherin proteins. In addition to its role in cell adhesion, E-cadherin is involved in transmitting chemical signals within cells, controlling cell maturation and movement, and regulating the activity of certain genes. Interactions between the E-cadherin and p120-catenin proteins, in particular, are thought to be important for normal development of the head and face (craniofacial development), including the eyelids and teeth. E-cadherin also acts as a tumor suppressor protein, which means it prevents cells from growing and dividing too rapidly or in an uncontrolled way. Health Conditions Related to Genetic Changes Breast cancer Inherited mutations in the CDH1 gene increase a woman's risk of developing a form of breast cancer that begins in the milk-producing glands (lobular breast cancer). In many cases, this increased risk occurs as part of an inherited cancer disorder called hereditary diffuse gastric cancer (HDGC) (described below).
    [Show full text]
  • Endocytosis Elicited by Nectins Transfers Cytoplasmic Cargo, Including Infectious Material, Between Cells Alex R
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs235507. doi:10.1242/jcs.235507 RESEARCH ARTICLE Trans-endocytosis elicited by nectins transfers cytoplasmic cargo, including infectious material, between cells Alex R. Generous1,2, Oliver J. Harrison3, Regina B. Troyanovsky4, Mathieu Mateo1,*, Chanakha K. Navaratnarajah1, Ryan C. Donohue1,2, Christian K. Pfaller1,2, Olga Alekhina5, Alina P. Sergeeva3,6, Indrajyoti Indra4, Theresa Thornburg7,‡, Irina Kochetkova7, Daniel D. Billadeau5, Matthew P. Taylor7, Sergey M. Troyanovsky4, Barry Honig3,6, Lawrence Shapiro3 and Roberto Cattaneo1,2,§ ABSTRACT development, where the Bride of sevenless protein is internalized by the Sevenless tyrosine kinase receptor (Cagan et al., 1992). Here, we show that cells expressing the adherens junction protein Transfer of specific transmembrane proteins also occurs during nectin-1 capture nectin-4-containing membranes from the surface tissue patterning in embryonic development of higher of adjacent cells in a trans-endocytosis process. We find that vertebrates, during epithelial cell movement and at the immune internalized nectin-1–nectin-4 complexes follow the endocytic synapse (Gaitanos et al., 2016; Hudrisier et al., 2001; Marston et al., pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion 2003; Matsuda et al., 2004; Qureshi et al., 2011). At the immune prevents trans-endocytosis, while its exchange with the nectin-4 tail synapse, the CTLA-4 protein captures its ligands CD80 and CD86 reverses transfer direction. Nectin-1-expressing cells acquire dye- from donor cells by a process of trans-endocytosis; after removal, labeled cytoplasmic proteins synchronously with nectin-4, a process these ligands are degraded inside the acceptor cell, resulting in most active during cell adhesion.
    [Show full text]
  • Cadherin-Related Family Member 3, a Childhood Asthma Susceptibility Gene Product, Mediates Rhinovirus C Binding and Replication
    Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication Yury A. Bochkova,1, Kelly Wattersb, Shamaila Ashrafa,2, Theodor F. Griggsa, Mark K. Devriesa, Daniel J. Jacksona, Ann C. Palmenbergb,3, and James E. Gerna,c,3 aDepartment of Pediatrics and cDepartment of Medicine, University of Wisconsin–Madison, Madison, WI 53792; and bInstitute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706 Edited by Robert A. Lamb, Northwestern University, Evanston, IL, and approved March 17, 2015 (received for review November 5, 2014) Members of rhinovirus C (RV-C) species are more likely to cause been a major obstacle to the study of virus-specific characteristics wheezing illnesses and asthma exacerbations compared with that could lead to effective antiviral strategies for this common other rhinoviruses. The cellular receptor for these viruses was and important respiratory pathogen. We now report that human heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3), a member of the cadherin-related family member 3 (CDHR3) enables the cells cadherin family of transmembrane proteins, mediates RV-C normally unsusceptible to RV-C infection to support both virus entry into host cells, and an asthma-related mutation in this gene binding and replication. A coding single nucleotide polymorphism is associated with enhanced viral binding and increased progeny (rs6967330, C529Y) was previously linked to greater cell-surface yields in vitro. expression of CDHR3 protein, and an increased risk of wheezing illnesses and hospitalizations for childhood asthma. Compared Results with wild-type CDHR3, cells transfected with the CDHR3-Y529 var- In Silico Identification of Candidate RV-C Receptors.
    [Show full text]
  • Frequent Promoter Methylation of CDH1 in Non-Neoplastic Mucosa of Sporadic Diffuse Gastric Cancer
    ANTICANCER RESEARCH 33: 3765-3774 (2013) Frequent Promoter Methylation of CDH1 in Non-neoplastic Mucosa of Sporadic Diffuse Gastric Cancer KYUNG HWA LEE1*, DAVID HWANG2*, KI YOUNG KANG2, SOONG LEE3, DONG YI KIM4, YOUNG EUN JOO5 and JAE HYUK LEE1 Departments of 1Pathology, 4Surgery, and 5Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea; Departments of 2Anatomy and 3Internal Medicine, College of Medicine, Seonam University, Namwon, Republic of Korea Abstract. Background/Aim: To identify promoter observed in recent decades (1, 2). Diffuse gastric cancer methylation as a major silencing mechanism in potential (DGC) accounts for approximately 30% of all gastric precursor lesions of sporadic diffuse gastric cancer (DGC), carcinomas, and the prognosis is poor particularly for young we investigated promoter methylation of CDH1 (E-Cadherin patients (3, 4). It has long been known that DGCs show gene) in a series of DGCs and matched normal mucosa. diminished homophilic cell-to-cell cohesion (5). Inactivating Materials and Methods: The extent of CDH1 gene promoter germline CDH1 (E-Cadherin gene) mutation has been methylation was explored using methylation-specific described in the families with hereditary DGC, an polymerase chain reaction (MSP) and pyrosequencing (PS) autosomal-dominant disease characterized by clustering of in 72 DGCs with a matched pair of normal mucosa. Results: early-onset DGC (6, 7). The diminished or lack of E- MSP and PS revealed CDH1 promoter methylation in 73.6% Cadherin immunoreactivity observed in hereditary DGC cells (53/72) and 77.8% (56/72) of DGC samples, respectively. PS harboring CDH1 mutations is consistent with bi-allelic detected CDH1 methylation in 70.8% (51/72) and 72.2% CDH1 inactivation by a second-hit mechanism that leads to (52/72) of matched normal mucosa from adjacent and remote E-Cadherin loss and determines diffuse cancer development foci, respectively.
    [Show full text]
  • The Poliovirus Receptor (CD155)
    Cutting Edge: CD96 (Tactile) Promotes NK Cell-Target Cell Adhesion by Interacting with the Poliovirus Receptor (CD155) This information is current as Anja Fuchs, Marina Cella, Emanuele Giurisato, Andrey S. of September 27, 2021. Shaw and Marco Colonna J Immunol 2004; 172:3994-3998; ; doi: 10.4049/jimmunol.172.7.3994 http://www.jimmunol.org/content/172/7/3994 Downloaded from References This article cites 19 articles, 8 of which you can access for free at: http://www.jimmunol.org/content/172/7/3994.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY CUTTING EDGE Cutting Edge: CD96 (Tactile) Promotes NK Cell-Target Cell Adhesion by Interacting with the Poliovirus Receptor (CD155) Anja Fuchs, Marina Cella, Emanuele Giurisato, Andrey S. Shaw, and Marco Colonna1 The poliovirus receptor (PVR) belongs to a large family of activating receptor DNAM-1, also called CD226 (6, 7).
    [Show full text]
  • CDH2 and CDH11 Act As Regulators of Stem Cell Fate Decisions Stella Alimperti A, Stelios T
    Stem Cell Research (2015) 14, 270–282 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/scr REVIEW CDH2 and CDH11 act as regulators of stem cell fate decisions Stella Alimperti a, Stelios T. Andreadis a,b,⁎ a Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA b Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA Received 18 September 2014; received in revised form 24 January 2015; accepted 10 February 2015 Abstract Accumulating evidence suggests that the mechanical and biochemical signals originating from cell–cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell–cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • N-Cadherin in Human Bone Marrow 1569 Antigens Were Washed Several Times and Dissolved by Boiling in SDS- Cadherin in Methylcellulose-Containing Cultures
    RESEARCH ARTICLE 1567 N-cadherin is developmentally regulated and functionally involved in early hematopoietic cell differentiation Sabine Puch1, Sorin Armeanu1, Christine Kibler1, Keith R. Johnson2, Claudia A. Müller1, Margaret J. Wheelock2 and Gerd Klein1,* 1University Medical Clinic, Section for Transplantation Immunology and Immunohematology, 72072 Tübingen, Germany 2University of Toledo, Dept of Biology, Ohio 43606, USA *Author for correspondence (e-mail: [email protected]) Accepted 24 January 2001 Journal of Cell Science 114, 1567-1577 © The Company of Biologists Ltd SUMMARY The cadherins, an important family of cell adhesion Treatment of CD34+ progenitor cells with function- molecules, are known to play major roles during embryonic perturbing N-cadherin antibodies drastically diminished development and in the maintenance of solid tissue colony formation, indicating a direct involvement of architecture. In the hematopoietic system, however, little is N-cadherin in the differentiation program of early known of the role of this cell adhesion family. By RT-PCR, hematopoietic progenitors. N-cadherin can also mediate western blot analysis and immunofluorescence staining we adhesive interactions within the bone marrow as show that N-cadherin, a classical type I cadherin mainly demonstrated by inhibition of homotypic interactions of expressed on neuronal, endothelial and muscle cells, is bone-marrow-derived cells with N-cadherin antibodies. expressed on the cell surface of resident bone marrow Together, these data strongly suggest that N-cadherin is stromal cells. FACS analysis of bone marrow mononuclear involved in the development and retention of early cells revealed that N-cadherin is also expressed on a hematopoietic progenitors within the bone marrow subpopulation of early hematopoietic progenitor cells.
    [Show full text]