Frequent Promoter Methylation of CDH1 in Non-Neoplastic Mucosa of Sporadic Diffuse Gastric Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Frequent Promoter Methylation of CDH1 in Non-Neoplastic Mucosa of Sporadic Diffuse Gastric Cancer ANTICANCER RESEARCH 33: 3765-3774 (2013) Frequent Promoter Methylation of CDH1 in Non-neoplastic Mucosa of Sporadic Diffuse Gastric Cancer KYUNG HWA LEE1*, DAVID HWANG2*, KI YOUNG KANG2, SOONG LEE3, DONG YI KIM4, YOUNG EUN JOO5 and JAE HYUK LEE1 Departments of 1Pathology, 4Surgery, and 5Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea; Departments of 2Anatomy and 3Internal Medicine, College of Medicine, Seonam University, Namwon, Republic of Korea Abstract. Background/Aim: To identify promoter observed in recent decades (1, 2). Diffuse gastric cancer methylation as a major silencing mechanism in potential (DGC) accounts for approximately 30% of all gastric precursor lesions of sporadic diffuse gastric cancer (DGC), carcinomas, and the prognosis is poor particularly for young we investigated promoter methylation of CDH1 (E-Cadherin patients (3, 4). It has long been known that DGCs show gene) in a series of DGCs and matched normal mucosa. diminished homophilic cell-to-cell cohesion (5). Inactivating Materials and Methods: The extent of CDH1 gene promoter germline CDH1 (E-Cadherin gene) mutation has been methylation was explored using methylation-specific described in the families with hereditary DGC, an polymerase chain reaction (MSP) and pyrosequencing (PS) autosomal-dominant disease characterized by clustering of in 72 DGCs with a matched pair of normal mucosa. Results: early-onset DGC (6, 7). The diminished or lack of E- MSP and PS revealed CDH1 promoter methylation in 73.6% Cadherin immunoreactivity observed in hereditary DGC cells (53/72) and 77.8% (56/72) of DGC samples, respectively. PS harboring CDH1 mutations is consistent with bi-allelic detected CDH1 methylation in 70.8% (51/72) and 72.2% CDH1 inactivation by a second-hit mechanism that leads to (52/72) of matched normal mucosa from adjacent and remote E-Cadherin loss and determines diffuse cancer development foci, respectively. In comparison, CDH1 promoter (8, 9). Epigenetic silencing of CDH1 through promoter methylation was detected in 12/24 normal gastric mucosa methylation plays an important role as a second-hit samples without DGC, and this difference was statistically mechanism in patients with hereditary DGC and patients significant (p=0.016). Conclusion: The current study showed with germline CDH1 mutations. Moreover, CDH1 promoter that the majority of DGC cases demonstrated concurrent methylation is also frequently found in sporadic DGC, and CDH1 promoter methylation in tumor tissues and in non- is responsible for inactivation of the second allele following neoplastic mucosa. somatic mutations of the first allele (10, 11). In this study, we hypothesized that CDH1 promoter Gastric carcinoma is one of the most common malignancies methylation would be detected more frequently in the non- and remains the second leading cause of cancer death neoplastic gastric mucosa from patients with DGCs than in worldwide although a universally declining trend has been the normal gastric mucosa from patients without DGCs. By performing a comparison of qualitative methylation determined by methylation-specific polymerase chain This article is freely accessible online. reaction (MSP) with quantitative methylation determined by pyrosequencing (PS), CpG methylation in the CDH1 *These Authors contributed equally to this work. promoter was investigated in 72 cases of DGCs with matched pairs of tumor-adjacent and tumor-remote gastric Correspondence to: Jae Hyuk Lee, MD, Ph.D., Department of mucosa and in 24 control samples of normal gastric mucosa Pathology, Chonnam National University Medical School, #8, Hak- along with E-Cadherin protein expression determined by dong, Dong-gu, Gwangju, 501-757, Republic of Korea. Tel: +82 immuno-histochemistry. Additionally, in order to determine 613797073, Fax: +82 613797099, e-mail: [email protected] which method has greater potential for clinical application, Key Words: Methylation, human CDH1 protein; stomach neoplasm, the correlation between methylation status and diffuse gastric cancer, methylation-specific polymerase chain clinicopathological variables, as well as survival rates was reaction, pyrosequencing. also investigated. 0250-7005/2013 $2.00+.40 3765 ANTICANCER RESEARCH 33: 3765-3774 (2013) Materials and Methods Table I. Clinicopathological features of selected patients. Patients and specimens. DGC specimens were obtained from 72 Characteristics Total n Proportion (%) patients who underwent surgical resection at the Chonnam National University Hospital between 2004 and 2008. The cases were identified Age, years <55 33 45.8 retrospectively based on clinicopathological data. Patients with a ≥55 39 54.2 history of familial gastric cancer were excluded. Samples of gastric Gender M 37 51.4 F 35 48.6 carcinoma; non-neoplastic mucosa adjacent to the tumor, but at least Location Upper third 9 12.5 1.5 cm away from the tumor; and non-neoplastic mucosa remote from Middle third 13 18.1 the tumor, at least 5 cm away from the tumor, respectively were Lower third 49 68.1 obtained. To exclude the possibility of a field defect, a control group of Whole 1 1.4 normal gastric mucosas from 24 patients with benign gastric pathology Tumor size, cm <2.5 35 48.6 was included. The diagnoses of patients in the control group were as ≥2.5 37 51.4 follows: 11 cases of gastric peptic ulcer, five cases of ectopic pancreas, Lauren classification Diffuse 66 91.7 four cases of leiomyoma, two cases of schwannoma, and two cases of Mixed 6 8.3 hyperplastic polyps. None of the control patients had a clinical history Differentiation Poor 52 72.2 of gastric dysplasia or carcinoma. The tumors were divided into two Signet 20 27.8 histological subgroups: poorly-differentiated adenocarcinomas and Depth of invasion T1 45 62.5 signet ring carcinomas. Of the 72 gastric tumors, 40 tumors were of T2 20 27.8 the pure diffuse type and 32 tumors were of the mixed type, according T3 7 9.7 to the Lauren classification. The extent of the tumor was determined Lymph node metastasis Absent 49 68.1 using the American Joint Committee on Cancer (AJCC) staging Present 23 31.9 criteria (12). Patients were followed-up for an average duration of 92.4 Distant metastasis Absent 69 95.8 months (range 3 to 108 months) to determine the clinical outcomes. Present 3 4.2 This study was approved by the Institutional Review Board of TNM stage I 52 72.2 Chonnam National University Hospital (#2013-78). II 11 15.3 III 6 8.3 IV 3 4.2 Microdissection and DNA extraction. Tissues were carefully microdissected on H&E-stained slides, as described previously (13). Genomic DNA was extracted from the microdissected tissue according to the manufacturer’s instruction (Boehringer Mannheim, Germany). In brief, the microdissected tissue was treated with Pyrosequencing. PS of the PCR products from the bisulfite-treated 50 μL of buffer containing 0.5% Tween 20 (Boehringer Mannheim, DNA was used to determine the percentage of methylation of the Germany), 20 μg of proteinase K (Boehringer Mannheim), eight CpG sites within the CDH1 gene promoter. DNA (30-50 ng) 50 mmol/L Trizma base at pH 8.9, and 2 mmol/L EDTA, followed was amplified by PCR in a 50-μl reaction mixture containing forward by incubation at 56˚C for 12-18 h. Proteinase K was inactivated by primer (5’-TTTGATTTTAGGTTTTAGTGAGT-3’) and biotinylated incubating the samples at 100˚C for 10 min. reverse primer (5’-biotin-ACCACAACCAATC AACAAC-3’). PS was performed according to the manufacturer’s instructions using the Bisulfite treatment of DNA and MSP. The methylation status of sequencing primer (5’ TGTGTGTT TGAGGATTTG-3’) on a PSQ 96 CDH1 exon 1 was determined by MSP after bisulfite treatment of MA System (Biotage AB, Uppsala, Sweden). Amplification was the DNA, as described previously but with some modifications (14). performed under the following conditions: 95˚C for 15 min, 35 cycles Methprimer (http://www.urogene.org/methprimer/index1.html) was of 95˚C for 30 s, 54˚C for 40 s, 72˚C for 1 min, and finally 72˚C for used to design MSP primer sets for methylated DNA (forward, 5’- 10 min. The methylation status determined by the PS assay was TTAGGTTAGAGGGTTATCGCG-3’, and reverse, 5’- TAACTAA analyzed as both a continuous variable (methylation level) and a AAATTCACCTACCGAC-3’, yielding a 116-bp product) and categorical variable (methylation negative: methylation level <10%; unmethylated DNA (forward 5’-TAATTTTAGGTTAGAGGG methylation positive: methylation level ≥10%). An empirical cut-off TTATTGT-3’, and reverse 5’ CACAACCAATCAACACA-3’, of ≥10% was selected, according to the limit of the unmethylated yielding a 98-bp product) in CDH1 exon 1 (Figure 1). Briefly, for control. The technical controls for PS revealed median methylation MSP analysis, 2 μg of genomic DNA were denatured by NaOH and of 4% (unmethylated control) and 90% (methylated control) in the modified by bisulfite. The modified DNA was purified using a DNA eight sequential CpG sites, defining the detection limits of the assay cleanup kit (Promega, Madison, WI, USA), treated with NaOH to (Figure 2A and B). disulfonate, precipitated with ethanol and resuspended in water. PCR amplification was carried out in a GeneAmp PCR System 9700 Immunohistochemical staining and assessment. Immunohisto- thermocycler (Perkin Elmer, Santa Clara, California, USA). PCR chemical staining for E-Cadherin protein was performed on 4-μm products were visualized on 2% agarose gels stained with ethidium thick paraffin-embedded tissue sections. Immunohistochemistry was bromide. Genomic DNA after bisulfite modification and after performed using automated standard procedures (Flex Plus detection treatment with Sss1 methylase (New England Biolabs, Ipswich, MA, system; DAKO, Carpinteria, CA, USA) and monoclonal antibody USA) was used as a positive control for methylated DNA. A sample to E-Cadherin (Clone M3612; DAKO Carpinteria, CA, USA) at was deemed positive for methylation if a band was seen in the DNA dilution 1:100. The specific standardized protocol provided by the that were amplified using the methylated reaction primers (Figure 2).
Recommended publications
  • Human N-Cadherin / CD325 / CDH2 Protein (His & Fc Tag)
    Human N-Cadherin / CD325 / CDH2 Protein (His & Fc Tag) Catalog Number: 11039-H03H General Information SDS-PAGE: Gene Name Synonym: CD325; CDHN; CDw325; NCAD Protein Construction: A DNA sequence encoding the human CDH2 (NP_001783.2) (Met 1-Ala 724) was fused with the C-terminal polyhistidine-tagged Fc region of human IgG1 at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 70 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method Cadherins are calcium dependent cell adhesion proteins, and they preferentially interact with themselves in a homophilic manner in Stability: connecting cells. Cadherin 2 (CDH2), also known as N-Cadherin (neuronal) (NCAD), is a single-pass tranmembrane protein and a cadherin containing ℃ Samples are stable for up to twelve months from date of receipt at -70 5 cadherin domains. N-Cadherin displays a ubiquitous expression pattern but with different expression levels between endocrine cell types. CDH2 Asp 160 Predicted N terminal: (NCAD) has been shown to play an essential role in normal neuronal Molecular Mass: development, which is implicated in an array of processes including neuronal differentiation and migration, and axon growth and fasciculation. The secreted recombinant human CDH2 is a disulfide-linked homodimeric In addition, N-Cadherin expression was upregulated in human HSC during protein. The reduced monomer comprises 813 amino acids and has a activation in culture, and function or expression blocking of N-Cadherin predicted molecular mass of 89.9 kDa. As a result of glycosylation, it promoted apoptosis. During apoptosis, N-Cadherin was cleaved into 20- migrates as an approximately 114 and 119 kDa band in SDS-PAGE under 100 kDa fragments.
    [Show full text]
  • The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail.
    [Show full text]
  • The Intrinsically Disordered Proteins of Myelin in Health and Disease
    cells Review Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease Arne Raasakka 1 and Petri Kursula 1,2,* 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway; [email protected] 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland * Correspondence: [email protected] Received: 30 January 2020; Accepted: 16 February 2020; Published: 18 February 2020 Abstract: Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved. Keywords: myelin; intrinsically disordered protein; multiple sclerosis; peripheral neuropathies; myelination; protein folding; protein–membrane interaction; protein–protein interaction 1.
    [Show full text]
  • Cell Adhesion and Angiogenesis
    Cell adhesion and angiogenesis. J Bischoff J Clin Invest. 1997;99(3):373-376. https://doi.org/10.1172/JCI119168. Perspective Find the latest version: https://jci.me/119168/pdf Perspectives Series: Cell Adhesion in Vascular Biology Cell Adhesion and Angiogenesis Joyce Bischoff Department of Surgery, Children’s Hospital and Harvard Medical School, Children’s Hospital, Boston, Massachusetts 02115 Introduction and postcapillary venules (3). Thus, the formation of a new mi- Angiogenesis is the growth of new capillary blood vessels from crovessel requires a number of interactions that must be coor- preexisting capillaries and postcapillary venules. This process dinated in a spatially and temporally specified manner. These is critical for normal growth and development and in protec- adhesion events are likely mediated by endothelial cell adhe- tive responses such as wound healing and inflammation. In sion molecules and ECM molecules that provide instructions healthy adults, angiogenesis does not normally occur except in to the endothelial cells as they migrate into the perivascular certain phases of the female reproductive cycle. However, ab- space and assemble into new vessels with surrounding peri- errant angiogenesis can occur in a variety of pathologic set- cytes. tings. These include the neovascularization of solid tumors, the Cell adhesion and endothelial cell growth growth of vessels into the retina in diabetic retinopathy, and the unwanted vessel growth in chronic inflammatory diseases. Adhesion of endothelial cells to ECM and attainment of an The hypothesis that angiogenic diseases, in particular tumor appropriate cellular shape has been known for many years to growth and metastases, may be alleviated by inhibiting the an- be crucial for endothelial cell growth, differentiation, and sur- giogenic responses (1) has prompted many to investigate the vival.
    [Show full text]
  • L1 Cell Adhesion Molecule in Cancer, a Systematic Review on Domain-Specific Functions
    International Journal of Molecular Sciences Review L1 Cell Adhesion Molecule in Cancer, a Systematic Review on Domain-Specific Functions Miriam van der Maten 1,2, Casper Reijnen 1,3, Johanna M.A. Pijnenborg 1,* and Mirjam M. Zegers 2,* 1 Department of Obstetrics and Gynaecology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands 2 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands 3 Department of Obstetrics and Gynaecology, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands * Correspondence: [email protected] (J.M.A.P); [email protected] (M.M.Z.) Received: 24 June 2019; Accepted: 23 August 2019; Published: 26 August 2019 Abstract: L1 cell adhesion molecule (L1CAM) is a glycoprotein involved in cancer development and is associated with metastases and poor prognosis. Cellular processing of L1CAM results in expression of either full-length or cleaved forms of the protein. The different forms of L1CAM may localize at the plasma membrane as a transmembrane protein, or in the intra- or extracellular environment as cleaved or exosomal forms. Here, we systematically analyze available literature that directly relates to L1CAM domains and associated signaling pathways in cancer. Specifically, we chart its domain-specific functions in relation to cancer progression, and outline pre-clinical assays used to assess L1CAM. It is found that full-length L1CAM has both intracellular and extracellular targets, including interactions with integrins, and linkage with ezrin. Cellular processing leading to proteolytic cleavage and/or exosome formation results in extracellular soluble forms of L1CAM that may act through similar mechanisms as compared to full-length L1CAM, such as integrin-dependent signals, but also through distinct mechanisms.
    [Show full text]
  • CDH1 Gene Cadherin 1
    CDH1 gene cadherin 1 Normal Function The CDH1 gene provides instructions for making a protein called epithelial cadherin or E-cadherin. This protein is found within the membrane that surrounds epithelial cells, which are the cells that line the surfaces and cavities of the body, such as the inside of the eyelids and mouth. E-cadherin belongs to a family of proteins called cadherins whose function is to help neighboring cells stick to one another (cell adhesion) to form organized tissues. Another protein called p120-catenin, produced from the CTNND1 gene, helps keep E-cadherin in its proper place in the cell membrane, preventing it from being taken into the cell through a process called endocytosis and broken down prematurely. E-cadherin is one of the best-understood cadherin proteins. In addition to its role in cell adhesion, E-cadherin is involved in transmitting chemical signals within cells, controlling cell maturation and movement, and regulating the activity of certain genes. Interactions between the E-cadherin and p120-catenin proteins, in particular, are thought to be important for normal development of the head and face (craniofacial development), including the eyelids and teeth. E-cadherin also acts as a tumor suppressor protein, which means it prevents cells from growing and dividing too rapidly or in an uncontrolled way. Health Conditions Related to Genetic Changes Breast cancer Inherited mutations in the CDH1 gene increase a woman's risk of developing a form of breast cancer that begins in the milk-producing glands (lobular breast cancer). In many cases, this increased risk occurs as part of an inherited cancer disorder called hereditary diffuse gastric cancer (HDGC) (described below).
    [Show full text]
  • Increased Expression of Cell Adhesion Molecule P-Selectin in Active Inflammatory Bowel Disease Gut: First Published As 10.1136/Gut.36.3.411 on 1 March 1995
    Gut 1995; 36: 411-418 411 Increased expression of cell adhesion molecule P-selectin in active inflammatory bowel disease Gut: first published as 10.1136/gut.36.3.411 on 1 March 1995. Downloaded from G M Schurmann, A E Bishop, P Facer, M Vecchio, J C W Lee, D S Rampton, J M Polak Abstract proposed, entailing margination from the The pathogenic changes of inflammatory centreline of blood flow towards the vascular bowel disease (IBD) depend on migration wall, rolling, tethering to the endothelia, stable of circulating leucocytes into intestinal adhesion, and finally, transendothelial migra- tissues. Although leucocyte rolling and tion.1 Each of these steps involves specific fam- tenuous adhesion are probably regulated ilies of adhesion molecules, which are by inducible selectins on vascular expressed on endothelial cells and on circulat- endothelia, little is known about the ing cells as their counterparts and ligands.2 3 expression of these molecules in Crohn's The selectin family of adhesion molecules, disease and ulcerative colitis. Using which comprises E-selectin, P-selectin, and L- immunohistochemistry on surgically selectin, predominantly mediates the first steps resected specimens, this study investi- of cellular adhesion4 5 and several studies have gated endothelial P-selectin (CD62, gran- shown upregulation of E-selectin on activated ular membrane protein-140) in frozen endothelial cells in a variety oftissues6-8 includ- sections of histologically uninvolved ing the gut in patients with IBD.9 10 Little tissues adjacent to inflammation (Crohn's investigation has been made, however, of P- disease= 10; ulcerative colitis= 10), from selectin in normal and diseased gut, although highly inflamed areas (Crohn's its DNA was cloned and sequenced in 1989.11 disease=20; ulcerative colitis=13), and P-selectin (also known as PADGEM, from normal bowel (n=20).
    [Show full text]
  • Cadherin-Related Family Member 3, a Childhood Asthma Susceptibility Gene Product, Mediates Rhinovirus C Binding and Replication
    Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication Yury A. Bochkova,1, Kelly Wattersb, Shamaila Ashrafa,2, Theodor F. Griggsa, Mark K. Devriesa, Daniel J. Jacksona, Ann C. Palmenbergb,3, and James E. Gerna,c,3 aDepartment of Pediatrics and cDepartment of Medicine, University of Wisconsin–Madison, Madison, WI 53792; and bInstitute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706 Edited by Robert A. Lamb, Northwestern University, Evanston, IL, and approved March 17, 2015 (received for review November 5, 2014) Members of rhinovirus C (RV-C) species are more likely to cause been a major obstacle to the study of virus-specific characteristics wheezing illnesses and asthma exacerbations compared with that could lead to effective antiviral strategies for this common other rhinoviruses. The cellular receptor for these viruses was and important respiratory pathogen. We now report that human heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3), a member of the cadherin-related family member 3 (CDHR3) enables the cells cadherin family of transmembrane proteins, mediates RV-C normally unsusceptible to RV-C infection to support both virus entry into host cells, and an asthma-related mutation in this gene binding and replication. A coding single nucleotide polymorphism is associated with enhanced viral binding and increased progeny (rs6967330, C529Y) was previously linked to greater cell-surface yields in vitro. expression of CDHR3 protein, and an increased risk of wheezing illnesses and hospitalizations for childhood asthma. Compared Results with wild-type CDHR3, cells transfected with the CDHR3-Y529 var- In Silico Identification of Candidate RV-C Receptors.
    [Show full text]
  • The Poliovirus Receptor (CD155)
    Cutting Edge: CD96 (Tactile) Promotes NK Cell-Target Cell Adhesion by Interacting with the Poliovirus Receptor (CD155) This information is current as Anja Fuchs, Marina Cella, Emanuele Giurisato, Andrey S. of September 27, 2021. Shaw and Marco Colonna J Immunol 2004; 172:3994-3998; ; doi: 10.4049/jimmunol.172.7.3994 http://www.jimmunol.org/content/172/7/3994 Downloaded from References This article cites 19 articles, 8 of which you can access for free at: http://www.jimmunol.org/content/172/7/3994.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY CUTTING EDGE Cutting Edge: CD96 (Tactile) Promotes NK Cell-Target Cell Adhesion by Interacting with the Poliovirus Receptor (CD155) Anja Fuchs, Marina Cella, Emanuele Giurisato, Andrey S. Shaw, and Marco Colonna1 The poliovirus receptor (PVR) belongs to a large family of activating receptor DNAM-1, also called CD226 (6, 7).
    [Show full text]
  • A Mode of Cell Adhesion and Migration Facilitated by CD44-Dependent Microtentacles
    A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles Kayla J. Wolfa,b, Poojan Shuklab, Kelsey Springerb, Stacey Leea,b, Jason D. Coombesb,c, Caleb J. Choyd, Samuel J. Kennye,KeXue,f, and Sanjay Kumara,b,g,1 aUniversity of California, Berkeley–University of California San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720; bDepartment of Bioengineering, University of California, Berkeley, CA, 94720; cInflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom, SE5 9NU; dDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; eDepartment of Chemistry, University of California, Berkeley, CA 94720; fDivision of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and gDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved March 25, 2020 (received for review August 19, 2019) The structure and mechanics of many connective tissues are grafted C6 gliomas (14). Furthermore, knockdown (KD) of dictated by a collagen-rich extracellular matrix (ECM), where col- CD44 in human GBM tumors slows tumor growth and sensitizes lagen fibers provide topological cues that direct cell migration. tumors to cytotoxic agents (15). CD44 is also a marker of glioma However, comparatively little is known about how cells navigate stem cells (GSCs) (also known as tumor-initiating cells) and the hyaluronic acid (HA)-rich, nanoporous ECM of the brain, a contributes to maintaining stemness (16). Our laboratory has problem with fundamental implications for development, inflam- shown that CD44 is necessary for adhesion and migration on mation, and tumor invasion.
    [Show full text]
  • Cell Adhesion Molecules in Normal Skin and Melanoma
    biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1.
    [Show full text]
  • Desmoglein 3 Anchors Telogen Hair in the Follicle
    Journal of Cell Science 111, 2529-2537 (1998) 2529 Printed in Great Britain © The Company of Biologists Limited 1998 JCS3800 Desmoglein 3 anchors telogen hair in the follicle Peter J. Koch, M. G. Mahoney, George Cotsarelis, Kyle Rothenberger, Robert M. Lavker and John R. Stanley* Department of Dermatology, University of Pennsylvania School of Medicine, 211 CRB, 415 Curie Blvd, Philadelphia, PA 19104, USA *Author for correspondence (e-mail: [email protected]) Accepted 6 July; published on WWW 13 August 1998 SUMMARY Little is known about the function of desmosomes in the (acantholysis) between the cells surrounding the telogen normal structure and function of hair. Therefore, it was club and the basal layer of the outer root sheath epithelium. surprising that mice without desmoglein 3 (the autoantigen Electron microscopy revealed ‘half-desmosomes’ at the in pemphigus vulgaris) not only developed mucous plasma membranes of acantholytic cells. Similar membrane and skin lesions like pemphigus patients, but acantholytic histology and ultrastructural findings have also developed hair loss. Analysis of this phenotype been previously reported in skin and mucous membrane indicated that hair was normal through the first growth lesions of DSG3−/− mice and pemphigus vulgaris patients. phase (‘follicular neogenesis’). Around day 20, however, Immunoperoxidase staining with an antibody raised when the hair follicles entered the resting phase of the hair against mouse desmoglein 3 showed intense staining on the growth cycle (telogen), mice with a targeted disruption of cell surface of keratinocytes surrounding the telogen hair the desmoglein 3 gene (DSG3−/−) lost hair in a wave-like club in normal mice.
    [Show full text]