Observations of Inflow of Philippine Sea Surface Water Into the South

Total Page:16

File Type:pdf, Size:1020Kb

Observations of Inflow of Philippine Sea Surface Water Into the South JANUARY 2004 CENTURIONI ET AL. 113 Observations of In¯ow of Philippine Sea Surface Water into the South China Sea through the Luzon Strait LUCA R. CENTURIONI AND PEARN P. N IILER Scripps Institution of Oceanography, La Jolla, California DONG-KYU LEE Busan National University, Busan, South Korea (Manuscript received 19 February 2003, in ®nal form 12 June 2003) ABSTRACT Velocity observations near the surface made with Argos satellite-tracked drifters between 1989 and 2002 provide evidence of seasonal currents entering the South China Sea from the Philippine Sea through the Luzon Strait. The drifters cross the strait and reach the interior of the South China Sea only between October and January, with ensemble mean speeds of 0.7 6 0.4ms21 and daily mean westward speeds that can exceed 1.65 ms21. The majority of the drifters that continued to reside in the South China Sea made the entry within a westward current system located at ;208N that crossed the prevailing northward Kuroshio path. In other seasons, the drifters looped across the strait within the Kuroshio and exited along the south coast of Taiwan. During one intrusion event, satellite altimeters indicated that, directly west of the strait, anticyclonic and cyclonic eddies resided, respectively, north and south of the entering drifter track. The surface currents measured by the crossing drifters were much larger than the Ekman currents that would be produced by an 8±10 m s 21 northeast monsoon, suggesting that a deeper westward current system, as seen in historical watermass analyses, was present. 1. Introduction latitude can be successfully computed from the wind- This work describes observations of velocity made at driven vorticity dynamics of linear and nonlinear re- a nominal depth of 15 m with satellite-tracked drifters duced-gravity circulation models. and provides new direct evidence of seasonal near-sur- At 188N the Kuroshio is a well-formed, northward- face ¯ow from the Philippine Sea into the South China ¯owing western boundary current concentrated entirely Sea through the Luzon Strait (Fig. 1). Such ¯ow is fre- west of 1248E; its high-speed core is positioned at quently described as a westward branch of the Kuroshio. 1238E, and its baroclinic structure is evident in the upper Mainly hydrographic methods have provided evidence 600 m (Toole et al. 1990; Qu et al. 1998). Before reach- of the seasonal penetration of the Philippine Sea water ing Taiwan, the Kuroshio encounters the Luzon Strait, into the South China Sea (e.g., Fang et al. 1998). which is the deepest passage from the Paci®c Ocean to The surface circulation south and east of the Luzon the South China Sea. At the southern portion of the Strait is dominated by strong and persistent subtropical strait, the Kuroshio takes a westward set and makes a current systems. At the surface, the yearly mean Paci®c detour into the South China Sea through the deepest North Equatorial Current bifurcates at ;138N near the channels of the Luzon Strait: the Balintany Channel and east coast of Luzon to form the northward-¯owing Ku- south of Babuyan Island. West and north of Batan Is- roshio and the southward-¯owing Mindanao Current land, the Kuroshio ¯ows within the Bashi Channel until (Nitani 1972; Toole et al. 1990; Qu and Lukas 2003). it reaches the southeast coast of Taiwan (Gilson and The near-surface bifurcation latitude moves between Roemmich 2002). 118N in May and 14.58N in November, and at depth it Between the north coast of Luzon and the southeast is even farther north of its surface expression (Nitani coast of Taiwan, the Kuroshio is occasionally referred to 1972; Qu and Lukas 2003). Qiu and Lukas (1996) have as a ``loop current'' because it makes a loop, or excursion, noted that the interannual variations of the bifurcation into the South China Sea. The largest loop occurs be- tween October and January when the winds are domi- nated by the northeast monsoon. A description of the Corresponding author address: Luca R. Centurioni, Scripps In- stitution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093- loop current can be found, for example, in Nitani's (1972) 0213. maps of the geomagnetic electrokinetograph data and dy- E-mail: [email protected] namic heights compiled from several hydrographic sur- q 2004 American Meteorological Society Unauthenticated | Downloaded 09/30/21 01:18 AM UTC 114 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 FIG. 1. Bathymetry of the study region (Smith and Sandwell 1997, bathymetry version 8.2). veys. Li et al. (1998) used hydrographic data to show and intrusions in autumn and winter with sea surface the looping of the Kuroshio in the Luzon Strait in summer temperature (SST) maps made from Advanced Very High months in the upper 200 m. Between October and March Resolution Radiometer data. As de®ned by the SST, the the warm surface water of Philippine Sea origin contrasts loop intrudes most severely into the South China Sea with the surrounding colder South China Sea water. This during the October±January period, when signi®cant condition was exploited by Farris and Wimbush (1996), amounts of Philippine Sea water are also found below who observed the occurrence of Kuroshio surface loops the surface. For example, Shaw (1989) used conductiv- TABLE 1. Summary of the Lagrangian statistics in the region bounded, in the zonal direction, by 1208 and 1358E and, in the meridional direction, by 108 and 258N. Here T is the Lagrangian timescale, L is the Lagrangian length scale, and s denotes the standard deviation. The ®rst ®gure in the columns labeled with NT is the number of 6-h-interval time series longer than 20 days for which the velocity autocovariance converges, and the second ®gure is the total number of time series examined. Here E and N in the subscripts refer to the zonal and meridional direction, respectively, and NP is the total number of velocity observations in the region. JFM is for Jan±Mar, AMJ is for Apr±Jun, JAS is for Jul±Sep, OND is for Oct±Dec, and All is for all months. TE s(TE ) LE s(LE ) TN s(TN ) LN s(LN ) 4 4 4 4 Months (days) (days) (10 m) (10 m) NTE (days) (days) (10 m) (10 m) NTN NP JFM 2.7 2.0 4.4 3.7 90/95 2.6 1.6 4.5 3.6 93/95 21 442 AMJ 3.3 1.9 6.7 5.4 93/96 2.9 1.4 5.4 3.5 93/96 24 856 JAS 2.5 1.4 4.5 3.0 98/102 2.5 1.4 4.6 3.5 96/102 25 530 OND 2.8 1.8 4.9 3.9 90/90 2.8 1.7 5.1 4.0 88/90 21 075 All 3.2 2.1 6.0 4.8 259/269 3.0 1.6 5.5 4.0 255/269 92 903 Unauthenticated | Downloaded 09/30/21 01:18 AM UTC JANUARY 2004 CENTURIONI ET AL. 115 FIG. 2. Six-hour-interval positions of the drifters, color-coded in accordance with the local instantaneous speed. The 24 626 data shown here were collected between Sep 1987 and May 2002. The black lines represent the 500-m depth contours. ity±temperature±depth (CTD) pro®les to demonstrate that are the breadth of the gap relative to the width of the Philippine Sea water extends down to 500 m on the con- Munk viscous boundary current and the Reynolds num- tinental slope west of the southern tip of Taiwan in the ber of the ¯ow, de®ned as the ratio between the transport March±August period. Shaw (1991), by analysis of a rate of mass per unit depth and the lateral eddy diffusion larger hydrographic dataset, tracked water of Kuroshio coef®cient. The general theoretical results are that a origin as far as west of 1158E in the upper 250 m and strong current ``leaps the gap'' and a weak current loop along the continental slope of the northern South China propagates westward into the gap, forming eddies in the Sea. Qu (2002) reached similar conclusions about intru- intrusion. sions upon inspection of the distribution of oxygen con- Even in the absence of direct evidence of the circu- centration. Although the in¯ow is apparent from water- lation patterns (but see Farris and Wimbush 1996), ob- mass properties, diapycnal mixing in the upper South servations and theory are supporting the view that water China Sea and the out¯ow needed to achieve a mass of Philippine Sea origin can reach the interior of the balance of the basin are not known well. South China Sea. In numerical studies of the circulation Multilayer ocean general circulation model simula- of the South China Sea, the processes that cause the tions of the transport of upper-layer water through the in¯ow appear to be associated with, or produce, me- Luzon Strait are discussed in Metzger and Hurlburt soscale eddies. Observational evidence for this meso- (1996, 2001). In these simulations, the in¯ow is a result scale variability has recently become available from hy- of the seasonally varying basin-scale circulation of the drography (Li et al. 1998). entire western subtropical and tropical Paci®c. These In this work, we present and discuss observations of works associate the seasonal in¯ow with the lowering the surface circulation in the western tropical Paci®c and of sea level caused by the increased cyclonic circulation in the South China Sea and we report on the observed of the South China Sea that results from the positive ¯ow from the Philippine Sea to the South China Sea.
Recommended publications
  • THE Official Magazine of the OCEANOGRAPHY SOCIETY
    OceThe OFFiciala MaganZineog OF the Oceanographyra Spocietyhy CITATION Rudnick, D.L., S. Jan, L. Centurioni, C.M. Lee, R.-C. Lien, J. Wang, D.-K. Lee, R.-S. Tseng, Y.Y. Kim, and C.-S. Chern. 2011. Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography 24(4):52–63, http://dx.doi.org/10.5670/oceanog.2011.94. DOI http://dx.doi.org/10.5670/oceanog.2011.94 COPYRIGHT This article has been published inOceanography , Volume 24, Number 4, a quarterly journal of The Oceanography Society. Copyright 2011 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. downloaded From http://www.tos.org/oceanography SPECIAL IssUE ON THE OCEANOGRAPHY OF TAIWAN Seasonal and Mesoscale Variability of the Kuroshio Near Its Origin BY DANIEL L. RUdnICK, SEN JAN, LUCA CENTURIONI, CRAIG M. LEE, REN-CHIEH LIEN, JOE WANG, DONG-KYU LEE, RUO-SHAN TsENG, YOO YIN KIM, And CHING-SHENG CHERN Underwater photo of a glider taken off Palau just before recovery. Note the barnacle growth on the glider, fish underneath, and the twin hulls of a catamaran used for recovery in the distance. Photo credit: Robert Todd 52 Oceanography | Vol.24, No.4 AbsTRACT. The Kuroshio is the most important current in the North Pacific.
    [Show full text]
  • Taiwan Earthquake Fiber Cuts: a Service Provider View
    Taiwan Earthquake Fiber Cuts: a Service Provider View Sylvie LaPerrière, Director Peering & Commercial Operations nanog39 – Toronto, Canada – 2007/02/05 www.vsnlinternational.com Taiwan Earthquake fiber cuts: a service provider view Building a backbone from USA to Asia 2006 Asian Backbone | The reconstruction year Earthquake off Taiwan on Dec 26, 2006 The damage(s) Repairing subsea cables Current Situation Lessons for the future www.vsnlinternational.com Page 2 USA to Asia Backbones | Transpac & Intra Asia Cable Systems China-US | Japan-US | PC-1 | TGN-P Combined with Source Flag 2006 APCN-2 C2C EAC FNAL www.vsnlinternational.com Page 3 2006 Spotlight on Asia | Expansion Add Geographies Singapore (2 sites) Tokyo Consolidate presence Hong Kong Upgrade Bandwidth on all Segments Manila Sydney Planning and Design Musts Subsea cables diversity Always favour low latency (RTD …) Improve POP meshing intra-Asia www.vsnlinternational.com Page 4 AS6453 Asia Backbone | Physical Routes Diversity TransPac: C-US | J-US | TGN-P TOKYO Intra-Asia: EAC FNAL | APCN | APCN-2 FLAG FNAL | EAC | SMW-3 Shima EAC J-US HONG KONG EAC LONDON APCN-2 TGN-P APCN-2 Pusan MUMBAI SMW-4 J-US Chongming KUALA APCN-2 PALO ALTO LUMPUR Fangshan MUMBAI CH-US APCN-2 SMW-3 Shantou TIC APCN SMW-3 CH-US LOS ANGELES EAC SINGAPORE APCN-2 EAC LEGEND EXISTING MANILLA IN PROGRESS www.vsnlinternational.com As of December 26 th , 2006 Page 5 South East Asia Cable Systems – FNAL & APCN-2 TOKYO EAC FLAG FNAL Shima EAC J-US HONG KONG EAC LONDON APCN-2 TGN-P APCN-2 Pusan MUMBAI
    [Show full text]
  • Bullet Train of Non-Linear Internal Waves from Luzon Strait C
    BULLET TRAIN OF NON-LINEAR INTERNAL WAVES FROM LUZON STRAIT C-T Liu, R. Pinkel, M-K Hsu, R-S Tseng, Y-H Wang, J.M. Klymak, H-W Chen, C. Villanoy, L. David, Y. Yang, C-H Nan, Y-J Chyou, C-W Lee and Antony K. Liu In the northeastern South China Sea, a series of fast moving (about 2.9 m/s) non-linear internal waves (NLIWs) emanated westward from the Luzon Strait. Their propagation speed is faster than NLIWs previously observed in the world oceans, their amplitude reached 140 m or more, and are the largest free propagating NLIWs so far observed in the interior ocean. These NLIWs energized the top 1500 m of the water column, heaving it up and down in 20 min. Their associated energy density and energy flux are the largest observed to date. The exact source of these giant NLIWs is still under study and to be determined. BACKGROUND: Non-Linear Internal Waves (NLIWs) are often found in shelf regions. They are typically thought to be generated by tidal currents over steep topography (sill, seamount, shelf break, etc.) or sometimes by the instability of current shears. An ERS-1 SAR image of a non-linear internal waves (NLIW) near Luzon Strait (LS) in 1995/6/16 (http://sol.oc.ntu.edu.tw/IW/1995/ERS1.htm) showed quite different features than NLIW images nearer Taiwan (Liu et al., 1994). Existing theories and experience were insufficient to explain the location, shape and size of NLIW in that SAR image. To the west of LS, the HengChun Ridge (HCR) connects the southern tip of Taiwan to the continental shelf north of Luzon Island; Batan Islands and Babuyan Islands spread east of HCR.
    [Show full text]
  • Pdf (Accessed Department of Environment and Natural September 1, 2010)
    OceanTEFFH O icial MAGAZINEog OF the OCEANOGRAPHYraphy SOCIETY CITATION May, P.W., J.D. Doyle, J.D. Pullen, and L.T. David. 2011. Two-way coupled atmosphere-ocean modeling of the PhilEx Intensive Observational Periods. Oceanography 24(1):48–57, doi:10.5670/ oceanog.2011.03. COPYRIGHT This article has been published inOceanography , Volume 24, Number 1, a quarterly journal of The Oceanography Society. Copyright 2011 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. downloaded FROM www.tos.org/oceanography PHILIppINE STRAITS DYNAMICS EXPERIMENT BY PAUL W. MAY, JAMES D. DOYLE, JULIE D. PULLEN, And LAURA T. DAVID Two-Way Coupled Atmosphere-Ocean Modeling of the PhilEx Intensive Observational Periods ABSTRACT. High-resolution coupled atmosphere-ocean simulations of the primarily controlled by topography and Philippines show the regional and local nature of atmospheric patterns and ocean geometry, and they act to complicate response during Intensive Observational Period cruises in January–February 2008 and obscure an emerging understanding (IOP-08) and February–March 2009 (IOP-09) for the Philippine Straits Dynamics of the interisland circulation. Exploring Experiment. Winds were stronger and more variable during IOP-08 because the time the 10–100 km circulation patterns period covered was near the peak of the northeast monsoon season.
    [Show full text]
  • Dynamics of Atmospheres and Oceans Seasonal Surface Ocean
    Dynamics of Atmospheres and Oceans 47 (2009) 114–137 Contents lists available at ScienceDirect Dynamics of Atmospheres and Oceans journal homepage: www.elsevier.com/locate/dynatmoce Seasonal surface ocean circulation and dynamics in the Philippine Archipelago region during 2004–2008 Weiqing Han a,∗, Andrew M. Moore b, Julia Levin c, Bin Zhang c, Hernan G. Arango c, Enrique Curchitser c, Emanuele Di Lorenzo d, Arnold L. Gordon e, Jialin Lin f a Department of Atmospheric and Oceanic Sciences, University of Colorado, UCB 311, Boulder, CO 80309, USA b Ocean Sciences Department, University of California, Santa Cruz, CA, USA c IMCS, Rutgers University, New Brunswick, NJ, USA d EAS, Georgia Institute of Technology, Atlanta, GA, USA e Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA f Department of Geography, Ohio State University, Columbus, OH, USA article info abstract Article history: The dynamics of the seasonal surface circulation in the Philippine Available online 3 December 2008 Archipelago (117◦E–128◦E, 0◦N–14◦N) are investigated using a high- resolution configuration of the Regional Ocean Modeling System (ROMS) for the period of January 2004–March 2008. Three experi- Keywords: ments were performed to estimate the relative importance of local, Philippine Archipelago remote and tidal forcing. On the annual mean, the circulation in the Straits Sulu Sea shows inflow from the South China Sea at the Mindoro and Circulation and dynamics Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, Transport and cyclonic circulation in the southern basin. A strong jet with a maximum speed exceeding 100 cm s−1 forms in the northeast Sulu Sea where currents from the Mindoro and Tablas Straits converge.
    [Show full text]
  • Isolation of the South China Sea from the North Pacific Subtropical Gyre
    www.nature.com/scientificreports OPEN Isolation of the South China Sea from the North Pacifc Subtropical Gyre since the latest Miocene due to formation of the Luzon Strait Shaoru Yin1*, F. Javier Hernández‑Molina2, Lin Lin3, Jiangxin Chen4,5*, Weifeng Ding1 & Jiabiao Li1 The North Pacifc subtropical gyre (NPSG) plays a major role in present global ocean circulation. At times, the gyre has coursed through the South China Sea, but its role in the evolutionary development of that Sea remains uncertain. This work systematically describes a major shift in NPSG paleo‑ circulation evident from sedimentary features observed in seismic and bathymetric data. These data outline two contourite depositional systems—a buried one formed in the late Miocene, and a latest Miocene to present‑day system. The two are divided by a prominent regional discontinuity that represents a major shift in paleo‑circulation during the latest Miocene (~ 6.5 Ma). The shift coincides with the further restriction of the South China Sea with respect to the North Pacifc due to the formation of the Luzon Strait as a consequence of further northwest movement of the Philippine Sea plate. Before that restriction, data indicate vigorous NPSG circulation in the South China Sea. Semi‑ closure, however, established a new oceanographic circulation regime in the latest Miocene. This work demonstrates the signifcant role of recent plate tectonics, gateway development, and marginal seas in the establishment of modern global ocean circulation. In the Pacifc Ocean, the North Pacifc subtropical gyre (NPSG) represents a surface level water mass that advects warm water from the tropics to central and higher-latitude areas of the North Pacifc basin.
    [Show full text]
  • Largescale, Realistic Laboratory Modeling of M2 Internal Tide
    GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1–6, doi:10.1002/2013GL058064, 2013 Large-scale, realistic laboratory modeling of M2 internal tide generation at the Luzon Strait Matthieu J. Mercier,1 Louis Gostiaux,2 Karl Helfrich,3 Joel Sommeria,4 Samuel Viboud,3 Henri Didelle,3 Sasan J. Ghaemsaidi,1 Thierry Dauxois,5 and Thomas Peacock1 Received 30 September 2013; accepted 11 October 2013. [1]Thecomplexdouble-ridgesystemintheLuzonStrait [3] In recent years, there has been a concerted effort in the South China Sea (SCS) is one of the strongest sources to more clearly establish the early stages of the for- of internal tides in the oceans, associated with which are mation of ISWs in the SCS. The lee wave mechanism some of the largest amplitude internal solitary waves on [Maxworthy,1979],initiallyalludedtoasacandidatepro- record. An issue of debate, however, has been the specific cess [Ebbesmeyer et al.,1991],isnowconsideredinap- nature of their generation mechanism. To provide insight, propriate [Alford et al.,2010]duetothelackofreported we present the results of a large-scale laboratory experi- detection between the ridges, or observations in satellite ment performed at the Coriolis platform. The experiment imagery, of ISWs east of 120.3ı [Jackson,2009].Instead,it was carefully designed so that the relevant dimensionless is now widely accepted that a westward propagating, weakly parameters, which include the excursion parameter, critical- nonlinear, mode 1 internal tide generated at the LS steepens ity, Rossby, and Froude numbers, closely matched the ocean to form ISWs [Lien et al.,2005;Li and Farmer,2011]. scenario. The results advocate that a broad and coherent [4]Aprevailingthemehasbeentoidentifygenera- weakly nonlinear, three-dimensional, M2 internal tide that is tion hot spots within the LS.
    [Show full text]
  • This Keyword List Contains Pacific Ocean (Excluding Great Barrier Reef)
    CoRIS Place Keyword Thesaurus by Ocean - 3/2/2016 Pacific Ocean (without the Great Barrier Reef) This keyword list contains Pacific Ocean (excluding Great Barrier Reef) place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. The same names are available from “Place Keywords by Country/Territory - Pacific Ocean (without Great Barrier Reef)” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Pacific Ocean OCEAN BASIN > Pacific Ocean > Albay Gulf > Cauit Reefs (13N123E0016) OCEAN BASIN > Pacific Ocean > Albay Gulf > Legaspi (13N123E0013) OCEAN BASIN > Pacific Ocean > Albay Gulf > Manito Reef (13N123E0015) OCEAN BASIN > Pacific Ocean > Albay Gulf > Matalibong ( Bariis ) (13N123E0006) OCEAN BASIN > Pacific Ocean > Albay Gulf > Rapu Rapu Island (13N124E0001) OCEAN BASIN > Pacific Ocean > Albay Gulf > Sto. Domingo (13N123E0002) OCEAN BASIN > Pacific Ocean > Amalau Bay (14S170E0012) OCEAN BASIN > Pacific Ocean > Amami-Gunto > Amami-Gunto (28N129E0001) OCEAN BASIN > Pacific Ocean > American Samoa > American Samoa (14S170W0000) OCEAN BASIN > Pacific Ocean > American Samoa > Manu'a Islands (14S170W0038) OCEAN BASIN >
    [Show full text]
  • Multiscale Physical and Biological Dynamics in the Philippine Archipelago Predictions and Processes a 12°30’N
    PHILIppINE STRAITS DYNAMICS EXPERIMENT Multiscale Physical and Biological Dynamics in the Philippine Archipelago Predictions and Processes a 12°30’N b 15°N 28.5 12°00’N 28.2 27.9 14°N 27.6 27.3 11°30’N 27.0 13°N 26.7 26.4 28.5 26.1 11°00’N 12°N 28.2 25.8 27.9 120°00’E 120°30’E 121°00’E 121°30’E 122°00’E 27.6 11°N 27.3 c 29.7 20°N 27.0 29.0 26.7 28.3 10°N 26.4 27.6 26.1 25.8 26.9 26.2 118°E 119°E 120°E 121°E 122°E 123°E 124°E 25.5 15°N BY PIERRE F.J. LERMUSIAUX, 24.8 PATRICK J. HALEY JR., 24.0 WAYNE G. LESLIE, 23.4 ARPIT AgARWAL, OLEG G. LogUTov, AND LISA J. BURTon d 28 10°N -50 26 24 -100 22 -150 20 -1 18 40 cm s -200 16 5°N 14 -250 06Feb 11Feb 16Feb 21Feb 26Feb 03Mar 70 Oceanography | Vol.24, No.1 115°E 120°E 125°E 130°E ABSTRACT. The Philippine Archipelago is remarkable because of its complex of which are known to be among the geometry, with multiple islands and passages, and its multiscale dynamics, from the strongest in the world (e.g., Apel et al., large-scale open-ocean and atmospheric forcing, to the strong tides and internal 1985). The purpose of the present study waves in narrow straits and at steep shelfbreaks.
    [Show full text]
  • The Four Patterns of the East Branch of the Kuroshio Bifurcation in the Luzon Strait
    water Article The Four Patterns of the East Branch of the Kuroshio Bifurcation in the Luzon Strait Ruili Sun 1,* , Fangguo Zhai 2 and Yanzhen Gu 2 1 College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China 2 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; [email protected] (F.Z.); [email protected] (Y.G.) * Correspondence: [email protected]; Tel.: 188-5711-9795; Fax: 0571-2800-8214 Received: 17 November 2018; Accepted: 6 December 2018; Published: 10 December 2018 Abstract: Based on the self-organizing map (SOM) method, a suite of satellite measurement data, and Hybrid Coordinate Ocean Model (HYCOM) reanalysis data, the east branch of the Kuroshio bifurcation is found to have four coherent patterns associated with mesoscale eddies in the Pacific Ocean: anomalous southward, anomalous eastward, anomalous northward, and anomalous westward. The robust clockwise cycle of the four patterns causes significant intraseasonal variation of 62.2 days for the east branch. Furthermore, the study shows that the four patterns of the east branch of the Kuroshio bifurcation can influence the horizontal and vertical distribution of local sea temperature. Keywords: Kuroshio bifurcation; Luzon Strait; SOM; temporal and spatial variation; sea surface temperature; mesoscale eddy 1. Introduction The Kuroshio, which is the strongest western boundary current in the Northwest Pacific (NWP), originates from the North Equatorial Current (NEC). Encountering Luzon Island, the NEC bifurcates into the northward Kuroshio Current and the southward Mindanao Current. Then the Kuroshio passes to the east of the Luzon Strait (LS), flows northward along the Taiwan Island into the East China Sea, and returns to the Pacific Ocean through the Tokara Strait.
    [Show full text]
  • Variability of the Deep-Water Overflow in the Luzon Strait*
    2972 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 44 Variability of the Deep-Water Overflow in the Luzon Strait* CHUN ZHOU,WEI ZHAO,JIWEI TIAN, AND QINGXUAN YANG Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China TANGDONG QU International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i, Honolulu, Hawai‘i (Manuscript received 11 June 2014, in final form 23 August 2014) ABSTRACT The Luzon Strait, with its deepest sills at the Bashi Channel and Luzon Trough, is the only deep connection between the Pacific Ocean and the South China Sea (SCS). To investigate the deep-water overflow through the Luzon Strait, 3.5 yr of continuous mooring observations have been conducted in the deep Bashi Channel and Luzon Trough. For the first time these observations enable us to assess the detailed variability of the deep- water overflow from the Pacific to the SCS. On average, the along-stream velocity of the overflow is at its 2 maximum at about 120 m above the ocean bottom, reaching 19.9 6 6.5 and 23.0 6 11.8 cm s 1 at the central Bashi Channel and Luzon Trough, respectively. The velocity measurements can be translated to a mean 2 volume transport for the deep-water overflow of 0.83 6 0.46 Sverdrups (Sv; 1 Sv [ 106 m3 s 1) at the Bashi Channel and 0.88 6 0.77 Sv at the Luzon Trough. Significant intraseasonal and seasonal variations are identified, with their dominant time scales ranging between 20 and 60 days and around 100 days.
    [Show full text]
  • The Archaeology of the Batanes Islands, Northern Philippines
    terra australis 40 Terra Australis reports the results of archaeological and related research within the south and east of Asia, though mainly Australia, New Guinea and island Melanesia — lands that remained terra australis incognita to generations of prehistorians. Its subject is the settlement of the diverse environments in this isolated quarter of the globe by peoples who have maintained their discrete and traditional ways of life into the recent recorded or remembered past and at times into the observable present. List of volumes in Terra Australis Volume 1: Burrill Lake and Currarong: Coastal Sites in Southern New South Wales. R.J. Lampert (1971) Volume 2: Ol Tumbuna: Archaeological Excavations in the Eastern Central Highlands, Papua New Guinea. J.P. White (1972) Volume 3: New Guinea Stone Age Trade: The Geography and Ecology of Traffic in the Interior. I. Hughes (1977) Volume 4: Recent Prehistory in Southeast Papua. B. Egloff (1979) Volume 5: The Great Kartan Mystery. R. Lampert (1981) Volume 6: Early Man in North Queensland: Art and Archaeology in the Laura Area. A. Rosenfeld, D. Horton and J. Winter (1981) Volume 7: The Alligator Rivers: Prehistory and Ecology in Western Arnhem Land. C. Schrire (1982) Volume 8: Hunter Hill, Hunter Island: Archaeological Investigations of a Prehistoric Tasmanian Site. S. Bowdler (1984) Volume 9: Coastal South-West Tasmania: The Prehistory of Louisa Bay and Maatsuyker Island. R. Vanderwal and D. Horton (1984) Volume 10: The Emergence of Mailu. G. Irwin (1985) Volume 11: Archaeology in Eastern Timor, 1966–67. I. Glover (1986) Volume 12: Early Tongan Prehistory: The Lapita Period on Tongatapu and its Relationships.
    [Show full text]