Capacity Building in Ocean Bathymetry the Nippon Foundation GEBCO Training Programme at the University of New Hampshire

Total Page:16

File Type:pdf, Size:1020Kb

Capacity Building in Ocean Bathymetry the Nippon Foundation GEBCO Training Programme at the University of New Hampshire INTERNATIONAL HYDROGRAPHIC REVIEW VOL. 6 NO. 3 (NEW SERIES) NOVEMBER 2005 Note Capacity Building in Ocean Bathymetry The Nippon Foundation GEBCO Training Programme at the University of New Hampshire Srinivas Karlapati1, Dave Monahan2, Hugo Montoro Caceres3, Taisei Morishita4, Abubakar Abdullahi Mustapha5, Walter Reynoso Peralta6, Shereen Sharma7 and Clive Angwenyi8 Abstract Bathymetric Chart of the Oceans (GEBCO). GEBCO predates the IHO, and A successful Capacity Building project in since 1974 has been allied with both IHO hydrography is underway at the University and the Intergovernmental Oceanograph- of New Hampshire. Organised by the Gen- ic Commission (IOC) of UNESCO. GEBCO eral Bathymetric Chart of the Oceans and produces world bathymetry maps, in Production of this sponsored by the Nippon Foundation, the paper and digital form, a digital grid of paper is supported programme trains hydrographers and depths, and a Gazetteer of undersea financially by the other marine scientists in bathymetric names. In order to help build increased Nippon Foundation mapping. Participants are formally pre- capacity in bathymetric mapping, GEBCO pared to produce bathymetric maps when has established an international training 1 National Institute of Oceanography, they return to their home countries programme in ocean bathymetry. In part- Dona Paula, Goa – through a combination of graduate level nership with the Nippon Foundation of 403 004, India 2 Center for Coastal courses and workshops, practical field Japan, GEBCO has contracted with the and Ocean training, participation in deep ocean Center for Coastal and Ocean Mapping, University of New Hampshire, research cruises, working visits to other Mapping/NOAA-UNH Joint Hydrographic USA laboratories and institutions, focused lec- Center of the University of New Hamp- 3 Direccion de Hidrografia y tures from visiting experts, and the prepa- shire, to develop and offer a graduate cer- Navegacion, Av ration of a bathymetry map of their area tificate in Ocean Mapping. This paper Gamarra Nro. 500, Chucuito Callao, from public domain data. Intangible but reports on the first year of this pro- Peru necessary preparation includes the net- gramme. 4 Hydrographic and Oceanographic working with professionals in bathymetry Department, Japan and related fields within Ocean Mapping, Coast Guard, 5-3-1 Tsukiji, Chuo-ku, 3: and the building of a cadre of graduates The Need for Capacity to Tokyo, Japan who will form the basis of international Produce Ocean Bathymetry 5 Nigerian Navy, Naval Headquarters bathymetric mapping in the future. MOD, Abuja, Although bathymetry is a fundamental sci- Nigeria 6 Hydrography ence having a wide range of applications, Service, Argentinian Introduction availability of accurate bathymetry is in Navy, Buenos Aires, Argentina general taken for granted. However, the 7 P.O Box 3370, Through the International Hydrographic seafloor is largely unexplored: an over- Lautoka, Fiji Islands 8 Kenya Marine and Organisation (IHO), hydrographers co- whelming proportion of it has never been Fisheries Research operate in many ways, including contribut- measured directly but only mapped Institute, P.O. Box 81651 Mombasa, ing to the production of bathymetric maps through extrapolation from sparse, widely Kenya of the deep ocean through the General spaced data. Estimates are that, at most, 69 INTERNATIONAL HYDROGRAPHIC REVIEW a mere 5 to 10% of the ocean floor has been explored Table 1 GEBCO Core Subjects ((Holcombe and Moore 2000); (Committee on Nation- Depth measurements al Needs for Coastal Mapping and Charting Ocean - Multibeam echo-sounder (MBES), single-beam Studies Board Mapping Science Committee 2004); echo-sounder, multichannel seismics (Harper and Sharman 2003). Almost every scientific - Remote sensing - lidar and hydrographic cruise is a voyage of exploration, - Instrumentation packages - Sidescan one that will result in areas of the seafloor being - AUVs directly mapped for the very first time. As witness, the last twenty years of ocean exploration have seen the Oceanography - Acoustics; backscatter, physics of sound in discovery of gas hydrates in sea floor sediments, of the sea, chemistry of ocean water, propaga- pharmaceuticals from the sea, of ‘black smokers’, of tion of sound cobalt crusts, and of chemosynthetic life on ocean - Associated science: fisheries, turbulence, tsunami modelling ridges. These are regarded by many ocean scientists - Oceanography: tides as but a few of the myriad discoveries that remain to - Environmental aspects: coastal oceanography, be found. slope and shelf processes - Marine biota and mammals Despite its wide-ranging uses, bathymetry has often Sea Floor been dismissed in the minds of many marine scien- - Plate tectonics, sea floor morphology, ocean tists as merely measuring depth to the seafloor. basins, sedimentary processes, hydrothermal- thermal processes These scientists used bathymetry as the spatial struc- - Gravity-magnetic relationships to seafloor fab- ture for their own investigations, and consider it to be rics complete. Unfortunately, ‘Bathymetric maps tend to be taken as gospel with inadequate appreciation of Positioning - Geodesy the sketchy database on which they may be built, or - Satellites the inadequate quality of (some) of the original data’ - Navigation and positioning on and in sea (SCOR Working Group 107 2002) reflects the reality Maps and Charts that deep bathymetry is far from complete and needs - IHO standards improving. - Map/chart production - GIS Hydrographers fully understand the use of shallow - Nomenclature of features water bathymetry in preparing nautical charts for the Data processing safety of life and navigation at sea, and support it at - Digitising, sampling many organisational levels, deep water bathymetry - Data bases - Gridding has not benefited from the same level of support. Hav- - Contouring ing such a fundamental importance in marine sci- - Spatial statistics: Kriging, fractals ences, to the point where the accuracy of other - Post processing of MBES data branches of marine sciences depends on the accura- IT subjects cy of bathymetry, has not secured it a significant level -Web site creation and authoring of institutional support. Fortunately, the Nippon Foun- -Programming/coding: applications of, use of, dation GEBCO reported here represents a major step GEBCO as an entity towards rectifying this deficiency. - History of GEBCO and Ocean Mapping - Needs and requirements: use of GEBCO by cable layers, oil companies, defence, and v.v. - Copyright, who owns soundings, contours, Alfred Wegner Institute, Bremmerhaven, Germany charts Canadian Hydrographic Service, Ottawa, Canada Institut français de recherche pour l'exploitation - Outreach, community relationships de la mer, Brest, France - UNCLOS - Maritime Law National Geophysical Data Center, Boulder, USA National Oceanography Centre, Southampton, Personal Skills United Kingdom -Writing, oral presentation, communication University of Stockholm, Stockholm, Sweden Table 1: Topics to be included in the training of Table 2: Institutions hosting GEBCO Nippon Foundation bathymetrists, after GEBCO. scholars on training assignments, 2005. 70 INTERNATIONAL HYDROGRAPHIC REVIEW Need for the Training Programme against which potential teaching organisations could be evaluated. Based on these two documents, a Very generally, the rate at which mapping of the sea search for a suitable teaching organisation which floor progresses is a function of: could run the course in ocean bathymetry was - the size of the surface to be mapped undertaken. This process led to the submission of - the efficiency of the mapping tools that can be proposals from six universities in five countries. To applied make the final choice between these well-qualified - the speed of the platforms that carry those tools, teaching organisations, GEBCO set up a neutral their amount of use and the areas that they are Evaluation Group which ranked the six organisations deployed in and announced their unanimous decision that the - the organisational structures in place to assimi- best candidate was the Center for Coastal and late the raw data and transform it into maps Ocean Mapping/Joint Hydrographic Center at the - the number of skilled people who work at the task University of New Hampshire (UNH). (Carron et al. 2001) address items a), b) and c) and Advertising for potential students resulted in 57 conclude that if the world ocean could be surveyed applications from people in 32 countries. GEBCO by modern multibeam methods, to survey only the and the Nippon Foundation jointly selected students areas deeper than 500m would require something on the basis of previous education, language compe- like 800 ship years. Clearly the world ocean must be tency, likelihood of successful completion, sup- mapped by the Coastal States of the world working port/endorsement of home organisation, likelihood in concert. The organisational structure they do so of working in ocean mapping upon completion, and through is the GEBCO organisation, an international geographic distribution of home state to offer maxi- organisation which produces charts and digital grids mum cross-fertilisation among the class. Students of the world ocean by collating, interpreting and con- for this pioneer class came from Argentina, Fiji, touring, with the aid of directional fabrics revealed by India, Japan, Kenya, Nigeria and Peru, with back- satellite gravity, soundings and multibeam bathyme- grounds in hydrography, geology, geophysics and try
Recommended publications
  • Mapping Bathymetry
    Doctoral thesis in Marine Geoscience Meddelanden från Stockholms universitets institution för geologiska vetenskaper Nº 344 Mapping bathymetry From measurement to applications Benjamin Hell 2011 Department of Geological Sciences Stockholm University Stockholm Sweden A dissertation for the degree of Doctor of Philosophy in Natural Sciences Abstract Surface elevation is likely the most fundamental property of our planet. In contrast to land topography, bathymetry, its underwater equivalent, remains uncertain in many parts of the World ocean. Bathymetry is relevant for a wide range of research topics and for a variety of societal needs. Examples, where knowing the exact water depth or the morphology of the seafloor is vital include marine geology, physical oceanography, the propagation of tsunamis and documenting marine habitats. Decisions made at administrative level based on bathymetric data include safety of maritime navigation, spatial planning along the coast, environmental protection and the exploration of the marine resources. This thesis covers different aspects of ocean mapping from the collec- tion of echo sounding data to the application of Digital Bathymetric Models (DBMs) in Quaternary marine geology and physical oceano- graphy. Methods related to DBM compilation are developed, namely a flexible handling and storage solution for heterogeneous sounding data and a method for the interpolation of such data onto a regular lattice. The use of bathymetric data is analyzed in detail for the Baltic Sea. With the wide range of applications found, the needs of the users are varying. However, most applications would benefit from better depth data than what is presently available. Based on glaciogenic landforms found in the Arctic Ocean seafloor morphology, a possible scenario for Quaternary Arctic Ocean glaciation is developed.
    [Show full text]
  • Worksheet 5.1--The History of Oceanography
    Worksheet 5.1--The History of Oceanography Reading: Introduction to the World’s Oceans pages 4-22 1. The field of oceanography today is so broad that oceanography is usually broken down into a number of sub disciplines: a. ________________________________________ includes the study of the earth at the sea’s edge and below its surface b. ________________________________________ investigates how and why the oceans move c. ________________________________________ is the study of heat transfer, water cycles, and air-sea interactions. d. ________________________________________ studies the composition and history of the water e. ________________________________________ concerns the marine organisms and the relationship between these organisms and the environment. f. ________________________________________ is the discipline that designs and plans equipment and installations for use at sea. 2. When did oceanography begin to develop as a modern science? ____________________ The Early Times 3. Around 200 BC the Egyptian scientist Eratosthenes mapped the known world and calculated the circumference of the earth as 40,250 km. Today’s measurement is ______________ . How far from the correct value was Erathosthenes? 4. Approximately 350 years later the Roman Scientist Ptolemy produced the world’s first atlas. His atlas listed more than 8,000 places by latitude and longitude but his work contained a major flaw. What was it? 5. What difference would it have made for Columbus and other explorers if they had used Erathosthenes’ more accurate estimate of the earth’s circumference rather than Ptolemy’s flawed estimate? The Middle Ages 6. When did the Vikings reach North America? _______________ 7. Who first established regular trade routes across the Indian Ocean? _______________ 8.
    [Show full text]
  • Deep-Sea Mining: the Basics
    A fact sheet from June 2018 NOAA Office of Ocean Exploration and Research Deep-sea Mining: The Basics Overview The deepest parts of the world’s ocean feature ecosystems found nowhere else on Earth. They provide habitat for multitudes of species, many yet to be named. These vast, lightless regions also possess deposits of valuable minerals in rich concentrations. Deep-sea extraction technologies may soon develop to the point where exploration of seabed minerals can give way to active exploitation. The International Seabed Authority (ISA) is charged with formulating and enforcing rules for all seabed mining that takes place in waters beyond national jurisdictions. These rules are now under development. Environmental regulations, liability and financial rules, and oversight and enforcement protocols all must be written and approved within three to five years. Figure 1 Types of Deep-sea Mining Production support vessel Return pipe Riser pipe Cobalt Seafloor massive Polymetallic crusts sulfides nodules Subsurface plumes 800-2,500 from return water meters deep Deposition 1,000-4,000 meters deep 4,000-6,500 meters deep Cobalt-rich Localized plumes Seabed pump Ferromanganeseferromanganese from cutting crusts Seafloor production tool Nodule deposit Massive sulfide deposit Sediment Source: New Zealand Environment Guide © 2018 The Pew Charitable Trusts 2 The legal foundations • The United Nations Convention on the Law of the Sea (UNCLOS). Also known as the Law of the Sea Treaty, UNCLOS is the constitutional document governing mineral exploitation on the roughly 60 percent of the world seabed that lies beyond national jurisdictions. UNCLOS took effect in 1994 upon passage of key enabling amendments designed to spur commercial mining.
    [Show full text]
  • New Frontiers in Ocean Exploration the E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2018 Field Season
    New Frontiers in Ocean Exploration The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2018 Field Season GUEST EDITORS Nicole A. Raineault and Joanne Flanders Oceanography Vol. 32, No. 1, Supplement, March 2019 a PREFERRED CITATION Raineault, N.A, and J. Flanders, eds. 2019. New frontiers in ocean exploration: The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2018 field season. Oceanography 32(1), supplement, 150 pp., https://doi.org/10.5670/oceanog.2019.supplement.01. FRONT COVER A high-density habitat consisting of deep-sea sponge, coral, and squat lobsters on a previously unmapped and unex- plored seamount in Papahānaumokuākea Marine National Monument. The photo was taken during E/V Nautilus cruise NA101. Image credit: D. Fornari (WHOI-MISO Facility) and OET The R/V Falkor team dove on “Rosebud,” a whale fall that was placed by researchers off San Diego, California, in La Jolla Canyon. Researchers noted changes in composition and life forms around the location in a beautiful, exciting dive investigating ecosystems unique to whale falls. Image credit: SOI b It Takes a Village! Managing Data from Okeanos Explorer By Barry Eakins, Susan Gottfried, Patrick Murphy, David Lovalvo, and Derek Sowers NOAA Ship Okeanos Explorer is a telepresence-enabled for near-real-time data sharing. The OER mapping team exploration vessel managed by NOAA’s Office of Marine and pioneered “telemapping” workflows to enable near-real- Aviation Operations with mission equipment operated by time processing of bathymetric data from its shoreside NOAA’s Office of Ocean Exploration and Research, in part- facility at the University of New Hampshire (UNH).
    [Show full text]
  • Deep-Sea Life Issue 8, November 2016 Cruise News Going Deep: Deepwater Exploration of the Marianas by the Okeanos Explorer
    Deep-Sea Life Issue 8, November 2016 Welcome to the eighth edition of Deep-Sea Life: an informal publication about current affairs in the world of deep-sea biology. Once again we have a wealth of contributions from our fellow colleagues to enjoy concerning their current projects, news, meetings, cruises, new publications and so on. The cruise news section is particularly well-endowed this issue which is wonderful to see, with voyages of exploration from four of our five oceans from the Arctic, spanning north east, west, mid and south Atlantic, the north-west Pacific, and the Indian Ocean. Just imagine when all those data are in OBIS via the new deep-sea node…! (see page 24 for more information on this). The photo of the issue makes me smile. Angelika Brandt from the University of Hamburg, has been at sea once more with her happy-looking team! And no wonder they look so pleased with themselves; they have collected a wonderful array of life from one of the very deepest areas of our ocean in order to figure out more about the distribution of these abyssal organisms, and the factors that may limit their distribution within this region. Read more about the mission and their goals on page 5. I always appreciate feedback regarding any aspect of the publication, so that it may be improved as we go forward. Please circulate to your colleagues and students who may have an interest in life in the deep, and have them contact me if they wish to be placed on the mailing list for this publication.
    [Show full text]
  • Arctic Ocean Bathymetry: a Necessary Geospatial Framework Martin Jakobsson,1 Larry Mayer2 and David Monahan2
    ARCTIC VOL. 68, SUPPL. 1 (2015) P. 41 – 47 http://dx.doi.org/10.14430/arctic4451 Arctic Ocean Bathymetry: A Necessary Geospatial Framework Martin Jakobsson,1 Larry Mayer2 and David Monahan2 (Received 26 May 2014; accepted in revised form 8 December 2014) ABSTRACT. Most ocean science relies on a geospatial infrastructure that is built from bathymetry data collected from ships underway, archived, and converted into maps and digital grids. Bathymetry, the depth of the seafloor, besides having vital importance to geology and navigation, is a fundamental element in studies of deep water circulation, tides, tsunami forecasting, upwelling, fishing resources, wave action, sediment transport, environmental change, and slope stability, as well as in site selection for platforms, cables, and pipelines, waste disposal, and mineral extraction. Recent developments in multibeam sonar mapping have so dramatically increased the resolution with which the seafloor can be portrayed that previous representations must be considered obsolete. Scientific conclusions based on sparse bathymetric information should be re-examined and refined. At this time only about 11% of the Arctic Ocean has been mapped with multibeam; the rest of its seafloor area is portrayed through mathematical interpolation using a very sparse depth-sounding database. In order for all Arctic marine activities to benefit fully from the improvement that multibeam provides, the entire Arctic Ocean must be multibeam-mapped, a task that can be accomplished only through international coordination and collaboration that includes the scientific community, naval institutions, and industry. Key words: bathymetry; Arctic Ocean; mapping; oceanography; tectonics RÉSUMÉ. Une grande partie de l’océanographie s’appuie sur l’infrastructure géospatiale établie à partir de données bathymétriques recueillies par des navires en route, données qui sont ensuite archivées et transformées en cartes et en grilles numériques.
    [Show full text]
  • Seabed 2030: Atlantic & Indian Oceans Regional
    GENERAL BATHYMETRIC CHART OF THE OCEANS (GEBCO) an IHO-IOC Joint Project UN-GGIM WGMGI Busan, Republic of Korea, 7-9 March 2019 What is GEBCO? The General Bathymetric Chart of the Oceans (GEBCO) (see www.gebco.net) • Aims to provide the most authoritative, publicly-available bathymetric data sets for the world’s oceans • Operates under the joint auspices of the • International Hydrographic Organization (IHO), and • Intergovernmental Oceanographic Commission (IOC) of UNESCO • First GEBCO paper chart series initiated in 1903 • Forum for Future Ocean Floor Mapping (June 2016): www.iho.int/mtg_docs/com_wg/GEBCO/FOFF/index.html GEBCO Project organisational structure • GEBCO is led by a Guiding Committee consisting of five IHO-appointed members; five IOC-appointed members; Sub-committee Chairs and the Director of the IHO-DCDB • It has 4 sub-committees and a number of working groups: • Sub-Committee on Undersea Feature Names (SCUFN) • Technical Sub-Committee on Ocean Mapping (TSCOM) • Sub-Committee on Regional Undersea Mapping (SCRUM) • Sub-Committee on Communications, Outreach and Public Engagement (SCOPE) • IHO-IOC GEBCO Cook Book www.gebco.net/about_us/committees_and_groups/ Regional mapping projects GEBCO products Our bathymetric data sets and products: • Global gridded bathymetric data set (30 arc-second interval) • GEBCO Gazetteer of Undersea Feature Names • GEBCO Digital Atlas • Grid viewing software • Printable maps • Web Map Service (WMS) • IHO-IOC GEBCO Cook Book www.gebco.net/data_and_products/ GEBCO products: global bathymetric grid
    [Show full text]
  • Bathymetric Mapping of the North Polar Seas
    BATHYMETRIC MAPPING OF THE NORTH POLAR SEAS Report of a Workshop at the Hawaii Mapping Research Group, University of Hawaii, Honolulu HI, USA, October 30-31, 2002 Ron Macnab Geological Survey of Canada (Retired) and Margo Edwards Hawaii Mapping Research Group SCHOOL OF OCEAN AND EARTH SCIENCE AND TECHNOLOGY UNIVERSITY OF HAWAII 1 BATHYMETRIC MAPPING OF THE NORTH POLAR SEAS Report of a Workshop at the Hawaii Mapping Research Group, University of Hawaii, Honolulu HI, USA, October 30-31, 2002 Ron Macnab Geological Survey of Canada (Retired) and Margo Edwards Hawaii Mapping Research Group Cover Figure. Oblique view of new eruption site on the Gakkel Ridge, observed with Seafloor Characterization and Mapping Pods (SCAMP) during the 1999 SCICEX mission. Sidescan observations are draped on a SCAMP-derived terrain model, with depths indicated by color-coded contour lines. Red dots are epicenters of earthquakes detected on the Ridge in 1999. (Data processing and visualization performed by Margo Edwards and Paul Johnson of the Hawaii Mapping Research Group.) This workshop was partially supported through Grant Number N00014-2-02-1-1120, awarded by the United States Office of Naval Research International Field Office. Partial funding was also provided by the International Arctic Science Committee (IASC), the US Polar Research Board, and the University of Hawaii. 2 Table of Contents 1. Introduction...............................................................................................................................5 Ron Macnab (GSC Retired) and Margo Edwards (HMRG) 2. A prototype 1:6 Million map....................................................................................................5 Martin Jakobsson, CCOM/JHC, University of New Hampshire, Durham NH, USA 3. Russian Arctic shelf data..........................................................................................................7 Volodja Glebovsky, VNIIOkeangeologia, St. Petersburg, Russia 4.
    [Show full text]
  • Seafloor Mapping | Educator
    SEAFLOOR MAPPING | EDUCATOR Links to Next S T E M Generations Science Supplement Video | Standards | https://www.youtube.com/watch?v=rEPXuXf0_Ws https://vimeo.com/153100152 (password: exploration) MS-PS4-2: Develop and use a model to Pacing | 2 - 3 class periods (45 minutes each) describe that waves Background Needed | Basic understanding of sound, waves, earth history, earth are reflected, processes, sonar absorbed, or Assessment | Scientific & Technical Reporting rubric provided transmitted through Materials/Resources | various materials. ‣ Simulated seafloor boxes ‣ Low Resolution Grid (http://nautl.us/2eg1p5V) and High Resolution Grid MS-ESS2-3: Analyze and interpret data on (http://nautl.us/2dKZ7IN) ‣ the distribution of Wooden dowels fossils and rocks, ‣ Student data sheets continental shapes, ‣ Colored pencils and seafloor ‣ Calculators structures to provide ‣ Computers with Microsoft Excel (optional) evidence of the past plate motions. Overview MS-ESS3-1: Construct This module is designed to introduce students to multibeam sonar mapping. a scientific Students will use simulated sonar beams to produce depth data on a seafloor. explanation based on They will then take this data and produce a bathymetric map. Students will be evidence for how the asked to infer seafloor features based on two resolutions (low and high) of sonar uneven distributions imagery. Bathymetric maps can be produced by hand or students can easily use of Earth's mineral, Excel to produce 3D bathymetric images. energy, and groundwater resources are the Objectives & Learning Outcomes ‣ result of past and Students will be able to explain the importance of seafloor mapping to current geoscience understand the earth and ocean as well as understand how little of the global processes.
    [Show full text]
  • Chapter 25 Creating a National Strategy For
    PART VII SCIENCE-BASED DECISIONS: A DVANCING O UR U NDERSTANDING OF THE O CEANS CHAPTER 25 CREATING A NATIONAL STRATEGY FOR INCREASING SCIENTIFIC KNOWLEDGE ...............................................................374 CHAPTER 26 ACHIEVING A SUSTAINED, INTEGRATED OCEAN OBSERVING SYSTEM..........394 CHAPTER 27 ENHANCING OCEAN INFRASTRUCTURE AND TECHNOLOGY DEVELOPMENT........................................................................412 CHAPTER 28 MODERNIZING OCEAN DATA AND INFORMATION SYSTEMS ..................428 CHAPTER 25 CREATING A NATIONAL STRATEGY FOR INCREASING SCIENTIFIC KNOWLEDGE cean managers and policy makers need comprehensive scientific information Oabout the ocean and its environment to make wise decisions. Increased knowl- edge will help achieve sustainable resource use, economic development, and con- servation of the ocean’s biological diversity and natural beauty. However, to ensure the highest return on the nation’s investment in ocean research, exploration, and marine operations, a national strategy is needed. The strategy should coordinate and prioritize basic and applied ocean and coastal research supported by all federal agencies, increase partnerships with the academic and private sectors, promote enhanced ocean exploration, and coordinate federal marine operations to reduce redundancies. Significantly increased research in ocean-related natural and social sciences will also be key to fostering a new era of ecosystem-based management supported by sound science. Fortifying the Foundations of Ocean Understanding cean science and technology are integral parts of the overall OU.S. research enterprise and contribute greatly to society. They are essential to understanding the Earth’s environment and how it changes over time, improving climate predictions, managing marine resources wisely, finding beneficial new uses of ocean resources, protect- ing national security, and unlocking the basic mysteries of life on Earth.
    [Show full text]
  • The Truth About Sharks the Story of the Sea Turtle the World of Whales
    The Truth About Sharks Sharks are magnificent, but misunderstood creatures that are unfortunately being pushed to the brink of extinction due to overfishing and poor international management. This program highlights the beauty and importance of these animals by showing the incredible rich diversity of shark species and their unique adaptations. Students will rotate through hands-on stations in small groups that involve shark tooth and jaw morphology, shark identification, and shark sensory systems. The session culminates in a discussion about the critical need for conservation of many shark species and what students, no matter where they live, can do to help. The Story of the Sea Turtle Sea turtles are one of the most ancient creatures on Earth, yet we are still learning more and more about them every day. This program covers the life history, ecology, behavior, and unique adaptations of these extraordinary marine animals. Hands-on activities will highlight nesting behavior, sea turtle predators, how hatchings make it to the ocean, and how they are able to return to the same nesting beaches as adults. Students will have sea turtle models to study and even get a chance to experience what it is like for a sea turtle biologist studying these animals in the wild. The session ends in a discussion on current sea turtle conservation measures and how students can help protect marine life. The World of Whales Whales are found in every ocean region and are the largest mammals on the planet, yet we still have much to learn about these magnificent creatures. This program highlights the rich diversity of whale species and their unique adaptations that allow them to grow to mind-boggling dimensions, dive deep underwater, survive in cold-water habitats, and even sing elaborate songs to each other! Through hands-on activities, students will learn about whale feeding and communication strategies, and how scientists study these incredible animals in the wild.
    [Show full text]
  • Goodbye, Columbus , De Philip Roth 3 Alrededor De Los Amores
    Goodbye, Columbus , de Philip Roth 3 Alrededor de los amores cobardes 66 "En el camino...", de Norah Lange 70 La mielitis transversa: el embotellamiento inflamatorio de la médula espinal 71 "Canto en loor de Huexotzinco", de Ayocuan Cuetzpaltzin 74 CMS observa la producción de tres bosones vectoriales con 5.7 sigmas 76 Los nuevos ‘elementos’ de las series radiactivas 79 Gordo, de Raymond Carver 82 El triángulo de Pascal para calcular tangentes 85 CARTA A UNA SEÑORITA DE PARÍS, cuento de Julio Cortázar 86 Rock Springs, de Richard Ford 96 Una muchacha y un manifiesto 108 La Puerta de los Cien Pesares , de Rudyard Kipling 111 La arquitectura molecular del coronavirus SARS-CoV-2 114 El grifo del agua fría 120 "La comunidad futura" de Gabriel D. Lerman 122 Sistema de Infotecas Centrales Universidad Autónoma de Coahuila La primera película de la sombra del agujero negro M87* gracias a EHT 129 Planeta océano: el corazón líquido que nos mantiene vivos 135 EL FIORD, cuento de Osvaldo Lamborghini 140 ¿Cómo abordar la ‘nueva enseñanza’ si la mitad de los estudiantes no tiene internet ni 147 ordenador? 2 Boletín Científico y Cultural de la Infoteca No. 674 octubre 2020 Sistema de Infotecas Centrales Universidad Autónoma de Coahuila Goodbye, Columbus , de Philip Roth (Nueva Jersey, Estados Unidos, 1933 - Nueva York, 2018) Goodbye, Columbus (1959) (“Goodbye, Columbus”) Originalmente publicado en la revista The Paris Review (Núm. 20, Otoño-Invierno 1958-1959) Goodbye, Columbus and Five Short Stories (1959) 1 La primera vez que la vi, Brenda me pidió que le sujetase las gafas; luego dio unos pasos, hasta situarse en el borde del trampolín, y miró la piscina con ojos de no ver nada; podrían haber quitado el agua, que Brenda, de puro miope, no se habría enterado.
    [Show full text]