Structural Basis for Ca2+ Activation of the Heteromeric PKD1L3/PKD2L1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Polycystic Kidney Disease 1 Like 1 Gene Variants In
HEPATOLOGY, VOL. 70, NO. 3, 2019 AUTOIMMUNE, CHOLESTaTIc aND BILIaRY DISEaSE Identification of Polycystic Kidney Disease 1 Like 1 Gene Variants in Children With Biliary Atresia Splenic Malformation Syndrome 1 1 1 2 2 2 3 John-Paul Berauer, Anya I. Mezina, David T. Okou, Aniko Sabo, Donna M. Muzny, Richard A. Gibbs, Madhuri R. Hegde, 3 3 4 5 6 7 Pankaj Chopra, David J. Cutler, David H. Perlmutter, Laura N. Bull, Richard J. Thompson, Kathleen M. Loomes, 8 8,9 10 11 11 12 Nancy B. Spinner, Ramakrishnan Rajagopalan, Stephen L. Guthery, Barry Moore, Mark Yandell, Sanjiv Harpavat, 13 14 15 16 17 18 John C. Magee, Binita M. Kamath, Jean P. Molleston, Jorge A. Bezerra , Karen F. Murray, Estella M. Alonso, 19 20 21 22 23 24 Philip Rosenthal, Robert H. Squires, Kasper S. Wang, Milton J. Finegold, Pierre Russo, Averell H. Sherker, 25 1 Ronald J. Sokol, and Saul J. Karpen ; for the Childhood Liver Disease Research Network (ChiLDReN) Biliary atresia (BA) is the most common cause of end-stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malforma- tions—a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole-exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient–parent trios, from the National Institute of Diabetes and Digestive and Kidney Diseases–supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. -
Cryo-EM Structure of the Polycystic Kidney Disease-Like Channel PKD2L1
ARTICLE DOI: 10.1038/s41467-018-03606-0 OPEN Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1 Qiang Su1,2,3, Feizhuo Hu1,3,4, Yuxia Liu4,5,6,7, Xiaofei Ge1,2, Changlin Mei8, Shengqiang Yu8, Aiwen Shen8, Qiang Zhou1,3,4,9, Chuangye Yan1,2,3,9, Jianlin Lei 1,2,3, Yanqing Zhang1,2,3,9, Xiaodong Liu2,4,5,6,7 & Tingliang Wang1,3,4,9 PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved 1234567890():,; in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a non- selective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π–π interactions, suggesting a potential PKD2L1 gating mechanism. 1 Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China. 2 School of Life Sciences, Tsinghua University, Beijing 100084, China. 3 Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China. 4 School of Medicine, Tsinghua University, Beijing 100084, China. -
Diversifying Selection Between Pure-Breed and Free-Breeding Dogs Inferred from Genome-Wide SNP Analysis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE G3: Genes|Genomes|Genetics Early Online, published on May 27, 2016 as doi:10.1534/g3.116.029678 provided by University of Lincoln Institutional Repository Diversifying selection between pure-breed and free-breeding dogs inferred from genome-wide SNP analysis Małgorzata Pilot,*,† Tadeusz Malewski,† Andre E. Moura,* Tomasz Grzybowski,‡ Kamil Oleński,§ Stanisław Kamiński,§ Fernanda Ruiz Fadel,* Abdulaziz N. Alagaili,** Osama B. Mohammed,** and Wiesław Bogdanowicz†,1 *School of Life Sciences, University of Lincoln, Green Lane, LN6 7DL Lincoln, UK. †Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland. ‡Division of Molecular and Forensic Genetics, Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Skłodowskiej-Curie 9, 85- 094 Bydgoszcz, Poland. §Department of Animal Genetics, University of Warmia and Mazury, Oczapowskiego 5, 10- 711 Olsztyn, Poland. **KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia. 1Corresponding author: Wiesław Bogdanowicz, Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland. e-mail: [email protected] 1 © The Author(s) 2013. Published by the Genetics Society of America. Abstract Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e. unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. -
Function and Regulation of Polycystin-2 and Epithelial Sodium Channel
Function and Regulation of Polycystin-2 and Epithelial Sodium Channel by Qian Wang A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physiology University of Alberta © Qian Wang, 2016 ABSTRACT Polycystin-2, encoded by the PKD2 gene, is mutated in ~15% of autosomal dominant polycystic kidney disease, and functions as a Ca2+ permeable non-selective cation channel. It is mainly localized on the endoplasmic reticulum membrane, and is also present on the plasma membrane and primary cilium. Polycystin-2 is critical for cellular homeostasis and thus a tight regulation of its expression and function is needed. In Chapter 2, filamin-A, a large cytoskeletal actin-binding protein, was identified as a novel polycystin-2 binding partner. Their physical interaction was confirmed by different molecular biology techniques, e.g., yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Filamin-A C terminal fragment (FLNAC) mediates the interaction with both N- and C- termini of polycystin-2. Functional study in lipid bilayer reconstitution system showed that filamin substantially inhibits polycystin-2 channel activity. This study indicates that filamin is an important regulator of polycystin-2 channel function, and further links actin cytoskeletal dynamics to the regulation of this channel. In Chapter 3, further effect of filamin on polycystin-2 stability was studied using filamin-deficient and filamin-A replete human melanoma cells, as well other human cell lines together with filamin-A siRNA/shRNA knockdown. Filamin-A was found to repress polycystin-2 degradation and enhance its total expression and plasma membrane targeting. -
New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System
brain sciences Review New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System Krisztina Kelemen * and Tibor Szilágyi Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, , Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-746-248064 Abstract: Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of informa- tion was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+- buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system. -
Array Painting Reveals a High Frequency of Balanced Translocations in Breast Cancer Cell Lines That Break in Cancer-Relevant Genes
Oncogene (2008) 27, 3345–3359 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ONCOGENOMICS Array painting reveals a high frequency of balanced translocations in breast cancer cell lines that break in cancer-relevant genes KD Howarth1, KA Blood1,BLNg2, JC Beavis1, Y Chua1, SL Cooke1, S Raby1, K Ichimura3, VP Collins3, NP Carter2 and PAW Edwards1 1Department of Pathology, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK; 2Wellcome Trust Sanger Institute, Cambridge, UK and 3Department of Pathology, Division of Molecular Histopathology, Addenbrookes Hospital, University of Cambridge, Cambridge, UK Chromosome translocations in the common epithelial tion and inversion, which can result in gene fusion, cancers are abundant, yet little is known about them. promoter insertion or gene inactivation. As is well They have been thought to be almost all unbalanced and known in haematopoietic tumours and sarcomas, therefore dismissed as mostly mediating tumour suppres- translocations and inversions can have powerful onco- sor loss. We present a comprehensive analysis by array genic effects on specific genes and play a central role in painting of the chromosome translocations of breast cancer development (Rowley, 1998). In the past there cancer cell lines HCC1806, HCC1187 and ZR-75-30. In has been an implicit assumption that such rearrange- array painting, chromosomes are isolated by flow ments are not significant players in the common cytometry, amplified and hybridized to DNA microarrays. epithelial -
Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns
Journal of Personalized Medicine Review Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns Olga María Diz 1,2,† , Rocio Toro 3,† , Sergi Cesar 4, Olga Gomez 5,6, Georgia Sarquella-Brugada 4,7,*,‡ and Oscar Campuzano 2,7,8,*,‡ 1 UGC Laboratorios, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain; [email protected] 2 Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain 3 Medicine Department, School of Medicine, Cádiz University, 11519 Cadiz, Spain; [email protected] 4 Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; [email protected] 5 Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain; [email protected] 6 Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain 7 Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain 8 Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain * Correspondence: [email protected] (G.S.-B.); [email protected] (O.C.) † Equally as co-first authors. ‡ Contributed equally as co-senior authors. Citation: Diz, O.M.; Toro, R.; Cesar, Abstract: Congenital heart disease is a group of pathologies characterized by structural malforma- S.; Gomez, O.; Sarquella-Brugada, G.; tions of the heart or great vessels. -
Quantitative Trait Loci Mapping of Macrophage Atherogenic Phenotypes
QUANTITATIVE TRAIT LOCI MAPPING OF MACROPHAGE ATHEROGENIC PHENOTYPES BRIAN RITCHEY Bachelor of Science Biochemistry John Carroll University May 2009 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY December 2017 We hereby approve this thesis/dissertation for Brian Ritchey Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies by ______________________________ Date: _________ Dissertation Chairperson, Johnathan D. Smith, PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, David J. Anderson, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Baochuan Guo, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Stanley L. Hazen, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Renliang Zhang, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Aimin Zhou, PhD Department of Chemistry, Cleveland State University Date of Defense: October 23, 2017 DEDICATION I dedicate this work to my entire family. In particular, my brother Greg Ritchey, and most especially my father Dr. Michael Ritchey, without whose support none of this work would be possible. I am forever grateful to you for your devotion to me and our family. You are an eternal inspiration that will fuel me for the remainder of my life. I am extraordinarily lucky to have grown up in the family I did, which I will never forget. -
Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ...................................................... -
Transcriptional Maturation of the Mouse Auditory Forebrain
Transcriptional maturation of the mouse auditory forebrain The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Hackett, Troy A., Yan Guo, Amanda Clause, Nicholas J. Hackett, Krassimira Garbett, Pan Zhang, Daniel B. Polley, and Karoly Mirnics. 2015. “Transcriptional maturation of the mouse auditory forebrain.” BMC Genomics 16 (1): 606. doi:10.1186/s12864-015-1709-8. http:// dx.doi.org/10.1186/s12864-015-1709-8. Published Version doi:10.1186/s12864-015-1709-8 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:21462360 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Hackett et al. BMC Genomics (2015) 16:606 DOI 10.1186/s12864-015-1709-8 RESEARCH ARTICLE Open Access Transcriptional maturation of the mouse auditory forebrain Troy A. Hackett1,8*, Yan Guo4, Amanda Clause2, Nicholas J. Hackett3, Krassimira Garbett5, Pan Zhang4, Daniel B. Polley2 and Karoly Mirnics5,6,7,8 Abstract Background: The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. -
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptNature. Author ManuscriptAuthor manuscript; Author Manuscript available in PMC 2015 November 28. Published in final edited form as: Nature. 2015 May 28; 521(7553): 520–524. doi:10.1038/nature14269. Global genetic analysis in mice unveils central role for cilia in congenital heart disease You Li1,8, Nikolai T. Klena1,8, George C Gabriel1,8, Xiaoqin Liu1,7, Andrew J. Kim1, Kristi Lemke1, Yu Chen1, Bishwanath Chatterjee1, William Devine2, Rama Rao Damerla1, Chien- fu Chang1, Hisato Yagi1, Jovenal T. San Agustin5, Mohamed Thahir3,4, Shane Anderton1, Caroline Lawhead1, Anita Vescovi1, Herbert Pratt5, Judy Morgan6, Leslie Haynes6, Cynthia L. Smith6, Janan T. Eppig6, Laura Reinholdt6, Richard Francis1, Linda Leatherbury7, Madhavi K. Ganapathiraju3,4, Kimimasa Tobita1, Gregory J. Pazour5, and Cecilia W. Lo1,9 1Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 2Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 3Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 4Intelligent Systems Program, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 9Corresponding author. [email protected] Phone: 412-692-9901, Mailing address: Dept of Developmental Biology, Rangos Research Center, 530 45th St, Pittsburgh, PA, 15201. 8Co-first authors Author Contributions: Study design: CWL ENU mutagenesis, line cryopreservation, JAX strain datasheet construction: -
Transcriptional Profile of Human Anti-Inflamatory Macrophages Under Homeostatic, Activating and Pathological Conditions
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS Departamento de Bioquímica y Biología Molecular I TESIS DOCTORAL Transcriptional profile of human anti-inflamatory macrophages under homeostatic, activating and pathological conditions Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Víctor Delgado Cuevas Directores María Marta Escribese Alonso Ángel Luís Corbí López Madrid, 2017 © Víctor Delgado Cuevas, 2016 Universidad Complutense de Madrid Facultad de Ciencias Químicas Dpto. de Bioquímica y Biología Molecular I TRANSCRIPTIONAL PROFILE OF HUMAN ANTI-INFLAMMATORY MACROPHAGES UNDER HOMEOSTATIC, ACTIVATING AND PATHOLOGICAL CONDITIONS Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas. Víctor Delgado Cuevas Tesis Doctoral Madrid 2016 Universidad Complutense de Madrid Facultad de Ciencias Químicas Dpto. de Bioquímica y Biología Molecular I TRANSCRIPTIONAL PROFILE OF HUMAN ANTI-INFLAMMATORY MACROPHAGES UNDER HOMEOSTATIC, ACTIVATING AND PATHOLOGICAL CONDITIONS Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas. Este trabajo ha sido realizado por Víctor Delgado Cuevas para optar al grado de Doctor en el Centro de Investigaciones Biológicas de Madrid (CSIC), bajo la dirección de la Dra. María Marta Escribese Alonso y el Dr. Ángel Luís Corbí López Fdo. Dra. María Marta Escribese