Spawning Escapement Update for the Lake Washington Watershed Seattle Public Utilities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ballard/Fremont Neighborhood Greenways
Ballard-Interbay Regional Transportation System Seattle Bicycle Advisory Board SDOT Policy & Planning Department of Transportation May 6, 2020 Presentation overview •Project background and purpose •Project scope, outcomes, schedule •Engagement/equity •Overview of comments •Questions for SBAB Department of Transportation 3 www.seattle.gov/transportation/birt Department of Transportation 2019 Washington State legislative language ESHB 1160 – Section 311(18)(b) “Funding in this subsection is provided solely The plan must examine replacement of the Ballard for the city of Seattle to develop a plan and Bridge and the Magnolia Bridge, which was damaged in report for the Ballard-Interbay Regional the 2001 Nisqually earthquake. The city must provide a Transportation System project to improve report on the plan that includes recommendations to the mobility for people and freight. The plan Seattle city council, King county council, and the must be developed in coordination and transportation committees of the legislature by partnership with entities including but not November 1, 2020. The report must include limited to the city of Seattle, King county, the recommendations on how to maintain the current and Port of Seattle, Sound Transit, the future capacities of the Magnolia and Ballard bridges, an Washington state military department for the overview and analysis of all plans between 2010 and Seattle armory, and the Washington State 2020 that examine how to replace the Magnolia bridge, Department of Transportation. and recommendations on a timeline -
(General Insurance
8, 1909. 8 THE SEATTLE REPUBLICAN FRIDAY, JANUARY and the defects of NORTHWEST BRIEFS. achievements Scandinavian American Bank. the Brother in Black. In a few A resolution was introduced at Write Today straight-forward, clean-cut re- a copy meeting the city for of the recent of marks, free from partiality or "THE BANK ACCOUNT" council asking Mayor John E. prejudice, he pointed out to his a new, neat little 8-page paper aa full Philadelphia, of good things as an egg is of meat. Reyburn of to send auditors the shortcomings of the MAILED FREE. the Liberty Bell to the Alaska- Negro and deplored the fact there The Scandinavian-American Bank, Yukon-Pacific Exposition. was such a general impulse with Alaska Building, Seattle, Wash. d'Oreille River Navi- them to rush to the already over- The Pend E. N. BROOKS & CO. gation Co. has just inaugurated crowded cities where the cost of For Frills For Men. the best river service which the living is the highest and competi- HXQK traveling 1 public has ever enjoyed tion the" greatest. With Booker CLASS HABEBDASEEBT on that river. T. Washington, Mayor Miller 1331 Second Aye., Seattle, Wash. agreed life of the agri- The teachers' institute held in that the culturist is the most independent Spokane is being well attended. • Albert Hansen. existence in the world. He men- Eyes Carefully Examined and Two-thirds of the Columbia riv- tioned the fact that along many Properly Fitted With Glasses er bridge is completed and about lines the Negro had already at- 706 First Avenue. -
Cedar River State Water Trail
A WATER TRAIL GUIDE TO THE CEDAR RIVER Iron Horse Prairie BLOOMING S.N.A. 2 2 24 PRAIRIE 16 20 STEELE CO. DODGE CO. 15 9 FREEBORN CO. MOWER CO. 56 34 218 Cr eek 36 30 WALTHAM 1 1 NEWRY 20 Mud 16 25 1 SARGEANT 105 Creek CEDAR 34 103 57 Deer 218 RIVER MAPLE ISLAND CORNING MAYVILLE 251 Roberts HOLLANDALE 36 25 Cr eek LANSING 20 CORNERS 2 25 2 34 LANSING BROWNSDALE 2 RENOVA 16 30 Hickory Lake 61 Wild Indigo Prairie S.N.A. 36 Ramsey Mill 19 Pond W.M.A. 104 ANDYVILLE 25 Wild Indigo Prairie S.N.A. Carex Ramsey Mill Pond Cr eek W.M.A. Murphy RAMSEY 16 25 218 Creek Moscow Creek Wolf Ramsey Mill Pond 25 Portage (R) 125 Yds Turtle 27 20 J.C. Hormel 56 Nature Center Dobbins 102 Creek 61 34 Austin Mill Pond NICOLVILLE 102 East 90 OAKLAND Schrafel 90 W.M.A. Side 90 HOLLANDALE Lake Mentel 46 46 AUSTIN JUNCTION Portage (L) 250 Yds W.M.A. 218 19 Roosevelt Bridge Creek 90 Driesner Park 15 3 3 30 Orchard 105 Cedar River A.M.A. Rose 28 28 river level development) trail (future gauge Creek Route Description for the Cedar River RIVER NOTE: (R) and (L) represent right and left banks of the river when facing downstream. Cedar River Riverwood Landing A.M.A. 25.0 County Road 2 bridge ROSE River VARCO 4 24-21.6 Ramsey Mill Pond W.M.A. 4 218 CREEK Lyle-Austin W.M.A. -
History of Sockeye Salmon in Lake Washington
Cedar River Sockeye Past and Present • History of the Watershed and Re-Configuration of the Basin • Baker Lake Sockeye Introductions • Lake Washington Water Quality Clean-Up • Sockeye Adult Returns • Current Limiting Factors for Juvenile and Adult Sockeye • Expectations for Future Returns (WDFW Model) ~17,000 Years Ago Vashon Glaciation Period Puget Lobe of the Cordilleran Ice Sheet Waterlines is a project of the Burke Museum. Please visit us to learn more about Seattle’s past landscapes. www.burkemuseum.org/waterlines Captain Burrows Pleasure Resort, 1906 Captain Burrows resort at the mouth of the Black River from 1897 to 1917 [Renton Historical Society note]. Sign in image: Captain Burrows. Summer-Winter Pleasure Resort. Good Fishing-Hunting-Boating . Renton Historical Society collection, UW (648A) • “The only fish in them is a species of trout, very few in number, the largest of which are about a foot in length.” • Hammond 1886, in reference to Lakes Washington and Sammamish. • "A small salmon was said to live permanently in Lake Washington spawning in the creeks which emptied into the lake. The Duwamish of that section were said to prefer this salmon to that which entered the rivers from the Sound.” • Smith (1940), reporting on cultural interviews with local tribal elders. City of Renton created a new waterway in 1912 that diverted the lower Cedar River from the Black River into Lake Washington. (Buerge 1985) The purpose of this 2,000 foot channel was to abate flooding and to provide a “Commercial Waterway” for sea-going vessels after the completion of the ship locks at Ballard. -
Climate Change Impacts on Water Management in the Puget Sound Region, Washington, USA Julie A
Climate Change Impacts on Water Management in the Puget Sound Region, Washington, USA Julie A. Vano1, Nathalie Voisin1, Lan Cuo1,2, Alan F. Hamlet1,2, Marketa McGuire Elsner2, Richard N. Palmer3, Austin Polebitski1, and Dennis P. Lettenmaier1,2 Abstract limate change is projected to result, on average, in earlier snowmelt and reduced summer flows, patterns that are not well represented in the historical observations used for planning and reliability analyses by water utilities. CWe extend ongoing efforts in the Puget Sound basin cities of Everett, Seattle, and Tacoma to characterize differences between historic and future streamflow and the ability of the region’s water supply systems to meet future demands. We use future streamflow simulations for the 2020s, 2040s, and 2080s from the Distributed Hydrology-Soil- Vegetation Model (DHSVM), driven by climate simulations archived by the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). We use ensembles of streamflow predictions produced by DHSVM forced with multiple downscaled ensembles from the IPCC climate models as inputs to reservoir system models for the Everett, Seattle, and Tacoma water supply systems. Over the next century, under average conditions all three systems are projected to experience a decline and eventual disappearance of the springtime snowmelt peak in their inflows. How these shifts impact water management depends on the specifics of the reservoir system and their operating objectives, site-specific variations in the influence that reductions in snowmelt have on reservoir inflows, and the adaptive capacity of each system. Without adaptations, average seasonal drawdown of reservoir storage is projected to increase in all of the systems throughout the 21st century. -
Moose River Plains Wild Forest - South Anc D Little Moose Wilderness Owns
l r T s e d a Protect Yourself c s ^ ok Hiking trails can be rough and rugged a Bro • Moose River Plains Wild Forest - South anC d Little Moose Wilderness owns ! Br - they are not maintained as park Eighth Lake id E [J!j Sagamore c d walkways - wear boots or shoes See North Map Campground la a ! Lake P o e R designed for hiking. [J!(!G k Indian !9 ! " a ! !j L Lake ] - • Know the weather forecast; plan and e Sag k l am roo l Sugarloaf Fourth o [J!( st B i re Lo v Mtn prepare based on current and [J h Lake !0 R t d r forecasted conditions. !G o !S p N o B L U E R I D G E r • Pack a day pack with items like water, o e Inlet Sixth !0 L W I L D E R N E S S v [J i Lake e ! flashlight, extra clothing, etc. k ra R !0 e a Ko Lak ke Seveth L La • Sign in and out of all trail registers th Mohegan l h n i nth- t Wakely d eve ig Lake M ! that you encounter. a R S ly j! !( r E Pond ?g ke Wak r [J T a ely M Trl a W tn d Respect Others n e t M O O S E R I V E R !A iln k C k M o • Be courteous of all other users e P L A I N S W I L D ro ! im B (10) j! !(!G L F O R E S T ey [J regardless of their sport, speed or e dl ak ra Limekiln L ake L B Cellar Pd t[ skill level. -
University of Washington the Cedar River Watershed Is One of Two
INTERNAL REPORT 102 FOREST PLANTCOMMUNITIESOF THELOWER CEDARRIVER WATERSHED D.R. M. Scott and J. Long University of Washington INTRODUCTION The Cedar River Watershed is one of two principal sites for the Western Coniferous Biome of the International Biological Program (IBP). Various physical add biological components of the watershed are being intensively studied as part of the Analysis of Ecosystems objectives of IBP. The purpose of this report is to present the results of an initial recon- naissance-level study of the forest vegetation of the watershed. The . tentative delineations and descriptions of this vegetation may be useful in the stratification of the watershed for intensive ecological research. A proposal for an inventory of terrestrial ecosystems of the Cedar River drainage by Scott and Del Moral (1971) was not funded for 1972. However, a half-time graduate student salary for six months and some transporta- tion were made available. This limited funding made possible the initiation of a survey of the forest communities of the watershed. The emphasis during this first field season was placed on the vegetation of the lower watershed. This decision was based on several factors, including the uncertainty of, transportation to the upper watershed and the fact that some study of the upper watershed, specifically the Findley Lake Basin, had already been completed (Del Moral, unpublished). DESCRIPTION OF THE LOWER WATERSHED The lower watershed can be defined, for the purposes of this report, as that part of the Cedar River Watershed below 600 m in elevation. On this basis it represents approximately 14,000 ha or 40% of the total watershed. -
Building a Better Fish Trap
BUILDING A BETTER FISH TRAP CORY CUTHBERTSON, WDFW History of L.Washington sockeye and water projects Broodstock collection at the old trap and weir at Cavanaugh Ponds Fall 2008 installation and operation of the new floating resistance board weir in Renton, WA What we learned in the first year and how we can improve next year Ballard Locks Interim Sockeye Hatchery • Established 1991 • 17 million fry capacity • Operated by Washington Department of Fish and Wildlife Long Term Project Goals Increase returns of Cedar R sockeye and provide fishing opportunity for public and tribes Avoid or reduce effects on naturally spawning populations Challenges Broodstock collection ESA listed Chinook Temporary structure in a volatile river Weir at Cavanaugh Pond 11/6/2006 Why a New Weir in Renton? About a 1/3 of the sockeye spawn below Cavanaugh Pond, limiting broodstock collection. The new weir is a resistance board weir, which will be able to withstand higher flows. Doesn’t require equipment for installation/removal. Weir Panel Nomenclature Results: A better fish trap? ~Same # of eggs from ½ the # of adults into the L. Washington basin Installed in 2 days, removed in 4 hours without any heavy equipment Next year we should… Better trap door to target Chinook passage New Hatchery Thanks! Paul Faulds and Gary Sprague, SPU Brodie Antipa, WDFW Seattle Public Utilities Cramer Fish Sciences Questions ? What’s the Hurry? The Lake Washington fish flop of 2008 Age Composition Of Females 100 80 60 Hatch 40 NOR 20 0 % Of Sampled Fish % Of Sampled 3-yr 4-yr 5-yr Age At Maturati on Age Composition In Hatchery & Wild Females Is Comparable Sockeye introductions and propagation in Lake Washington From Cultus Lake 1917 1935 1944 23,655 to North Cr. -
Ashland Post Fire Landscape Assessment 2014 2
Ashland Post Fire Landscape United States Assessment Forest Depart ment of Service Agriculture Ashland Ranger District Custer National Forest Powder River and Rosebud Counties, MT May 2014 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Ashland Post Fire Landscape Assessment 2014 2 Table of Contents 1.0 Introduction ..................................................................................................................................... 10 1.1 Ashland Ecological and Social/Economic Niche .............................................................................. 11 1.1.1 Livestock Grazing ...................................................................................................................... 11 1.1.2 Mixed Prairie and Forest ........................................................................................................... -
Frequent Mass Movements from Glacial and Lahar Terraces
RESEARCH ARTICLE Frequent Mass Movements From Glacial and Lahar 10.1029/2020WR028389 Terraces, Controlled by Both Hillslope Characteristics Key Points: and Fluvial Erosion, are an Important Sediment Source to • Glacial and lahar terraces deliver sediment to Puget Sound Rivers Puget Sound Rivers primarily via frequent, small mass movements Daniel N. Scott1 and Brian D. Collins1 • Terrace sediment has a substantial coarse-grained fraction, is likely 1Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA resistant to attrition, and is delivered low in river networks • Considerable spatial variation in size and frequency of mass movements Abstract Mass movements from glacial and lahar terraces in the middle and lower reaches of rivers is partly explained by hillslope draining the Washington Cascade Range to Puget Sound may represent a substantial but poorly quantified geometry and failure mechanism portion of those rivers' sediment supply and pose significant mass movement hazards. We used repeat LiDAR elevation data, aerial imagery, and well logs to quantify and characterize terrace sediment delivery Supporting Information: in nine major watersheds over a median period of 12 years. In the 1,946 river kilometers for which repeat Supporting Information may be found LiDAR was available (71% of the 2,736 total river kilometers flanked by terraces), 167 mass movements in the online version of this article. eroded 853,600 ± 19,400 m3/yr. Analysis of mass movement frequency and volume indicates that terrace sediment delivery is dominated by small, frequent mass movements, as opposed to large, infrequent ones Correspondence to: like the 2014 Oso landslide. This sediment source is low in river networks, well connected to streams, D. -
8 Chittenden Locks 47
Seattle’s Aquatic Environments: Hiram M. Chittenden Locks Hiram M. Chittenden Locks The following write-up relies heavily on the Hiram M. Chittenden Locks/Salmon Bay Subarea Chapter by Fred Goetz in the Draft Reconnaissance Assessment – Habitat Factors that Contribute to the Decline of Salmonids by the Greater Lake Washington Technical Committee (2001). Overview The Hiram M. Chittenden Locks (Locks) were Operation of the navigational locks involves constructed by the U.S. Army Corps of Engineers raising or lowering the water level within either (the Corps) in 1916 and commissioned in 1917. the large or small lock chamber so that vessels may The Locks were built as a navigation project to pass between the two waterbodies. The filling and allow boats to travel from the marine waters of emptying of the large lock chamber is achieved by Puget Sound to the protected freshwaters of Lake use of a system of two large conduits that can Union and Lake Washington. The Locks are either fill the entire lock or half of the lock. This comprised of two navigational lock chambers: a is achieved by using a miter gate that divides the large lock that accommodates both large and small large lock chamber into two sections. Water is vessels and a small lock used by smaller vessels. In taken into the conduits via two culvert intakes addition to the lock chambers, the Locks include a located immediately upstream of the structure. dam, 6 spillway bays, and a fish ladder. Water is conveyed through each conduit and is The Locks form a dam at the outlet of the Lake discharged into the lock chamber through outlet Washington and Lake Union/Ship Canal system culverts on each side of the chamber. -
Press Release Locks TAST Final 8-26-20
New device may keep seals away from the Ballard Locks, giving migrating salmon a better chance at survival For Immediate Release: 8/26/20 - Seattle, WA SUMMARY A group of partners working to improve salmon stocks have deployed a newly developed device on the west side of the Ballard Locks that uses underwater sound to keep harbor seals away from this salmon migration bottleneck. If effective, the device may help salmon populations in jeopardy by reducing predation without harming marine mammals. STORY The U.S. Army Corps of Engineers and Oceans Initiative, with support from Long Live the Kings, University of St Andrews, Genuswave, Puget Sound Partnership, Washington Department of Fish and Wildlife, Muckleshoot Indian Tribe, and other partner organizations have deployed a Targeted Acoustic Startle Technology (TAST) on the west side of the Ballard (Hiram M. Chittenden) Locks. The TAST is intended to keep harbor seals away from the fish ladder allowing salmon to reach the Lake Washington Ship Canal from Puget Sound. Seals and sea lions are known to linger at this migration bottleneck and consume large numbers of salmon returning to the spawning grounds. If successful, the device may help recover dwindling salmon runs, without harming marine mammals. "We are always looking for new innovations to help the environment,” said USACE spokesperson Dallas Edwards. “We are excited to see the results of this study." Every salmon and steelhead originating from the Sammamish or Cedar river must pass through the Ballard Locks twice during its life, once as a young smolt and again as an adult. With limited routes to get through the locks, salmon are funneled through a small area.