Reciprocal Regulation of Wnt and Gpr177/Mouse Wntless Is Required for Embryonic Axis Formation

Total Page:16

File Type:pdf, Size:1020Kb

Reciprocal Regulation of Wnt and Gpr177/Mouse Wntless Is Required for Embryonic Axis Formation Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation Jiang Fu1, Ming Jiang1, Anthony J. Mirando1, Hsiao-Man Ivy Yu, and Wei Hsu2 Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Box 611, Rochester, NY 14642 Edited by Kathryn V. Anderson, Sloan-Kettering Institute, New York, NY, and approved September 16, 2009 (received for review May 6, 2009) Members of the Wnt family are secreted glycoproteins that trigger Gpr177, the mouse orthologue of Drosophila Wls, required for cellular signals essential for proper development of organisms. Cel- embryogenesis. Disruption of Gpr177 disturbs axial patterning, a lular signaling induced by Wnt proteins is involved in diverse devel- phenotype resembling the loss of Wnt3. This disruption not only opmental processes and human diseases. Previous studies have affects Wnt production, but also interferes with Wnt signaling. As generated an enormous wealth of knowledge on the events in a Wnt transcriptional target, Gpr177 is elevated to promote Wnt signal-receiving cells. However, relatively little is known about the production in a positive feedback loop. Our results indicate that a making of Wnt in signal-producing cells. Here, we describe that reciprocal regulation of Wnt and Gpr177 is essential for the Gpr177, the mouse orthologue of Drosophila Wls, is expressed during establishment of the mammalian A-P axis. formation of embryonic axes. Embryos with deficient Gpr177 exhibit defects in establishment of the body axis, a phenotype highly remi- Results niscent to the loss of Wnt3. Although many different mammalian Wnt Gpr177 Is Essential for Mouse Embryogenesis. We investigated how proteins are required for a wide range of developmental processes, many Wls exist, and whether Wls regulates the Wnt pathway the Wnt3 ablation exhibits the earliest developmental abnormality. essential for mammalian development. By protein sequence This suggests that the Gpr177-mediated Wnt production cannot be analysis (NCBI HomoloGene) we found that Gpr177, which substituted. As a direct target of Wnt, Gpr177 is activated by ␤-catenin shows high percentages of identity with Wls of human (96.1%), and LEF/TCF-dependent transcription. This activation alters the cellu- Drosophila (44.9%), and C. elegans (40.9%), is likely the mouse lar distributions of Gpr177 which binds to Wnt proteins and assists orthologue. No additional gene product shared significant ho- their sorting and secretion in a feedback regulatory mechanism. Our mology with fly and human counterparts. We then performed findings demonstrate that the loss of Gpr177 affects Wnt production whole mount RNA in situ hybridization to examine Gpr177 in the signal-producing cells, leading to alterations of Wnt signaling expression in early embryogenesis. Gpr177 was expressed in the in the signal-receiving cells. A reciprocal regulation of Wnt and proximal epiblast at the junction between the embryonic and Gpr177 is essential for the patterning of the anterior-posterior axis extraembryonic tissue, and later was more restricted to the during mammalian development. primitive streak and mesoderm extending to the distal tip of the embryo (Fig. 1 A–D). Its strong presence was found in both A-P axis ͉ ␤-catenin ͉ developmental deformities ͉ primitive streak ͉ posterior visceral endoderm and epiblast at the prestreak, but Wnt production switched to the mesoderm at late-streak (Fig. 1 E–H). The expression pattern of Gpr177 is reminiscent of Wnt3, which is embers of the Wnt family are secreted glycoproteins which required for axial patterning (5, 23). To determine whether Gpr177 regulates Wnt production and trigger cellular signals essential for proper development of M this regulation is essential for mouse development, we created a organisms (1, 2). Aberrant regulation of an evolutionary conserved mutant strain Gpr177lacZ, carrying an insertion of ␤-geo into the Wnt signal transduction pathway has been implicated in a variety of ninth intron of Gpr177 (Fig. S1 A and B). The transgene insertion cancers and congenital diseases (3, 4). There is no question that disrupted the seven transmembrane domain which results in Wnt signaling is intimately involved in human health and disease. generation of a fusion transcript (Fig. S1C). PCR analyses Genetic analysis in mice has revealed the essential role of different further confirmed that the Gpr177 locus was altered by trans- Wnt proteins in a wide range of developmental processes (http:// gene-mediated mutagenesis (Fig. S1D). The mutant lacking the www.stanford.edu/ϳrnusse/wntwindow.html). Wnt3 deficiency ap- carboxyl-terminal region of Gpr177 disabled its function as the pears to cause the earliest abnormality during embryogenesis, truncation interrupts its subcellular distribution and protein suggesting the importance of Wnt signaling in axis determination interaction (see below). Mice heterozygous for Gpr177lacZ ap- (5). Three body axes develop sequentially to generate embryo peared normal and were fertile. We were not able to recover orientations (6–8). At the egg cylinder stage, the dorsal-ventral axis Gpr177 homozygous (Gpr177-/-) newborns or embryos after is the first to form. The anterior-posterior (A-P) axis is established E10.5, suggesting that they died during early embryogenesis. to form the primitive streak at the posterior end before gastrulation. From E6.5 to E8.5, Gpr177ϩ/ϩ and ϩ/- embryos consisted of Lastly, the left-right asymmetry is formed, followed by embryo three germ layers and underwent gastrulation to form organized turning. Wnt signaling is critical for initiation of the embryonic axes in structures, including extraembryonic ectoderm, chorion, allan- early development (9–11). Disruptions of key molecules necessary for tois, head folds, and primitive streak (Fig. 1 I, K, M, N, and T). Wnt signaling regulation lead to defects in axial patterning (12–15). Studies in the past have generated an enormous wealth of knowledge on the events in signal-receiving cells. Before initiating Author contributions: J.F., M.J., A.J.M., H.-M.I.Y., and W.H. designed research; J.F., M.J., their effects on the signal-receiving cells, Wnt proteins undergo A.J.M., H.-M.I.Y., and W.H. performed research; J.F., M.J., A.J.M., H.-M.I.Y., and W.H. proper modification, sorting and secretion processes in the signal- analyzed data; and A.J.M. and W.H. wrote the paper. producing cells (16–19). Recent identification of Wntless (Wls/Evi/ The authors declare no conflict of interest. Srt) (20–22), a regulator for Wnt production in Drosophila, has This article is a PNAS Direct Submission. directed attention to the maturation, sorting and secretion pro- 1J.F., M.J., and A.J.M. contributed equally to this work. cesses in signal-producing cells. Given the extensive Wnt family in 2To whom correspondence should be addressed. E-mail: wei࿝[email protected]. higher organisms, it is not clear how many Wls genes are present and This article contains supporting information online at www.pnas.org/cgi/content/full/ whether Wls is essential for Wnt production. This study describes 0904894106/DCSupplemental. 18598–18603 ͉ PNAS ͉ November 3, 2009 ͉ vol. 106 ͉ no. 44 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0904894106 Downloaded by guest on September 27, 2021 A BCD ABC D E FGH E F GH I J K L I J K L MNOT M NO P Q S U PQRST Fig. 1. Disruption of Gpr177 impairs embryogenesis in mice. (A–H) In situ hybridization in whole mounts (A–D) and sections (E–H) reveals the expression of Gpr177 in E6.25 (A, E, and F) and E7 (B), and E7.25 (C, D, G, and H) embryos. The approximate positions of E–H are shown by the dotted line in A and C. Gross morphological analysis of Gpr177ϩ/ϩ (I and K) and Gpr177-/- (J and L) Fig. 2. Gpr177 is required for Wnt production and signaling in patterning of A-P embryos at E7.5 (I and J) and E8.5 (K and L). Sections of the Gpr177ϩ/ϩ (M, N, axis. (A–N and P–T) Molecular marker analysis of control (ϩ/ϩ and ϩ/-) and BIOLOGY Gpr177 mutant (-/-) littermates at E6.5 (A and B) and E7.0–7.5 (C–N and P–T) P–R, and T) and Gpr177-/- (O, S, and U), E7.5 (M–S), and E8.5 (T and U) embryos DEVELOPMENTAL were analyzed by histology (M–O, T, and U) and immunostaining of Gpr177 determines the role of Gpr177 in early embryogenesis using in situ hybridization (P–S). Arrowheads and arrows indicate the anterior and posterior mesoderm, of BMP4 (A and B), Cer1 (C and D), Otx2 (E and F), Hesx1 (G and H), Gsc (I and J), respectively. AVE, anterior visceral endoderm; Ch, chorion; Ect, ectoderm; Epc, Brachyury (T)(K and L), Wnt3 (M and N), and Axin2 (P and Q), and GFP analysis of ectoplacental cone; NE, neural ectoderm; PS, primitive streak; VE, visceral Axin2 (R–T). The control embryos are shown with the anterior facing to the left. endoderm; XEct, extraembryonic ectoderm. [Scale bars, 300 ␮m(A–D, I, and J); (O) Gpr177 is essential for Wnt production and signaling. Immunoblot analysis of 100 ␮m(E–H and P–S); 500 ␮m(K and L); and 200 ␮m(M–O, T, and U).] E6.5 and E7.5 embryos shows the level of Gpr177, Wnt3/3a, and ␤-catenin pro- teins affected by the Gpr177 mutation. Actin level is used as a loading control. The number represents the relative protein level of Wnt3/3a and ␤-catenin between However, Gpr177-/- embryos did not exhibit distinct structures Gpr177ϩ/ϩ, Gpr177ϩ/-, and Gpr177-/-. (R–T) Axin2GFP mouse strain, expressing but remained to grow as egg cylinders (Fig. 1 J and O). The GFP in the Axin2-expressing cells, was used to examine the activation of Wnt/␤- ϩ ϩ mutants consisted of two layers of tissue, ectoderm and visceral catenin signaling in the Gpr177 / (R and S) and Gpr177-/- (T) embryos during gastrulation.
Recommended publications
  • WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of Hescs
    WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Jiang, Wei, Donghui Zhang, Nenad Bursac, and Yi Zhang. 2013. “WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs.” Stem Cell Reports 1 (1): 46-52. doi:10.1016/j.stemcr.2013.03.003. http:// dx.doi.org/10.1016/j.stemcr.2013.03.003. Published Version doi:10.1016/j.stemcr.2013.03.003 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11877118 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Stem Cell Reports Report WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs Wei Jiang,1,2,3,* Donghui Zhang,6 Nenad Bursac,6 and Yi Zhang1,2,3,4,5,* 1Howard Hughes Medical Institute 2Program in Cellular and Molecular Medicine 3Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital 4Department of Genetics Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA 5Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA 6Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC 27708, USA *Correspondence: [email protected] (W.J.), [email protected] (Y.Z.) http://dx.doi.org/10.1016/j.stemcr.2013.03.003 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • WNT11-Conditioned Medium Promotes Angiogenesis Through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway
    G C A T T A C G G C A T genes Article WNT11-Conditioned Medium Promotes Angiogenesis through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway § Jingcai Wang y, Min Gong z, Shi Zuo , Jie Xu, Chris Paul, Hongxia Li k, Min Liu, Yi-Gang Wang, Muhammad Ashraf ¶ and Meifeng Xu * Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; [email protected] (J.W.); [email protected] (M.G.); [email protected] (S.Z.); [email protected] (J.X.); [email protected] (C.P.); [email protected] (H.L.); [email protected] (M.L.); [email protected] (Y.-G.W.); [email protected] (M.A.) * Correspondence: [email protected] Current address: Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, y Columbus, OH 43205, USA. Current Address: Department of Neonatology, Children’s Hospital of Soochow University, z Suzhou 215025, Jiangsu, China. § Current Address: Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou, China. Current Address: Department of Cardiology, The First Affiliated Hospital of Soochow University, k Suzhou 215006, Jiangsu, China. ¶ Current Address: Department of Medicine, Cardiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Received: 10 August 2020; Accepted: 26 October 2020; Published: 29 October 2020 Abstract: Background: We demonstrated that the transduction of Wnt11 into mesenchymal stem cells (MSCs) (MSCWnt11) promotes these cells differentiation into cardiac phenotypes. In the present study, we investigated the paracrine effects of MSCWnt11 on cardiac function and angiogenesis.
    [Show full text]
  • Extrinsic Regulators of Mrna Translation in Developing Brain: Story of Wnts
    cells Article Extrinsic Regulators of mRNA Translation in Developing Brain: Story of WNTs Yongkyu Park * , Midori Lofton , Diana Li and Mladen-Roko Rasin * Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; [email protected] (M.L.); [email protected] (D.L.) * Correspondence: [email protected] (Y.P.); [email protected] (M.-R.R.) Abstract: Extrinsic molecules such as morphogens can regulate timed mRNA translation events in developing neurons. In particular, Wingless-type MMTV integration site family, member 3 (Wnt3), was shown to regulate the translation of Foxp2 mRNA encoding a Forkhead transcription factor P2 in the neocortex. However, the Wnt receptor that possibly mediates these translation events remains unknown. Here, we report Frizzled member 7 (Fzd7) as the Wnt3 receptor that lays downstream in Wnt3-regulated mRNA translation. Fzd7 proteins co-localize with Wnt3 ligands in developing neo- cortices. In addition, the Fzd7 proteins overlap in layer-specific neuronal subpopulations expressing different transcription factors, Foxp1 and Foxp2. When Fzd7 was silenced, we found decreased Foxp2 protein expression and increased Foxp1 protein expression, respectively. The Fzd7 silencing also dis- rupted the migration of neocortical glutamatergic neurons. In contrast, Fzd7 overexpression reversed the pattern of migratory defects and Foxp protein expression that we found in the Fzd7 silencing. We further discovered that Fzd7 is required for Wnt3-induced Foxp2 mRNA translation. Surprisingly, we also determined that the Fzd7 suppression of Foxp1 protein expression is not Wnt3 dependent. In conclusion, it is exhibited that the interaction between Wnt3 and Fzd7 regulates neuronal identity and the Fzd7 receptor functions as a downstream factor in ligand Wnt3 signaling for mRNA translation.
    [Show full text]
  • Wnt Signaling in Cancer: Not a Binary ON:OFF Switch
    Author Manuscript Published OnlineFirst on August 20, 2019; DOI: 10.1158/0008-5472.CAN-19-1362 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Wnt signaling in cancer: not a binary ON:OFF switch Dustin J. Flanagan1, Elizabeth Vincan2,# and Toby J. Phesse3,*. 1 Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK 2 University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia and School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia. 3 European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK and Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia. *Corresponding author: Toby J. Phesse. Mailing address; European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK. Email; [email protected]. Phone number: +44 (0)29 2068 8495. # Corresponding author: Elizabeth Vincan. Mailing address; University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia. Email: [email protected], Phone number: +61 3 9035 3555. The authors declare no potential conflicts of interest. Running Title: Wnt signaling in Apc mutant cells 1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 20, 2019; DOI: 10.1158/0008-5472.CAN-19-1362 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract In the March 1st issue of Cancer Research, we identified the Wnt receptor Fzd7 as an attractive therapeutic target for the treatment of gastric cancer.
    [Show full text]
  • Towards an Integrated View of Wnt Signaling in Development Renée Van Amerongen and Roel Nusse*
    HYPOTHESIS 3205 Development 136, 3205-3214 (2009) doi:10.1242/dev.033910 Towards an integrated view of Wnt signaling in development Renée van Amerongen and Roel Nusse* Wnt signaling is crucial for embryonic development in all animal Notably, components at virtually every level of the Wnt signal species studied to date. The interaction between Wnt proteins transduction cascade have been shown to affect both β-catenin- and cell surface receptors can result in a variety of intracellular dependent and -independent responses, depending on the cellular responses. A key remaining question is how these specific context. As we discuss below, this holds true for the Wnt proteins responses take shape in the context of a complex, multicellular themselves, as well as for their receptors and some intracellular organism. Recent studies suggest that we have to revise some of messengers. Rather than concluding that these proteins are shared our most basic ideas about Wnt signal transduction. Rather than between pathways, we instead propose that it is the total net thinking about Wnt signaling in terms of distinct, linear, cellular balance of signals that ultimately determines the response of the signaling pathways, we propose a novel view that considers the receiving cell. In the context of an intact and developing integration of multiple, often simultaneous, inputs at the level organism, cells receive multiple, dynamic, often simultaneous and of both Wnt-receptor binding and the downstream, sometimes even conflicting inputs, all of which are integrated to intracellular response. elicit the appropriate cell behavior in response. As such, the different signaling pathways might thus be more intimately Introduction intertwined than previously envisioned.
    [Show full text]
  • Altered Expression of PRKX, WNT3 and WNT16 in Human Nodular
    ANTICANCER RESEARCH 36 : 4545-4552 (2016) doi:10.21873/anticanres.11002 Altered Expression of PRKX , WNT3 and WNT16 in Human Nodular Basal Cell Carcinoma NATALIA GURGEL DO CARMO 1,2 , LUIS HENRIQUE TOSHIHIRO SAKAMOTO 3, ROBERT POGUE 1, CINTIA DO COUTO MASCARENHAS 1, SIMONE KARST PASSOS 4, MARIA SUELI SOARES FELIPE 1,2 and ROSÂNGELA VIEIRA DE ANDRADE 1 1Program of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil; 2Program of Molecular Pathology, University of Brasília, Brasília, DF, Brazil; 3Domingos A. Boldrini Center for Hematological Investigation, Campinas, SP, Brazil; 4Dermatology Service, Asa Norte Regional Hospital, Brasília, DF, Brazil Abstract. Background/Aim: Nodular and superficial are the differences in their biological behavior, such as tumor most common subtypes of basal cell carcinoma (BCC). growth pattern, potential for recurrence and metastasis, Signaling pathways such as Hedgehog (HH) and Wingless histological pattern and genetic factors. In addition, it is (WNT) signaling are associated with BCC phenotypic important to consider extrinsic factors, such as site of origin, variation. The aim of the study was to evaluate of the therapeutic choice and immunological state of the person expression profiles of 84 genes related to the WNT and HH with the tumor (3). Nodular BCC is the most common signaling pathways in patients with nodular and superficial biopsied subtype; it usually manifests as a single lesion and BCC. Materials and Methods: A total of 58 BCCs and 13 mostly affects head and neck areas (8). Histologically, the samples of normal skin were evaluated by quantitative real- tumor is a well-defined structure with precise contours; it time polymerase chain reaction (qPCR) to detect the gene- presents basaloid cells of nodular mass separated from the expression profile.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • WNT3 FISH Probe
    WNT3 FISH Probe expression suggest that this gene may play a key role in some cases of human breast, rectal, lung, and gastric Catalog Number: FA0393 cancer through activation of the WNT-beta-catenin-TCF signaling pathway. This gene is clustered with WNT15, Regulatory Status: For research use only (RUO) another family member, in the chromosome 17q21 region. [provided by RefSeq] Product Description: Made to order FISH probes for identification of gene amplification using Fluorescent In Situ Hybridization Technique. (Technology) Source: Genomic DNA Origin: Human Notice: We strongly recommend the customer to use FFPE FISH PreTreatment Kit 1 (Catalog #: KA2375 or KA2691) for the pretreatment of Formalin-Fixed Paraffin-Embedded (FFPE) tissue sections. Applications: FISH-Ce (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Supplied Product: DAPI Counterstain (1500 ng/mL ) 250 uL Storage Instruction: Store at 4°C in the dark. Entrez GeneID: 7473 Gene Symbol: WNT3 Gene Alias: INT4, MGC131950, MGC138321, MGC138323 Gene Summary: The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family. It encodes a protein which shows 98% amino acid identity to mouse Wnt3 protein, and 84% to human WNT3A protein, another WNT gene product. The mouse studies show the requirement of Wnt3 in primary axis formation in the mouse.
    [Show full text]
  • WNT3 Hypopethylation Counteracts Low Activity of the Wnt Signaling Pathway in the Placenta of Preeclampsia
    WNT3 Hypopethylation Counteracts low Activity of the Wnt Signaling Pathway in the Placenta of Preeclampsia Linlin Zhang ( [email protected] ) Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital https://orcid.org/0000-0003-0204-7972 Min Sang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Ying Li Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Yingying Li Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Lijun Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Wenli Shi Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Yangyang Yuan Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Bo Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Peifeng Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Research Article Keywords: Preeclampsia, Placentas, WNT3 gene, Hypopethylation, β-Catenin Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-609900/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/26 Abstract Preeclampsia is a hypertensive disorder of pregnancy. Many studies have shown that epigenetic mechanisms may play a role in preeclampsia. Moreover, our previous study indicated that the differentially methylated genes in preeclampsia were enriched in the Wnt/β-catenin signaling pathway. This study aimed to identify differentially methylated Wnt/β-catenin signaling pathway genes in the preeclamptic placenta and to study the roles of these genes in trophoblast cells in vitro.
    [Show full text]
  • Wnt2b, Wnt3, and R-Spondin-1 Promote -Catenin Signaling in The
    ew Vol 3 | Issue 1| Pages 31-39 Insights of Stem Cell Research and Therapy Original Article DOI: 10.36959/498/610 Wnt2b, Wnt3, and R-Spondin-1 Promote β-Catenin Signaling in the Small Intestine during Infancy Zenab M Dudhwala1,2*, Rino P Donato1,2, Wendy J Uylaki1,2, Paul D Hammond3,4, Check for Gordon S Howarth5,6 and Adrian G Cummins1,2,3 updates 1Department of Gastroenterology and Hepatology, Basil Hetzel Institute for Translational Health Research Woodville South, Australia 2The Queen Elizabeth Hospital, Woodville South, Australia 3Discipline of Medicine, School of Medicine, Faculty of Health Sciences, University of Adelaide, Australia 4School of Pediatrics, Faculty of Health Sciences, University of Adelaide, North Adelaide, Australia 5Women’s and Children’s Hospital, North Adelaide, Australia 6School of Animal and Veterinary Sciences, University of Adelaide, Rose worthy, Australia Abstract Background and aim: The Wnt-β-catenin signaling pathway is active in the stem cell region of intestinal crypts during postnatal growth of the small intestine. This functions to construct and maintain an intestinal stem cell niche in the base of crypts and to protect stem cells from apoptosis. The aim of this study was to identify which Wnt agonists are present to mediate this activity. Methods: RNA was extracted from rats at day 14 infant (n = 4) and day 72 (n = 4) of life and analysed by real time PCR array to identify which Wnts were up regulated during infancy with selected Wnts localized by laser capture microscopy and PCR. Subsequently, Wnts were assessed in intestinal homogenates by individual Wnt real time quantitative PCR using different primer sets from litters (n = 6) at 7, 14, 21, 28, 35 and 72 days of life in rats.
    [Show full text]
  • WNT3 (Human) Recombinant Protein (P01)
    WNT3 (Human) Recombinant Gene Alias: INT4, MGC131950, MGC138321, Protein (P01) MGC138323 Gene Summary: The WNT gene family consists of Catalog Number: H00007473-P01 structurally related genes which encode secreted Regulation Status: For research use only (RUO) signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, Product Description: Human WNT3 full-length ORF ( including regulation of cell fate and patterning during NP_110380.1, 1 a.a. - 355 a.a.) recombinant protein with embryogenesis. This gene is a member of the WNT GST-tag at N-terminal. gene family. It encodes a protein which shows 98% amino acid identity to mouse Wnt3 protein, and 84% to Sequence: human WNT3A protein, another WNT gene product. The MEPHLLGLLLGLLLGGTRVLAGYPIWWSLALGQQYTS mouse studies show the requirement of Wnt3 in primary LGSQPLLCGSIPGLVPKQLRFCRNYIEIMPSVAEGVKL axis formation in the mouse. Studies of the gene GIQECQHQFRGRRWNCTTIDDSLAIFGPVLDKATRES expression suggest that this gene may play a key role in AFVHAIASAGVAFAVTRSCAEGTSTICGCDSHHKGPP some cases of human breast, rectal, lung, and gastric GEGWKWGGCSEDADFGVLVSREFADARENRPDARS cancer through activation of the WNT-beta-catenin-TCF AMNKHNNEAGRTTILDHMHLKCKCHGLSGSCEVKTC signaling pathway. This gene is clustered with WNT15, WWAQPDFRAIGDFLKDKYDSASEMVVEKHRESRGWV another family member, in the chromosome 17q21 ETLRAKYSLFKPPTERDLVYYENSPNFCEPNPETGSF region. [provided by RefSeq] GTRDRTCNVTSHGIDGCDLLCCGRGHNTRTEKRKEK CHCIFHWCCYVSCQECIRIYDVHTCK References: 1. Thalamic WNT3 Secretion Spatiotemporally Host: Wheat Germ (in vitro) Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes. Theoretical MW (kDa): 66 Kraushar ML, Viljetic B, Wijeratne HR, Thompson K, Jiao X, Pike JW, Medvedeva V, Groszer M, Kiledjian M, Applications: AP, Array, ELISA, WB-Re Hart RP, Rasin MR. J Neurosci. 2015 Aug (See our web site product page for detailed applications 5;35(31):10911-26.
    [Show full text]
  • Wnt3 Expression As a Readout of Tissue Stretching During Hydra Regeneration
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.423911; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Wnt3 expression as a readout of tissue stretching during Hydra regeneration Jaroslav Ferenc1,2, Panagiotis Papasaikas1,3, Jacqueline Ferralli1, Yukio Nakamura4†, Sebastien Smallwood1, Charisios D. Tsiairis1* Affiliations 1 Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland 2 University of Basel, Petersplatz 1, 4001 Basel, Switzerland 3 SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland 4 Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, United Kingdom † Current address: Repertoire Genesis Inc., 567-0085, Osaka, Japan Abstract Mechanical forces shape cell fate decisions during development and regeneration in many systems. Epithelial lumen volume changes, for example, generate mechanical forces that can be perceived by the surrounding tissue and integrated into cell fate decisions. Similar behavior occurs in regenerating Hydra tissue spheroids, where periodic osmotically driven inflation and deflation cycles generate mechanical stimuli in the form of tissue stretching. Using this model, we investigate how such mechanical input guides the de novo formation of differentiated body parts. We show that the expression of the organizer-defining factor Wnt3 functions as a quantitative readout of cellular stretching and, when supplied externally, enables successful regeneration without mechanical stimulation. This finding represents a previously undescribed cellular mechanism for converting mechanical stimuli to a biochemical signaling readout and guiding cell fate transitions.
    [Show full text]