Parts of a Plant & Flower Notes

Total Page:16

File Type:pdf, Size:1020Kb

Parts of a Plant & Flower Notes Parts of a Plant & Flower Notes 1. Label the flower, fruit, leaf, root, seed, and stem then write down what each part does for the plant. The flower ___reproduces by making seeds________ The fruit __protects the seed__ ___________________________________ The leaf ____does photosynthesis to make food____________________________ The root __collects water and anchors the plant into the ground________ The seed ___makes a new (baby) plant___ ___________________________________ The stem ___carries food, water, and minerals where needed____ 2. Label the anther, egg, filament, ovary, petal, pistil, pollen, sepal, stamen, stigma, and style then write down what each part below does for the plant. pistil stamen The ovary __makes the egg cells____ (female part) (male part) ___________________________________ pollen stigma The petal _is the colorful part of the flower that attracts insects and other pollinators style anther The pistil __is the female part of the flower filament that does reproduction___ The pollen __is the sperm, it fertilizes the egg cell__ The sepal __is the seed leaf and protects petal the bud___ ovary The stamen _is the male part of the flower, sepal it makes the pollen or sperm_ egg 3. Pollination is _when pollen from the anther of the stamen reaches the stigma of the pistil___ 4. Fertilization is __when the sperm (pollen) reaches the egg (ovule) in the ovary and combines___ Plant Processes 5. __Photosynthesis____ is the process plants do to make their own food. 6. The _chloroplast__ in the plant cells have chlorophyll that uses carbon dioxide and water with ___sunlight____ to make glucose (sugar) and oxygen. light energy 6CO2 + 6H2O ------------------------------------------ C6H12O6 + 6O2 7. __Cellular respiration___ is the process where plants use oxygen to release the stored energy in the chemical bonds of __glucose__. Carbon dioxide and water are waste products. This process is done inside the __mitochondria___. C6H12O6 + 6O2 ------------------------------------------ 6CO2 + 6H2O + ATP 8. Plants do cellular respiration when they need energy and can't do __photosynthesis___. This happens at night, during a drought, when the plant is dormant. 9. __Transpiration___ is when the sun evaporates water from plant leaves. Deciduous plants drop their leaves in the fall so they do not lose water through transpiration over the winter when there is not enough direct sunlight to do ___photosynthesis___. 10. __Dormancy__ is when plants stop growth because they do not have what is needed for photosynthesis. This can be a plant that has dropped its leaves for the winter or grass that has turned brown when there is not enough water to do photosynthesis during the summer. 11. Phototropism is when plants change the direction they are growing to get more __light_. 12. Gravitropism is when plants change the __direction__ they are growing in response to gravity. The stems grow upward and the _roots__ grow downward. What part of this plant is showing phototropism? Why? The stem is growing towards the light even though the pot has been knocked over. The plant does this to get light to do photosynthesis. What part of this plant is showing gravitropism? Why? Mainly the roots are showing gravitropism. They are growing down even though the pot has been knocked over. They do this so that they can stay in the ground and get the water and nutrients in the soil. .
Recommended publications
  • Reproduction in Plants Which But, She Has Never Seen the Seeds We Shall Learn in This Chapter
    Reproduction in 12 Plants o produce its kind is a reproduction, new plants are obtained characteristic of all living from seeds. Torganisms. You have already learnt this in Class VI. The production of new individuals from their parents is known as reproduction. But, how do Paheli thought that new plants reproduce? There are different plants always grow from seeds. modes of reproduction in plants which But, she has never seen the seeds we shall learn in this chapter. of sugarcane, potato and rose. She wants to know how these plants 12.1 MODES OF REPRODUCTION reproduce. In Class VI you learnt about different parts of a flowering plant. Try to list the various parts of a plant and write the Asexual reproduction functions of each. Most plants have In asexual reproduction new plants are roots, stems and leaves. These are called obtained without production of seeds. the vegetative parts of a plant. After a certain period of growth, most plants Vegetative propagation bear flowers. You may have seen the It is a type of asexual reproduction in mango trees flowering in spring. It is which new plants are produced from these flowers that give rise to juicy roots, stems, leaves and buds. Since mango fruit we enjoy in summer. We eat reproduction is through the vegetative the fruits and usually discard the seeds. parts of the plant, it is known as Seeds germinate and form new plants. vegetative propagation. So, what is the function of flowers in plants? Flowers perform the function of Activity 12.1 reproduction in plants. Flowers are the Cut a branch of rose or champa with a reproductive parts.
    [Show full text]
  • Flowers and Maturation 3Rd - 5Th Grade
    Flowers and Maturation 3rd - 5th Grade Introduction Over 90% of all plants are angiosperms or flowering plants. When you think of flowers, you probably think of a rose, carnation or maybe, a tulip . It is not just flowers that are flowering plants. In the spring and summer, you can find flowers in many places but, many plants have flowers that you never see. The grass in the yard is a flowering plant but, you have probably never seen their flower. They are hidden inside the plant. A plant lives to produce more plants and it needs a flower to do that. Flowers are responsible for producing seeds This lesson will teach you the parts of a flower and how those parts work. Objectives • Students will understand the role of flowers in the life of a plant. • Students will understand the basic parts of a flower. • Students will understand the function of the parts of the flower. • Students will understand seed development. Background First, let us look at the diagram of a flower. Photo provided by: https://www.colourbox.com/vector/a-common-flower-parts-vector-34289070 kansascornstem.com A “perfect flower” has both male and female parts. There are also parts that are not male or female. The sepal are leaves that protect the flower as it grows. They peel back as the flower grows. The petals give many flowers their beauty, but the most important job they have are to attract insects that will help them in the process of producing seeds. You will read more about that later.
    [Show full text]
  • Plant Terminology
    PLANT TERMINOLOGY Plant terminology for the identification of plants is a necessary evil in order to be more exact, to cut down on lengthy descriptions, and of course to use the more professional texts. I have tried to keep the terminology in the database fairly simple but there is no choice in using many descriptive terms. The following slides deal with the most commonly used terms (more specialized terms are given in family descriptions where needed). Professional texts vary from fairly friendly to down-right difficult in their use of terminology. Do not be dismayed if a plant or plant part does not seem to fit any given term, or that some terms seem to be vague or have more than one definition – that’s life. In addition this subject has deep historical roots and plant terminology has evolved with the science although some authors have not. There are many texts that define and illustrate plant terminology – I use Plant Identification Terminology, An illustrated Glossary by Harris and Harris (see CREDITS) and others. Most plant books have at least some terms defined. To really begin to appreciate the diversity of plants, a good text on plant systematics or Classification is a necessity. PLANT TERMS - Typical Plant - Introduction [V. Max Brown] Plant Shoot System of Plant – stem, leaves and flowers. This is the photosynthetic part of the plant using CO2 (from the air) and light to produce food which is used by the plant and stored in the Root System. The shoot system is also the reproductive part of the plant forming flowers (highly modified leaves); however some plants also have forms of asexual reproduction The stem is composed of Nodes (points of origin for leaves and branches) and Internodes Root System of Plant – supports the plant, stores food and uptakes water and minerals used in the shoot System PLANT TERMS - Typical Perfect Flower [V.
    [Show full text]
  • Seed and Seed Dispersal
    1st GRADE SEEDS AND SEED DISPERSAL Summary: This lab is all about seeds. First, students take apart a swollen lima bean seed and find the seed coat, food storage area, and the plant embryo. Second, the students sort a bag of seeds into groups and notice that all seeds look different but have the same three seed parts. Finally, students sort seeds that are dispersed in different ways. Students identify seeds that are dispersed by wind, hitchiking, animals carrying and burying, and animals eating and pooping. Intended Learning Outcomes for 1st Grade: Objective 1: Framing questions. Conducting investigations. Drawing conclusions. Objective 2: Developing social interaction skills with peers. Sharing ideas with peers. Connecting ideas with reasons. Objective 3: Ideas are supported by reasons. Communicaiton of ideas in science is important for helping to check the reasons for ideas. Utah State Core Curriculum Tie: Standard 4 Objective 1: Life Science Analyze the individual similarities and differences within and across larger groups. Standard 4 Objective 2: Life Science Describe and model life cycles of living things. Make observations about living things and their environment using the five senses. Preparation time: 1 hour to locate seeds the first time, then 20 min if seeds are reused Lesson time: 50 min Small group size: works best with one adult for every 5 students Materials: 1. one petri dish or paper towel per student 2. 1 bag of dried lima beans 3. One seed classification bag per group, this should include 5-6 seeds of about 15 different seed types. Use old seeds from seed packets or spices or seeds or nuts you may have in your kitchen.
    [Show full text]
  • Flower Power
    FLOWER POWER IDAHO BOTANICAL GARDEN WHAT IS A FLOWER? INSTRUCTIONAL OBJECTIVE: When students finish this project, they will have gained respect for the beauty of flowers and appreciate their ecological and practical importance. INTRODUCTION Dear Teacher, The Idaho Botanical Garden is an outdoor learning environment. We want to make your visit comfortable and enjoyable, and ask that your students are dressed appropriately for the weather and have water, especially in the warm weather months. TERMS Angiosperms: Flowering plants that produce seeds enclosed in a fruit. Anthers: The boxlike structures at the top of stamens, where pollen is produced. Botanical garden: A place where plants are collected and displayed for scientific, educational and artistic purposes. Fertilization: The union of male sperm cells and female egg cells. Filament: The stalk of the stamen. Flower: The reproductive structure of an angiosperm. Fruit: A ripened ovary conaining seeds. Nectar: The sweet liquid produced by flowers to attract pollinators. Ovary: The hollow compartment at the base of the pistil which contains ovules. It develops into a fruit containing seeds. Ovules: The structures in a flower ovary that can develop into seeds. Pistil: The female part of a flower; stigma, style, and ovary. Pollen: A yellow, powder-like material containing sperm cells. Pollen tubes: Tubes that carry sperm cells from the stigma into the ovary. Pollination: The process of pollen coming together with the stigma of a flower. Pollinators: Animals which carry pollen from one flower to another. Seed: A structure containing a baby plant and its food supply, which is surrounded by a protective seed coat.
    [Show full text]
  • Parts of a Plant Packet - Parts of a Plant Notes - Parts of a Plant Notes Key - Parts of a Plant Labeling Practice
    Parts of a Plant Packet - Parts of a Plant Notes - Parts of a Plant Notes Key - Parts of a Plant Labeling Practice Includes Vocabulary: Stigma Stamen Leaf Style Petal Stoma Ovary Receptacle Cuticle Ovule Sepal Shoot System Pistil Xylem Root Hairs Anther Phloem Roots Filament Stem Root System Parts of a Plant Notes 18 14 13 (inside; for food) 15 12 (inside; for water) 16, these are 19 massively out of proportion… 21 17, covering 20 Picture modified from http://www.urbanext.uiuc.edu/gpe/index.html 1. __________- sticky part of the pistil that pollen sticks to 2. __________-long outgrowth of the ovary that collects pollen from the stamens 3. __________- base part of the pistil that holds the ovules 4. __________- unfertilized seed of the plant 5. __________- female part of the flower that contains the stigma, style, ovary and ovules. 6. __________- part of the flower that holds the pollen 7. __________- long thread-like part of the flower that holds the anthers out so insects can get to the pollen. 8. __________- male part of the flower that contains the anther and the filament. 9. __________- colorful part of the flower that protects the flower and attracts insects and other pollinators. 10. __________- stalk that bears the flower parts 11. __________- part that covers the outside of a flower bud to protect the flower before it opens 12. _________- transports water. 13. _________- transports food 14. _________- transport and support for the plant. 15. _________- cells of this perform photosynthesis. 16. _________-holes in the leaf which allow CO2 in and O2 and H2O out.
    [Show full text]
  • Using RNA-Seq to Characterize Pollen–Stigma Interactions for Pollination
    www.nature.com/scientificreports OPEN Using RNA‑seq to characterize pollen–stigma interactions for pollination studies Juan Lobaton1,3*, Rose Andrew1, Jorge Duitama2, Lindsey Kirkland1, Sarina Macfadyen3 & Romina Rader1 Insects are essential for the reproduction of pollinator‑dependent crops and contribute to the pollination of 87% of wild plants and 75% of the world’s food crops. Understanding pollen fow dynamics between plants and pollinators is thus essential to manage and conserve wild plants and ensure yields are maximized in food crops. However, the determination of pollen transfer in the feld is complex and laborious. We developed a feld experiment in a pollinator‑dependent crop and used high throughput RNA sequencing (RNA‑seq) to quantify pollen fow by measuring changes in gene expression between pollination treatments across diferent apple (Malus domestica Borkh.) cultivars. We tested three potential molecular indicators of successful pollination and validated these results with feld data by observing single and multiple visits by honey bees (Apis mellifera) to apple fowers and measured fruit set in a commercial apple orchard. The frst indicator of successful outcrossing was revealed via diferential gene expression in the cross‑pollination treatments after 6 h. The second indicator of successful outcrossing was revealed by the expression of specifc genes related to pollen tube formation and defense response at three diferent time intervals in the stigma and the style following cross‑pollination (i.e. after 6, 24, and 48 h). Finally, genotyping variants specifc to donor pollen could be detected in cross‑pollination treatments, providing a third indicator of successful outcrossing. Field data indicated that one or fve fower visits by honey bees were insufcient and at least 10 honey bee fower visits were required to achieve a 25% probability of fruit set under orchard conditions.
    [Show full text]
  • Stigma in Patientswith Rectal Cancer: a Community Study
    J Epidemiol Community Health: first published as 10.1136/jech.38.4.284 on 1 December 1984. Downloaded from Journal of Epidemiology and Community Health, 1984, 38, 284-290 Stigma in patients with rectal cancer: a community study L D MACDONALD AND H R ANDERSON From the Department of Clinical Epidemiology and Social Medicine, St George's Hospital Medical School, Cranmer Terrace, London SWJ 7 ORE SUMMARY A self-rating measure of stigma and several supplementary questions were devised in order to assess perceived stigma in a community survey of the quality of life in 420 rectal cancer patients, of whom 265 had a permanent colostomy. Half the patients felt stigmatised, higher proportions being observed among younger patients and among those with a colostomy. Feelings of stigma were associated with poor health, particularly emotional disorders, with the presence of other medical problems, and with disablement. Patients who perceived stigma made more use of were medical services but less satisfied with them, particularly with regard to communication with by guest. Protected copyright. health professionals. Socio-economic factors, such as employment status, higher income, and higher social and housing class, did not protect patients against feeling stigmatised by cancer or by colostomy. Most patients, with or without stigma, enjoyed close relationships with intimates, but the stigmatised were more likely to have withdrawn from participation in social activities. Assessing stigma by self-rating gives information which adds to that obtained by the usual methods of assessing quality of life. Treatment for rectal cancer involves the majority of proof-bags, there are still problems with odour, noise, patients in radical mutilating surgery, the burden of a and leakage.24 Moreover, the practicalities of colostomy, and low expectation of survival."q managing a stoma physically violate strong social Although new techniques to reduce the number of taboos about defaecation.
    [Show full text]
  • Plant Reproduction | Topic Notes
    Plant Reproduction | Topic Notes Sexual reproduction is the fusion of male and female gametes to produce a diploid zygote. (The new individual is genetically different from both parents). Advantages include genetic variation, reduced competition (between parent & offspring) and good chance of surviving harsh winter. A disadvantage is that there’s a long period of growth required. Structure of flowering plant: Megaspore (egg) formation & microspore (pollen) formation: The carpel (female part of the flower) is composed of the stigma (sticky to trap pollen grains), style (supports stigma in best position to trap pollen grains) and ovary (contains 1 or more ovules which following fertilisation will develop into seeds). The stamen (male part of the flower) is composed of the anther (produces pollen grains) and filament (supports anther in best position to transport pollen grains). Sepals support the developing flower before it blooms. Petals may be bright coloured in insect pollinated plants (to attract them). The receptacle is the organ from which the flower develops and functions in supporting it. Pollination is the transfer of pollen from the anther to the stigma of a flower of the same species. It may be: 1. Self-pollination: the transfer of pollen from the anther to the stigma in the same plant. 2. Cross-pollination: the transfer of pollen from the anther to the stigma of a different plant but of the same species. 1 Plant Reproduction | Topic Notes Fertilisation is the union of a haploid male gamete with a haploid female gamete, to produce a diploid zygote. Once a pollen grain has landed on the stigma, the tube nucleus moves down through the stigma and style forming a pollen tube and enters the ovule at the micropyle, guided towards the egg by chemotropism, the tube nucleus then degenerates.
    [Show full text]
  • Seed Dispersal: Part 2 in Seed Dispersal Part 2, Find out Three Ways That Seeds Are Dispersed from the Initial Seed Producing Plant: Wind, Water, and Gravity
    Finally Fall: Seed Dispersal: Part 2 In Seed Dispersal Part 2, find out three ways that seeds are dispersed from the initial seed producing plant: wind, water, and gravity. Seed Dispersal Part 1 focused on the movement of seeds from the parent plant to different areas of the environment and that gravity alone, wildlife and humans are often involved. Plants disperse their seeds throughout an ecosystem and this limits competition of necessary resources like sunlight as they grow and mature. Seed Dispersal by Wind Seed dispersal by wind is a very common mechanism. Use the space below to make predictions about how wind is involved in seed dispersal. Do you know any plant species where wind disperses their seeds? ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ Wind is the main source of seed dispersal for many native plants. Have you ever seen a little yellow dandelion? Have you ever looked at that same flower and noticed that it has turned fluffy and white? The fluff you may have seen were the seeds of the dandelion! Generally, when flowers are at the end of their life cycle they will go to seed, which means the plant will use its energy to focus on reproduction. In the case of a dandelion, seeds are so light and fluffy, they are easily transported by the wind as it blows. Other factors can help the wind pick up the seeds. For example, if an animal walks into the dandelion that has gone to seed, the seeds may be released from the stalk of the plant. Seeds then can be transported by the wind even more effortlessly, having gotten a jump start on the process thanks to that animal.
    [Show full text]
  • The Pollination Process 1
    The Pollination Process 1. The flower petal’s bright colours and fragrant scents: 2. The insect arrives on the flower to . This is a sweet liquid which makes perfect insect food. 3. As the insect is gathering the nectar it rubs against the anthers which: 4. When the insect becomes hungry again, it gets attracted to another flower’s: 5. As the insect feeds on the nectar in this new flower, the pollen stuck to the insect from the first flower rubs off onto the: (the stigma). 6. Part of this pollen travels down the style and then: 7. The tiny piece of pollen joins onto an ovule in the ovary. The plant has now been: 8. The ovary of the flower turns into seeds which will then be dispersed so that: visit twinkl.com The Pollination Process Cut out and stick these sentences in the right order in to your book. The tiny piece of pollen joins onto an ovule in the ovary. The plant has now been fertilised. When the insect gets hungry again, it gets attracted to another flower’s bright colours and fragrant scent. As the insect is gathering the nectar it rubs against the anthers which rub pollen onto the insect. The ovary of the flower turns into seeds which will then be dispersed so that new plants will be able to grow somewhere else. Part of this pollen travels down the style and then into the ovary. The insect arrives on the flower to collect nectar. This is a sweet liquid which makes perfect insect food.
    [Show full text]
  • Basic Botany
    Basic Botany - Flower Structure The Birmingham Botanical Gardens & Glasshouses Brief Descriptions of Activities Flower Structure • a Study Centre-led activity • Using large-scale models and bee (glove puppet) to take pupils through the basic flower parts and their functions Investigating Floral Structure A wide range of flowers are always on display in the glasshouses. Their structure can be recorded in a variety of ways: • Directed observation through use of questionnaires • Drawing half a flower and labelling its structure • Creating a plan of the flower as if viewed from above • Creating a simple floral formula (this worksheet is using a simplified form of the recording system used by botanists) See worksheets 1-4 at back of booklet. Pollination Mechanisms • An extension of this work is to look at a variety of ways in which plants are designed in order to attract different pollinators See ‘A Guide To Pollinators’ at back of booklet. • Busy Bees. This is a game where pupils act out pollination See worksheet 5 at back of booklet Guide To Pollinators “Bee Flowers” Typically yellow, blue or purple. They produce pollen and lots of nectar, are often marked with lines and blotches and are sweetly scented at certain times of the day. “Butterfly Flowers” Vivid colours, often purple, red or white. Usually open during the day with a long thin corolla tube, lots of nectar and a strong scent. “Moth Flowers” Often white, p ink or pale yellow, open at night and have a heavy scent. “Wasp Flowers” Often pinkish or dirty red, with horizontal or drooping cups into which the short tongued wasp can push its head.
    [Show full text]