Subcellular Localization of Acyl Carrier Protein in Leaf Protoplasts Of

Total Page:16

File Type:pdf, Size:1020Kb

Subcellular Localization of Acyl Carrier Protein in Leaf Protoplasts Of Proc. Nati. Acad. Sci. USA Vol. 76, No. 3, pp. 1194-1198, March 1979 Biochemistry Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea (acyl carrier protein radioimmunoassay/acyl carrier protein-dependent fatty acid synthesis/chloroplast function/site of fatty acid synthesis in plants) JOHN B. OHLROGGE*, DAVID N. KUHN, AND P. K. STUMPFt Department of Biochemistry and Biophysics, University of California, Davis, California 95616 Contributed by P. K. Stumpf, December 26,1978 ABSTRACT This communication demonstrates that all de intact organelles with a concomitant decrease in leakage of novo fatty acid biosynthesis in spinach leaf cells requires acyl organelle proteins into the cytoplasmic fraction. In addition, carrier protein (ACP) and occurs specifically in the chloroplasts. Antibodies raised to purified spinach ACP inhibited at least immunological detection of proteins avoids many of the com- 98% of malonyl CoA-ependent fatty acid synthesis by spinach plications inherent in the assay of enzyme complexes such as leaf homogenates. Therefore, the presence of ACP in a com- fatty acid synthetase. In plants, ACP is an essential soluble partment of the spinach leaf cell would serve as a marker for component in fatty acid biosynthesis (1), the specific moiety de novo fatty acid biosynthesis. A radioimmunoassa capable in the initial desaturation of stearoyl-ACP (10), and a possible of detecting 10-'S mol (10-" g) of spinach ACP was deve oped acyl carrier in triglyceride (11) and phospholipid biosynthesis to measure the levels of ACP in leaf cell components isolated by sucrose gradient centrifugation of a gentle lysate of spinach (unpublished data). Because ACP can be purified to homoge- leaf protoplasts. All of the ACP of the leaf cell could be attrib- neity, antibodies raised against it have been used to determine uted to the chloroplast. Less than 1% of the ACP associated with the proportion of ACP-dependent fatty acid biosynthesis in leaf chloroplasts resulted from binding of free ACP to chloro lasts. tissue and to ascertain the subcellular sites of all ACP-dependent Of interest, ACP from Escherichia coli, soybean, and sunflower reactions in the leaf protoplast. showed only partial crossreactivity with spinach ACP by the radioimmunoassay. These results strongly suggest that, in the leaf cell, chloroplasts are the sole site for the degnovo synthesis MATERIALS AND METHODS of C16 and C18 fatty acids. These fatty acids are then transported into the cytoplasm for further modification and are either in- Purification of Spinach ACP. Spinach ACP was purified serted into extrachloroplastic membrane lipids or returned to from 20 kg of spinach leaves by a modification of the method the chloroplast for insertion into lamellar membrane lipids. of Simoni et al. (12). The initial heat treatment step was omit- ted. After ammonium sulfate fractionation and acid precipi- In plants, acyl carrier protein (ACP) plays an essential role in tation, [1,3-14C]malonyl-ACP was added to the crude prepa- both the synthesis and the subsequent metabolism of the C16 ration and served as a marker for identification of ACP in and C18 fatty acids (1). Whereas de novo fatty acid synthesis subsequent steps of purification. Column chromatography on in isolated chloroplasts has long been known (1), the site of DEAE-cellulose and DEAE-Sephadex was carried out as de- synthesis of fatty acids that are required for the formation of scribed by Majerus et al. (13). After these steps, the preparation plasma, mitochondrial, and other extrachloroplast membranes (15 mg) was judged to be homogeneous by sodium dodecyl in the leaf cell is not clear. In sharp contrast, in both animal and sulfate/disc gel electrophoresis. E. coli ACP was purified as yeast cells, synthesis occurs in the cytoplasm (2). In Escherichi described (13). colA cells, it has been shown that ACP is localized on or near the Preparation of IgG to Spinach ACP. Three New Zealand inner face of the plasma membrane and this implies that the White male rabbits (3-4 kg) were injected intradermally at nonassociated fatty acid synthetase enzymes may be organized multiple sites with 0.5 ml of an emulsion containing 1-2 mg of in the same area in vivo (3). spinach ACP mixed with an equal volume of Freund's complete Although earlier studies have provided evidence that fatty adjuvant. Three booster injections of 0.2-0.5 mg were given at acid biosynthesis occurs in chloroplasts (1) and in proplastids 2-week intervals with incomplete adjuvant. Serum was collected (4-8), until recently the methods used for the isolation of these 2 weeks after the final injection. organelles led to substantial breakage and release of enzymes For use in the ACP radioimmunoassay, a crude gamma into the cytoplasmic fraction. Consequently, it has been difficult globulin fraction was prepared from the serum by precipitation to assign a precise site for an enzyme in the leaf cell. In addition, with 10% polyethylene glycol and solution of the precipitate after cell disruption, attempts to localize the complex set of in 0.01 M potassium phosphate, pH 7.0/0.15 M NaCl (Pi/NaCI). reactions comprising fatty acid synthesis can be further com- This fraction was further purified for use in the inhibition of plicated by cofactor dilution (particularly ACP), enzyme fatty acid synthesis by dialysis for 12 hr against 0.07 M sodium dilution, and inactivation. Hence, it has been difficult to con- acetate (pH 5.0) and passage through a DEAE-Sephadex A-50 clude from these earlier studies whether de novo fatty acid column equilibrated with the same buffer. Preimmune control synthesis takes place only in the chloroplast (or plastid) or in the serum was processed in the same manner. cytoplasm or other organelles as well. Todination of Spinach ACP. Because spinach ACP lacks Damage to organelles can be greatly reduced in the isolation tyrosine (12), iodination by a modification of the method of procedure by using protoplasts as the starting material (9). Bolton and Hunter (14) was used. Spinach ACP (30,ug), dis- Gentle lysis of isolated protoplasts gives an increase in yield of Abbreviations: ACP, acyl carrier protein; Pi/NaCl, 0.01 M potassium The publication costs of this article were defrayed in part by page phosphate, pH 7.0/0.15 M NaCl. charge payment. This article must therefore be hereby marked "ad- * Present address: Plant Growth Laboratory, 1047 Wickson Hall, vertisement" in accordance with 18 U. S. C. §1734 solely to indicate University of California, Davis, CA 95616. this fact. t To whom reprint requests should be addressed. 1194 Downloaded by guest on September 29, 2021 Biochemistry: Ohlrogge et al. Proc. Natl. Acad. Sci. USA 76 (1979) 1195 solved in 10 ml of 0.1 M borate (pH 8.5), was treated for 30 leaves were vacuum infiltrated for 3 min and incubated over- min at room temperature with 2.6 Aug of 3-(4-hydroxyphenyl)- night in the dark at room temperature, without shaking. Pro- propionic acid N-hydroxysuccinimide ester. Excess reagent was toplasts were released the following morning by gently shaking removed by acid precipitation and three washes. The conju- the leaves with a forceps. The protoplasts were filtered through gated ACP was redissolved in 30 jul of 0.1 M Tris buffer (pH 8), a 73-jum nylon mesh and pelleted by centrifugation at 140 X and 1 Al of this solution was iodinated by using 200 juCi of 125I g for 5 min at room temperature. The pelleted protoplasts were (z17 Ci/mg; 1 Ci = 3.7 X 1010 becquerels) and the chlora- washed twice by resuspension in 0.85 M mannitol and cen- mine-T method of Hunter and Greenwood (15). This yielded trifugation at 140 X g for 5 min. Filtration of the resuspended 1251-labeled ACP (1251-ACP) with a specific activity of ;250 protoplasts through a 50-jum nylon mesh removed xylem ele- Ci/mmol. ments and druses. The final pellet was resuspended to a known Radioimmunoassay. Antibody prepared as described above volume with 0.85 M mannitol and the chlorophyll content was was diluted 1:500 with bovine serum albumin (1 mg/ml) in determined. P1/NaCI (albumin/Pi/NaCI). A 25-Ml aliquot of this solution Protoplasts were lysed by three passages through a 10-ml was added to standards or samples containing unlabeled ACP. syringe with a 25-gauge needle outfitted with a Swinnex filter This mixture was incubated 4-20 hr at room temperature, after (13 mm) and two layers of Miracloth and a single layer of 20-jum which l251-ACP was added and the incubation was continued nylon mesh (9). Extent of lysis was estimated by light micros- for an additional 2 hr. ACP bound to antibody was then sepa- copy. A protoplast lysate (1-2 mg of chlorophyll) containing rated from free ACP by addition of 250,gg of Immunobeads less than 10% intact protoplasts was layered onto a 30-58% (Bio-Rad). After 1-2 hr of additional incubation, the Immu- (wt/wt) linear sucrose gradient in 0.02 M potassium N-[2- nobead-rabbit antibody complex was centrifuged and washed hydroxy-1,1-bis(hydroxymethyl)ethyl]glycinate (Tricine) at twice with 1.5 ml of albumin/Pi/NaCl. The final pellet was pH 7.6. Gradients were centrifuged for 4 hr at 27,000 rpm resuspended in 0.5 ml of albumin/Pi/NaCl and transferred to (100,000 X g) and 4VC in an SW 27 rotor. Fractions (1 ml) were scintillation vials, and the radioactivity was determined. collected from the gradient for subsequent assays. With the above method of separation of bound from free Enzyme Assays. NAD-dependent isocitrate dehydrogenase, ACP, preimmune control serum yielded 1-300 cpm of non- a marker enzyme for mitochondria, was assayed by the method specific binding.
Recommended publications
  • Fatty Acid Biosynthesis in Human Leukocytes
    Fatty Acid Biosynthesis in Human Leukocytes Philip W. Majerus, Rene Lastra R. J Clin Invest. 1967;46(10):1596-1602. https://doi.org/10.1172/JCI105651. Research Article Extracts from human leukocytes have been examined for the enzymes of de novo fatty acid biosynthesis. These extracts do not catalyze the synthesis of long-chain fatty acids because they lack acetyl CoA carboxylase, the first enzyme unique to the fatty acid synthesis pathway. Since these cells cannot form malonyl CoA, they are unable to synthesize long-chain fatty acids. This inability can be corrected by addition of either purified acetyl CoA carboxylase from rat liver or malonyl CoA to leukocyte extracts. The incorporation of acetate-1-14C into fatty acids by intact leukocytes is shown to represent chain elongation of preformed fatty acids rather than de novo synthesis by the fact that 60-100% of the label incorporated resides in the carboxyl carbon of the fatty acids formed. Both mature leukocytes and erythrocytes are unable to synthesize fatty acids because of a lack of acetyl CoA carboxylase even though both contain the other enzymes of fatty acid synthesis. It is possible that a precursor hematopoietic cell may have the capacity to synthesize fatty acids de novo. This hypothesis is supported by the finding of acetyl CoA carboxylase activity in extracts from human leukemic blast cells. The leukocyte fatty acid synthetase activity from malonyl CoA of a number of normal volunteers and of patients with a variety of hematologic diseases is reported. Find the latest version: https://jci.me/105651/pdf The Journal of Clinical Investigation Vol.
    [Show full text]
  • De Novo Synthesis of Pyrimidine Ribonucleotides
    de novo synthesis of pyrimidine ribonucleotides The common pyrimidine ribonucleotides are cytidine 5’- monophosphate (CMP; cytidylate) and uridine 5’- monophosphate (UMP; uridylate), which contain the pyrimidines cytosine and uracil. De novo pyrimidine nucleotide biosynthesis proceeds in a somewhat different manner from purine nucleotide synthesis; the six-membered pyrimidine ring is made first and then attached to ribose 5-phosphate. The pyrimidine ring is assembled from bicarbonate, aspartate and glutamine. Carbamoyl phosphate required in this process is also an intermediate in the urea cycle. 1. In animals, the carbamoyl phosphate required in urea synthesis is made in mitochondria by carbamoyl phosphate synthetase I, whereas the carbamoyl phosphate required in pyrimidine biosynthesis is made in the cytosol by a different form of the enzyme, carbamoyl phosphate synthetase II. In bacteria, a single enzyme supplies carbamoyl phosphate for the synthesis of arginine and pyrimidines. The bacterial enzyme has three separate active sites, spaced along a channel nearly 100 Å long. Bacterial carbamoyl phosphate synthetase provides a vivid illustration of the channeling of unstable reaction intermediates between active sites. 2. Carbamoyl phosphate reacts with aspartate to yield N-carbamoylaspartate in the first committed step of pyrimidine biosynthesis. This reaction is catalyzed by aspartate transcarbamoylase. In bacteria, this step is highly regulated, and bacterial aspartate transcarbamoylase is one of the most thoroughly studied allosteric enzymes. 3. By removal of water from N-carbamoylaspartate, a reaction catalyzed by dihydroorotase, the pyrimidine ring is closed to form L-dihydroorotate. 4. This compound is oxidized to the pyrimidine derivative orotate, a reaction in which NAD+ is the ultimate electron acceptor.
    [Show full text]
  • Dexamethasone Increases De Novo Fatty Acid Synthesis in Fetal Rabbit Lung Explants
    003 1-3998/85/19 12-1272$02.00/0 PEDIATRIC RESEARCH Vol. 19, No. 12, 1985 Copyright O 1985 International Pediatric Research Foundation, Inc. Printed in U.S.A. Dexamethasone Increases de Novo Fatty Acid Synthesis in Fetal Rabbit Lung Explants WILLIAM M. MANISCALCO, JACOB N. FINKELSTEIN, AND ANITA B. PARKHURST Division of Neonatology, Department of Pediatrics, University of Rochester School of Medicine, Rochester, New York I4642 ABSTRAm. The effects of dexamethasone on pulmonary relatively less perfused compared to adult lungs (13), and 3) fetal de novo fatty acid synthesis were investigated in a fetal lungs have a large intracellular store of glycogen (1) which may rabbit lung explant model. Culture of the explants for 2 or provide energy and substrates for phospholipid biosynthesis (14). 6 days with dexamethasone produced a 48% increase in de In the adult lung, the type I1 cell is probably the major site of de novo fatty acid synthesis, measured by 3Hz0incorporation, novo fatty acid synthesis (3), suggesting a role for these fatty acids and a 2.5-fold increase in [3H-methyl]choline incorporation in surfactant phospholipid synthesis. Recent studies show that into phosphatidylcholine. A dose-response study showed fatty acids derived from de novo synthesis may have a unique this effect pleateaued at dexamethasone concentrations role in surfactant synthesis by providing fatty acids for the above M. The distribution of the products of de novo remodeling of disaturated phosphatidylcholine (6). fatty acid synthesis was altered by dexamethasone.Treated Although fatty acids are required for surfactant production cultures had a 2.5-fold increase in esterification of the and may even participate in the regulation of phosphatidylcho- newly synthesized fatty acids to phosphatidylcholine and line synthesis (15), very little information is available on the an increase in the proportion of all newly synthesized fatty source or regulation of fetal lung fatty acids.
    [Show full text]
  • The Link Between Purine Metabolism and Production of Antibiotics in Streptomyces
    antibiotics Review The Link between Purine Metabolism and Production of Antibiotics in Streptomyces Smitha Sivapragasam and Anne Grove * Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; [email protected] * Correspondence: [email protected] Received: 10 May 2019; Accepted: 3 June 2019; Published: 6 June 2019 Abstract: Stress and starvation causes bacterial cells to activate the stringent response. This results in down-regulation of energy-requiring processes related to growth, as well as an upregulation of genes associated with survival and stress responses. Guanosine tetra- and pentaphosphates (collectively referred to as (p)ppGpp) are critical for this process. In Gram-positive bacteria, a main function of (p)ppGpp is to limit cellular levels of GTP, one consequence of which is reduced transcription of genes that require GTP as the initiating nucleotide, such as rRNA genes. In Streptomycetes, the stringent response is also linked to complex morphological differentiation and to production of secondary metabolites, including antibiotics. These processes are also influenced by the second messenger c-di-GMP. Since GTP is a substrate for both (p)ppGpp and c-di-GMP, a finely tuned regulation of cellular GTP levels is required to ensure adequate synthesis of these guanosine derivatives. Here, we discuss mechanisms that operate to control guanosine metabolism and how they impinge on the production of antibiotics in Streptomyces species. Keywords: c-di-GMP; guanosine and (p)ppGpp; purine salvage; secondary metabolism; Streptomycetes; stringent response 1. Introduction Bacteria experience constant challenges, either in the environment or when infecting a host. They utilize various mechanisms to survive such stresses, which may include changes in temperature, pH, or oxygen content as well as limited access to carbon or nitrogen sources.
    [Show full text]
  • Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I
    Handout 5 Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I. Overall concepts A. Definitions 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose and lactate) 1) De novo fatty acid synthesis uses glucose absorbed from the diet rather than glucose synthesized by the liver. 2) De novo fatty acid synthesis uses lactate derived primarily from glucose metabolism in muscle and red blood cells. b. Amino acid precursors (e.g., alanine, branched-chain amino acids) 1) De novo fatty acid synthesis from amino acids is especially important during times of excess protein intake. 2) Use of amino acids for fatty acid synthesis may result in nitrogen overload (e.g., the Atkins diet). c. Short-chain organic acids (e.g., acetate, butyrate, and propionate) 1) The rumen of ruminants is a major site of short-chain fatty acid synthesis. 2) Only small amounts of acetate circulate in non-ruminants. 2. Lipogenesis = fatty acid or triacylglycerol synthesis a. From preformed fatty acids (from diet or de novo fatty acid synthesis) b. Requires source of carbon (from glucose or lactate) for glycerol backbone 3T3-L1 Preadipocytes at confluence. No lipid 3T3-L1 Adipocytes after 6 days of filling has yet occurred. differentiation. Dark spots are lipid droplets. 1 Handout 5 Fatty Acid Synthesis B. Tissue sites of de novo fatty acid biosynthesis 1. Liver. In birds, fish, humans, and rodents (approx. 50% of fatty acid biosynthesis). 2. Adipose tissue. All livestock species synthesize fatty acids in adipose tissue; rodents synthesize about 50% of their fatty acids in adipose tissue.
    [Show full text]
  • Cholesterol Synthesis and De Novo Lipogenesis in Premature Infants Determined by Mass Isotopomer Distribution Analysis
    0031-3998/04/5604-0602 PEDIATRIC RESEARCH Vol. 56, No. 4, 2004 Copyright © 2004 International Pediatric Research Foundation, Inc. Printed in U.S.A. Cholesterol Synthesis and De Novo Lipogenesis in Premature Infants Determined by Mass Isotopomer Distribution Analysis LORRAINE N. RENFURM, ROBERT H.J. BANDSMA, HENKJAN J. VERKADE, CHRISTIAAN V. HULZEBOS, THEO VAN DIJK, THEO BOER, FRANS STELLAARD, FOLKERT KUIPERS, AND PIETER J.J. SAUER Groningen University Institute for Drug Exploration, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Hospital Groningen, 9700 RB Groningen, The Netherlands ABSTRACT Premature infants change from placental supply of mainly de novo lipogenesis is not a major contributor to fat accumulation carbohydrates to an enteral supply of mainly lipids earlier in their in these premature neonates. The fractional contribution of newly development than term infants. The metabolic consequences synthesized cholesterol to plasma unesterified cholesterol was hereof are not known but might have long-lasting health effects. 7.4 Ϯ 1.3% after a 12-h infusion. The calculated rate of endog- In fact, knowledge of lipid metabolism in premature infants is enous cholesterol synthesis was 31 Ϯ 7 mg/kg/d, a value approx- very limited. We have quantified de novo lipogenesis and cho- imately three times higher than that found in adult subjects (10 Ϯ lesterogenesis ond3oflife in seven premature infants (birth 6 mg/kg/d). These results indicate that the cholesterol- weight, 1319 Ϯ 417 g; gestational age, 30 Ϯ 2 wk). For synthesizing machinery is well developed in premature infants. comparison, five healthy adult subjects were also studied.
    [Show full text]
  • De Novo Synthesis of a Polymer of Deoxyadenylate and Deoxythyrnidylate by Calf Thymus DNA Polymerase a [Poly(Da-Dt)/DNA Unwinding Protein] DAVID HENNER and JOHN J
    Proc. Nat. Acad. Sci. USA Vol. 72, No. 10, pp. 3944-3946, October 1975 Biochemistry De novo synthesis of a polymer of deoxyadenylate and deoxythyrnidylate by calf thymus DNA polymerase a [poly(dA-dT)/DNA unwinding protein] DAVID HENNER AND JOHN J. FURTH Departments of Microbiology and Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pa. 19174 Communicated by Jerard Hurwitz, July 31, 1975 ABSTRACT In a reaction mixture containing calf thymus each), activated calf thymus DNA (160 ,M as deoxynucleo- DNA polymerase a (DNA nucleotidyltransferase; deoxynu- tides), 160 MM [3H]dTTP (5-50 cpm/pmol) and DNA poly- cleosidetriphosphateiDNA deoxynucleotidyltransferase; EC merase. Activated DNA was prepared as described by Ap- 2.7.7.7), calf thymus DNA unwinding protein, DNA; deoxy- adenosine 5'-triphosphate and deoxythymidine 5'-triphos- oshian and Kornberg (5) except that 50 mM NaCi was used. phate,.a copolymer of deoxyadenylate and deoxythymidylate DNA (0.375 mg/ml) was incubated with 0.5 Mg/ml of pan- is synthesized after a lag period of 1-2 hr. In the presence of creatic DNase for 3.5 min. the four deoxyribonucleoside triphosphates only ceoxyadeny- DNA Polymerase. DNA polymerase was purifed from late and deoxythymidylate are incorporated into the polymer calf thymus as previously described (6), follokwd by phos- and the rate of synthesis is decreased. The reaction variably phocellulose chromatography (7). The enzyme was further occurs in the absence of DNA or DNA unwinding protein but with a greatly entended lag period. The optimal Mg2+ con- purified by chromatography on DEAE-cellulose, phospho- centration for synthesis of the polymer of deoxyadenylate cellulose, and DNA cellulose (E.-C.
    [Show full text]
  • De Novo Purine Biosynthesis by Two Pathways in Burkitt Lymphoma Cells and in Human Spleen
    De Novo purine biosynthesis by two pathways in Burkitt lymphoma cells and in human spleen Gabrielle H. Reem J Clin Invest. 1972;51(5):1058-1062. https://doi.org/10.1172/JCI106897. Research Article This study was designed to answer the question whether human lymphocytes and spleen cells were capable ofd e novo purine biosynthesis. Experiments were carried out in cell-free extracts prepared from human spleen, and from a cell line established from Burkitt lymphoma. Burkitt lymphoma cells and human spleen cells could synthesize the first and second intermediates of the purine biosynthetic pathway. Cell-free extracts of all cell lines studied contained the enzyme systems which catalyze the synthesis of phosphoribosyl-1-amine, the first intermediate unique to the purine biosynthetic pathway and of phosphoribosyl glycinamide, the second intermediate of this pathway. Phosphoribosyl-1-amine could be synthesized in cell-free extracts from α-5-phosphoribosyl-1-pyrophosphate (PRPP) and glutamine, from PRPP and ammonia, and by an alternative pathway, directly from ribose-5-phosphate and ammonia. These findings suggest that extrahepatic tissues may be an important source for the de novo synthesis of purine ribonucleotide in man. They also indicate that ammonia may play an important role in purine biosynthesis. The alternative pathway for the synthesis of phosphoribosyl-1-amine from ribose-5-phosphate and ammonia was found to be subject to inhibition by the end products of the purine synthetic pathway, particularly by adenylic acid and to a lesser degree by guanylic acid. The alternative pathway for phosphoribosyl-1-amine synthesis from ribose-5-phosphate and ammonia may contribute significantly towards the regulation of the rate of de novo purine biosynthesis […] Find the latest version: https://jci.me/106897/pdf De Novo Purine Biosynthesis by Two Pathways in Burkitt Lymphoma Cells and in Human Spleen GABIFLTL F.H.
    [Show full text]
  • De Novo DNA Synthesis Using Polymerase- Nucleotide Conjugates
    De novo DNA synthesis using polymerase- nucleotide conjugates Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des Grades Doktor rerum naturalium (Dr. rer. nat) Dissertation von Sebastian Palluk Erstgutachterin: Prof. Dr. Beatrix Süß Zweitgutachter: Prof. Dr. Johannes Kabisch Darmstadt 2018 Palluk, Sebastian: De novo DNA synthesis using polymerase-nucleotide conjugates Darmstadt, Technische Universität Darmstadt Jahr der Veröffentlichung der Dissertation: 2019 Tag der mündlichen Prüfung: 17.12.2018 Veröffentlicht unter CC BY-NC-SA 4.0 International https://creativecommons.org/licenses/ 2 Summary The terminal deoxynucleotidyl transferase (TdT) is the key enzyme proposed for enzy- matic DNA synthesis, based on its ability to extend single stranded DNA rapidly using all four different deoxynucleoside triphosphates (dNTPs). Proposals to employ TdT for the de novo synthesis of defined DNA sequences date back to at least 1962, and typically involve using the polymerase together with 3’-modified reversible terminator dNTPS (RTdNTPs), analogous to Sequencing by Synthesis (SBS) schemes. However, polymerases usually show a low tolerance for 3’-modified RTdNTPs, and the catalytic site of TdT seems particularly difficult to engineer in order to enable fast incorporation kinetics for such modified dNTPs. Until today, no practical enzymatic DNA synthesis method based on this strategy has been published. Here, we developed a novel approach to achieve single nucleotide extension of a DNA molecule by a polymerase. By tethering a single dNTP to the polymerase in a way that it can be incorporated by the polymerase moiety, we generate so called polymerase-nucleotide conjugates. Once a polymerase-nucleotide conjugate extends a DNA molecule by its tethered dNTP, the polymerase moiety stays covalently attached to the extended DNA via the linkage to the incorporated nucleotide, and blocks other polymerase-nucleotide conjugates from accessing the 3’-end of the DNA molecule.
    [Show full text]
  • De Novo Fatty Acid Synthesis Controls the Fate Between Regulatory T and T Helper 17 Cells
    LETTERS De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells Luciana Berod1,8, Christin Friedrich1,8, Amrita Nandan1,8, Jenny Freitag1, Stefanie Hagemann1, Kirsten Harmrolfs2, Aline Sandouk1, Christina Hesse1, Carla N Castro1, Heike Bähre3,4, Sarah K Tschirner3, Nataliya Gorinski5, Melanie Gohmert1, Christian T Mayer1, Jochen Huehn6, Evgeni Ponimaskin5, Wolf-Rainer Abraham7, Rolf Müller2, Matthias Lochner1,8 & Tim Sparwasser1,8 Interleukin-17 (IL-17)-secreting T cells of the T helper 17 oxidative phosphorylation as a source of energy3, the induction of the (TH17) lineage play a pathogenic role in multiple inflammatory glycolytic pathway is an active, lineage-decisive step that is required and autoimmune conditions and thus represent a highly for the development of effector T (Teff) cells of the TH1, TH2 and 4 attractive target for therapeutic intervention. We report that TH17 lineages . Hence, in the absence of mTOR, or after treatment inhibition of acetyl-CoA carboxylase 1 (ACC1) restrains the with the mTOR-specific inhibitor rapamycin, the development of Teff 5 formation of human and mouse TH17 cells and promotes the cells is greatly diminished . Along the same line, it has recently been + development of anti-inflammatory Foxp3 regulatory T (Treg) shown that hypoxia-inducible factor 1α (HIF-1α) enhances glycolysis cells. We show that TH17 cells, but not Treg cells, depend on in an mTOR-dependent manner, leading to specific induction of TH17 ACC1-mediated de novo fatty acid synthesis and the underlying cells6. In contrast, interfering with the glycolytic pathway by either glycolytic-lipogenic metabolic pathway for their development.
    [Show full text]
  • De Novo DNA Synthesis Using Polymerase
    LETTERS De novo DNA synthesis using polymerase- nucleotide conjugates Sebastian Palluk1–3,12, Daniel H Arlow1,2,4,5,12, Tristan de Rond1,2,6, Sebastian Barthel1–3, Justine S Kang1,2,7, Rathin Bector1,2,7, Hratch M Baghdassarian1,2,8, Alisa N Truong1,2, Peter W Kim1,9, Anup K Singh1,9, Nathan J Hillson1,2,10 & Jay D Keasling1,2,5,7,8,11 Oligonucleotides are almost exclusively synthesized using the oligos in a process that is failure-prone and not amenable to all target nucleoside phosphoramidite method, even though it is limited sequences10, rendering some DNA sequences inaccessible to study. to the direct synthesis of ~200 mers and produces hazardous Proposals for enzymatic de novo synthesis of oligonucleotides with waste. Here, we describe an oligonucleotide synthesis strategy a defined sequence date back to at least 1962 (refs. 11,12). Enzymatic that uses the template-independent polymerase terminal oligo synthesis promises several potential advantages over chemical deoxynucleotidyl transferase (TdT). Each TdT molecule is synthesis: 1) the exquisite specificity of enzymes and mild conditions conjugated to a single deoxyribonucleoside triphosphate in which they function may reduce the formation of side products (dNTP) molecule that it can incorporate into a primer. After and DNA damage such as depurination, thereby enabling the direct incorporation of the tethered dNTP, the 3′ end of the primer synthesis of longer oligos; 2) reactions take place in aqueous condi- remains covalently bound to TdT and is inaccessible to other tions and need not generate hazardous waste; 3) synthesis could be TdT–dNTP molecules. Cleaving the linkage between TdT and initiated from natural DNA (i.e., DNA without protecting groups on the incorporated nucleotide releases the primer and allows the nucleophilic positions of the bases); and 4) enzyme engineering subsequent extension.
    [Show full text]
  • Nucleo'de)Metabolism) (Chapter)23)) INTRODUCTION)TO)NUCLEIC)ACIDS)
    BIOCH 765: Biochemistry II Spring 2014 Nucleo'de)Metabolism) (Chapter)23)) Jianhan)Chen) Office)Hour:)MF)1:30B2:30PM,)Chalmers)034) Email:)[email protected]) Office:)785B2518) INTRODUCTION)TO)NUCLEIC)ACIDS) (c))Jianhan)Chen) 2) Eukaryo'c)cell) 3 Genome)is)believed)to)define)a)species) 4 Nucleic)Acids) • Polymer(of( nucleotides:(highly( flexible((compared( to(peptides)( • Nucleic(acids(are( universal(in(living( things,(as(they(are( found(in(all(cells( and(viruses.( • Nucleic(acids(were( first(discovered(by( Friedrich(Miescher( in(1871.( (c))Jianhan)Chen) 5 Building)Blocks)of)Nucleo'des) • Phosphate(group(+(pentose(carbohydrate(+( base((nitrogenGcontaining(heterocyclic(ring)( • Deoxyribonucleic(acid((DNA):(A/G/C/T( • Ribonuclei(acid((RNA):(A/G/C/U( Nucleotide nucleobase 6 Nucleo'des)have)many)roles) • Building(blocks(of(the(nucleic(acid(polymers(RNA(and( DNA.( • Energy(transfer(or(energy(coupling(to(drive(biosynthesis( and(other(processes((muscle(contraction,(transport,(etc).( • Oxidation(reduction(reactions.( • Intracellular(signaling.( ATP 7 Pentose)sugars) Base Phosphate sugar • The(pentose(sugar(in(the(nucloetide(is(either(ribose(or( deoxyribose.( ( – The(base(is(added(at(the(1(position(and(phosphates(are(added(at( the(5(position.( – Most(nucleotides,(including(those(incorporated(into(RNA,(contain( ribose.( – 2’GOH(reduced(to(–H(in(deoxynucleotides( – 3’GOH(participates(in(forming(phosphodiester(linkage( – Deoxynucleotides(are(exclusively(used(for(DNA(synthesis.( 8 Nucleo'de)forma'on) O ║ H N The base is added at the 1 6 N position and phosphates
    [Show full text]