De Novo Lipogenesis Products and Endogenous Lipokines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2016: Immunometabolism
Immunometabolism & 9, 2016 Paris, September 8 33è Journée Institut Cochin-JC Dreyfus & 7è Institut Cochin symposium, Paris (France) hursday, September 8, 2016 Metabolism and Immune cell Role of Immune cells in Diabetes and TFunction in Physiology and Cancer Atherosclerosis 09:00 Arginine and tryptophan metabolisms as team 14:30 players in immune regulation. Philippe Lesnik, Institute of Cardiometabolism and Ursula Grohmann, University of Perugia, Italy Nutrition (ICAN), Paris, France 09:30 Metabolism and survival of inflammatory cells. 15:00 Epigenomic control of macrophage activation in obesity Véronique Witko-Sarsat, Institut Cochin, Paris, and type 2 diabetes France Nicolas Venteclef, Centre de recherche des Cordeliers, Paris, France 10:00 T cell metabolism: it’s not all about glucose. Russell Jones, McGill University, Montreal, Canada 15:30 Coffee Break 10:30 Coffee Break 16:00 MAIT cells at the crossroad of microbiota, inflammation and diabetes. 11:00 Agnes Lehuen, Institut Cochin, Paris, France Olivier Hermine, Institut Imagine, Paris, France 16:30 Immunoregulation of liver fibrosis: novel targets. 11:30 The role of the hypoxic microenvironment in priming Sophie Lotersztajn, Centre de recherche sur immune response. l’inflammation CRI, Paris, France Randall Johnson, University of Cambridge, UK 17:00 Immune mechanisms of atherosclerosis. 12:00 Metabolism and T cell responses. Ziad Mallat, HEGP, Paris, France; King’s college, Christoph Hess, University Hospital Basel, Cambridge, UK Switzerland 17:30 Physiology of pro-inflammatory cytokines in metabolism: Therapeutic consequences. 12:30 Lunch Marc Donath, University Hospital Basel , Switzerland riday, September 9, 2016 Impact of Nutriments on Immune FCells at Steady state and Infection Keynote 09:00 Metabolic conditioning of hematopoietic stem 11:30 The birth of Immunometabolism and Implications for cell lineage specification: The Yins and Yangs of Metabolic Diseases. -
Fatty Acid Biosynthesis in Human Leukocytes
Fatty Acid Biosynthesis in Human Leukocytes Philip W. Majerus, Rene Lastra R. J Clin Invest. 1967;46(10):1596-1602. https://doi.org/10.1172/JCI105651. Research Article Extracts from human leukocytes have been examined for the enzymes of de novo fatty acid biosynthesis. These extracts do not catalyze the synthesis of long-chain fatty acids because they lack acetyl CoA carboxylase, the first enzyme unique to the fatty acid synthesis pathway. Since these cells cannot form malonyl CoA, they are unable to synthesize long-chain fatty acids. This inability can be corrected by addition of either purified acetyl CoA carboxylase from rat liver or malonyl CoA to leukocyte extracts. The incorporation of acetate-1-14C into fatty acids by intact leukocytes is shown to represent chain elongation of preformed fatty acids rather than de novo synthesis by the fact that 60-100% of the label incorporated resides in the carboxyl carbon of the fatty acids formed. Both mature leukocytes and erythrocytes are unable to synthesize fatty acids because of a lack of acetyl CoA carboxylase even though both contain the other enzymes of fatty acid synthesis. It is possible that a precursor hematopoietic cell may have the capacity to synthesize fatty acids de novo. This hypothesis is supported by the finding of acetyl CoA carboxylase activity in extracts from human leukemic blast cells. The leukocyte fatty acid synthetase activity from malonyl CoA of a number of normal volunteers and of patients with a variety of hematologic diseases is reported. Find the latest version: https://jci.me/105651/pdf The Journal of Clinical Investigation Vol. -
De Novo Synthesis of Pyrimidine Ribonucleotides
de novo synthesis of pyrimidine ribonucleotides The common pyrimidine ribonucleotides are cytidine 5’- monophosphate (CMP; cytidylate) and uridine 5’- monophosphate (UMP; uridylate), which contain the pyrimidines cytosine and uracil. De novo pyrimidine nucleotide biosynthesis proceeds in a somewhat different manner from purine nucleotide synthesis; the six-membered pyrimidine ring is made first and then attached to ribose 5-phosphate. The pyrimidine ring is assembled from bicarbonate, aspartate and glutamine. Carbamoyl phosphate required in this process is also an intermediate in the urea cycle. 1. In animals, the carbamoyl phosphate required in urea synthesis is made in mitochondria by carbamoyl phosphate synthetase I, whereas the carbamoyl phosphate required in pyrimidine biosynthesis is made in the cytosol by a different form of the enzyme, carbamoyl phosphate synthetase II. In bacteria, a single enzyme supplies carbamoyl phosphate for the synthesis of arginine and pyrimidines. The bacterial enzyme has three separate active sites, spaced along a channel nearly 100 Å long. Bacterial carbamoyl phosphate synthetase provides a vivid illustration of the channeling of unstable reaction intermediates between active sites. 2. Carbamoyl phosphate reacts with aspartate to yield N-carbamoylaspartate in the first committed step of pyrimidine biosynthesis. This reaction is catalyzed by aspartate transcarbamoylase. In bacteria, this step is highly regulated, and bacterial aspartate transcarbamoylase is one of the most thoroughly studied allosteric enzymes. 3. By removal of water from N-carbamoylaspartate, a reaction catalyzed by dihydroorotase, the pyrimidine ring is closed to form L-dihydroorotate. 4. This compound is oxidized to the pyrimidine derivative orotate, a reaction in which NAD+ is the ultimate electron acceptor. -
Dexamethasone Increases De Novo Fatty Acid Synthesis in Fetal Rabbit Lung Explants
003 1-3998/85/19 12-1272$02.00/0 PEDIATRIC RESEARCH Vol. 19, No. 12, 1985 Copyright O 1985 International Pediatric Research Foundation, Inc. Printed in U.S.A. Dexamethasone Increases de Novo Fatty Acid Synthesis in Fetal Rabbit Lung Explants WILLIAM M. MANISCALCO, JACOB N. FINKELSTEIN, AND ANITA B. PARKHURST Division of Neonatology, Department of Pediatrics, University of Rochester School of Medicine, Rochester, New York I4642 ABSTRAm. The effects of dexamethasone on pulmonary relatively less perfused compared to adult lungs (13), and 3) fetal de novo fatty acid synthesis were investigated in a fetal lungs have a large intracellular store of glycogen (1) which may rabbit lung explant model. Culture of the explants for 2 or provide energy and substrates for phospholipid biosynthesis (14). 6 days with dexamethasone produced a 48% increase in de In the adult lung, the type I1 cell is probably the major site of de novo fatty acid synthesis, measured by 3Hz0incorporation, novo fatty acid synthesis (3), suggesting a role for these fatty acids and a 2.5-fold increase in [3H-methyl]choline incorporation in surfactant phospholipid synthesis. Recent studies show that into phosphatidylcholine. A dose-response study showed fatty acids derived from de novo synthesis may have a unique this effect pleateaued at dexamethasone concentrations role in surfactant synthesis by providing fatty acids for the above M. The distribution of the products of de novo remodeling of disaturated phosphatidylcholine (6). fatty acid synthesis was altered by dexamethasone.Treated Although fatty acids are required for surfactant production cultures had a 2.5-fold increase in esterification of the and may even participate in the regulation of phosphatidylcho- newly synthesized fatty acids to phosphatidylcholine and line synthesis (15), very little information is available on the an increase in the proportion of all newly synthesized fatty source or regulation of fetal lung fatty acids. -
The Link Between Purine Metabolism and Production of Antibiotics in Streptomyces
antibiotics Review The Link between Purine Metabolism and Production of Antibiotics in Streptomyces Smitha Sivapragasam and Anne Grove * Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; [email protected] * Correspondence: [email protected] Received: 10 May 2019; Accepted: 3 June 2019; Published: 6 June 2019 Abstract: Stress and starvation causes bacterial cells to activate the stringent response. This results in down-regulation of energy-requiring processes related to growth, as well as an upregulation of genes associated with survival and stress responses. Guanosine tetra- and pentaphosphates (collectively referred to as (p)ppGpp) are critical for this process. In Gram-positive bacteria, a main function of (p)ppGpp is to limit cellular levels of GTP, one consequence of which is reduced transcription of genes that require GTP as the initiating nucleotide, such as rRNA genes. In Streptomycetes, the stringent response is also linked to complex morphological differentiation and to production of secondary metabolites, including antibiotics. These processes are also influenced by the second messenger c-di-GMP. Since GTP is a substrate for both (p)ppGpp and c-di-GMP, a finely tuned regulation of cellular GTP levels is required to ensure adequate synthesis of these guanosine derivatives. Here, we discuss mechanisms that operate to control guanosine metabolism and how they impinge on the production of antibiotics in Streptomyces species. Keywords: c-di-GMP; guanosine and (p)ppGpp; purine salvage; secondary metabolism; Streptomycetes; stringent response 1. Introduction Bacteria experience constant challenges, either in the environment or when infecting a host. They utilize various mechanisms to survive such stresses, which may include changes in temperature, pH, or oxygen content as well as limited access to carbon or nitrogen sources. -
Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I
Handout 5 Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I. Overall concepts A. Definitions 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose and lactate) 1) De novo fatty acid synthesis uses glucose absorbed from the diet rather than glucose synthesized by the liver. 2) De novo fatty acid synthesis uses lactate derived primarily from glucose metabolism in muscle and red blood cells. b. Amino acid precursors (e.g., alanine, branched-chain amino acids) 1) De novo fatty acid synthesis from amino acids is especially important during times of excess protein intake. 2) Use of amino acids for fatty acid synthesis may result in nitrogen overload (e.g., the Atkins diet). c. Short-chain organic acids (e.g., acetate, butyrate, and propionate) 1) The rumen of ruminants is a major site of short-chain fatty acid synthesis. 2) Only small amounts of acetate circulate in non-ruminants. 2. Lipogenesis = fatty acid or triacylglycerol synthesis a. From preformed fatty acids (from diet or de novo fatty acid synthesis) b. Requires source of carbon (from glucose or lactate) for glycerol backbone 3T3-L1 Preadipocytes at confluence. No lipid 3T3-L1 Adipocytes after 6 days of filling has yet occurred. differentiation. Dark spots are lipid droplets. 1 Handout 5 Fatty Acid Synthesis B. Tissue sites of de novo fatty acid biosynthesis 1. Liver. In birds, fish, humans, and rodents (approx. 50% of fatty acid biosynthesis). 2. Adipose tissue. All livestock species synthesize fatty acids in adipose tissue; rodents synthesize about 50% of their fatty acids in adipose tissue. -
Cholesterol Synthesis and De Novo Lipogenesis in Premature Infants Determined by Mass Isotopomer Distribution Analysis
0031-3998/04/5604-0602 PEDIATRIC RESEARCH Vol. 56, No. 4, 2004 Copyright © 2004 International Pediatric Research Foundation, Inc. Printed in U.S.A. Cholesterol Synthesis and De Novo Lipogenesis in Premature Infants Determined by Mass Isotopomer Distribution Analysis LORRAINE N. RENFURM, ROBERT H.J. BANDSMA, HENKJAN J. VERKADE, CHRISTIAAN V. HULZEBOS, THEO VAN DIJK, THEO BOER, FRANS STELLAARD, FOLKERT KUIPERS, AND PIETER J.J. SAUER Groningen University Institute for Drug Exploration, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Hospital Groningen, 9700 RB Groningen, The Netherlands ABSTRACT Premature infants change from placental supply of mainly de novo lipogenesis is not a major contributor to fat accumulation carbohydrates to an enteral supply of mainly lipids earlier in their in these premature neonates. The fractional contribution of newly development than term infants. The metabolic consequences synthesized cholesterol to plasma unesterified cholesterol was hereof are not known but might have long-lasting health effects. 7.4 Ϯ 1.3% after a 12-h infusion. The calculated rate of endog- In fact, knowledge of lipid metabolism in premature infants is enous cholesterol synthesis was 31 Ϯ 7 mg/kg/d, a value approx- very limited. We have quantified de novo lipogenesis and cho- imately three times higher than that found in adult subjects (10 Ϯ lesterogenesis ond3oflife in seven premature infants (birth 6 mg/kg/d). These results indicate that the cholesterol- weight, 1319 Ϯ 417 g; gestational age, 30 Ϯ 2 wk). For synthesizing machinery is well developed in premature infants. comparison, five healthy adult subjects were also studied. -
Chronic Tissue Inflammation and Metabolic Disease
Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Chronic tissue inflammation and metabolic disease Yun Sok Lee and Jerrold Olefsky Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA Obesity is the most common cause of insulin resistance, Although there are a number of potential, and some- and the current obesity epidemic is driving a parallel times overlapping, mechanisms that can contribute to in- rise in the incidence of T2DM. It is now widely recognized sulin resistance and β-cell dysfunction, in this current that chronic, subacute tissue inflammation is a major eti- review we focus on the role of chronic tissue inflamma- ologic component of the pathogenesis of insulin resis- tion in these metabolic defects. The reader is referred to tance and metabolic dysfunction in obesity. Here, we other excellent reviews on possible causes of insulin resis- summarize recent advances in our understanding of tance and β-cell dysfunction, independent of chronic tis- immunometabolism. We discuss the characteristics of sue inflammation (Halban et al. 2014; DeFronzo et al. chronic inflammation in the major metabolic tissues 2015; Czech 2017; Newgard 2017; Guilherme et al. and how obesity triggers these events, including a focus 2019; Kahn et al. 2019; Roden and Shulman 2019; Scherer on the role of adipose tissue hypoxia and macrophage-de- 2019; Alonge et al. 2021; Sangwung et al. 2020). rived exosomes. Last, we also review current and potential The interconnections between inflammation and meta- new therapeutic strategies based on immunomodulation. -
De Novo Synthesis of a Polymer of Deoxyadenylate and Deoxythyrnidylate by Calf Thymus DNA Polymerase a [Poly(Da-Dt)/DNA Unwinding Protein] DAVID HENNER and JOHN J
Proc. Nat. Acad. Sci. USA Vol. 72, No. 10, pp. 3944-3946, October 1975 Biochemistry De novo synthesis of a polymer of deoxyadenylate and deoxythyrnidylate by calf thymus DNA polymerase a [poly(dA-dT)/DNA unwinding protein] DAVID HENNER AND JOHN J. FURTH Departments of Microbiology and Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pa. 19174 Communicated by Jerard Hurwitz, July 31, 1975 ABSTRACT In a reaction mixture containing calf thymus each), activated calf thymus DNA (160 ,M as deoxynucleo- DNA polymerase a (DNA nucleotidyltransferase; deoxynu- tides), 160 MM [3H]dTTP (5-50 cpm/pmol) and DNA poly- cleosidetriphosphateiDNA deoxynucleotidyltransferase; EC merase. Activated DNA was prepared as described by Ap- 2.7.7.7), calf thymus DNA unwinding protein, DNA; deoxy- adenosine 5'-triphosphate and deoxythymidine 5'-triphos- oshian and Kornberg (5) except that 50 mM NaCi was used. phate,.a copolymer of deoxyadenylate and deoxythymidylate DNA (0.375 mg/ml) was incubated with 0.5 Mg/ml of pan- is synthesized after a lag period of 1-2 hr. In the presence of creatic DNase for 3.5 min. the four deoxyribonucleoside triphosphates only ceoxyadeny- DNA Polymerase. DNA polymerase was purifed from late and deoxythymidylate are incorporated into the polymer calf thymus as previously described (6), follokwd by phos- and the rate of synthesis is decreased. The reaction variably phocellulose chromatography (7). The enzyme was further occurs in the absence of DNA or DNA unwinding protein but with a greatly entended lag period. The optimal Mg2+ con- purified by chromatography on DEAE-cellulose, phospho- centration for synthesis of the polymer of deoxyadenylate cellulose, and DNA cellulose (E.-C. -
De Novo Purine Biosynthesis by Two Pathways in Burkitt Lymphoma Cells and in Human Spleen
De Novo purine biosynthesis by two pathways in Burkitt lymphoma cells and in human spleen Gabrielle H. Reem J Clin Invest. 1972;51(5):1058-1062. https://doi.org/10.1172/JCI106897. Research Article This study was designed to answer the question whether human lymphocytes and spleen cells were capable ofd e novo purine biosynthesis. Experiments were carried out in cell-free extracts prepared from human spleen, and from a cell line established from Burkitt lymphoma. Burkitt lymphoma cells and human spleen cells could synthesize the first and second intermediates of the purine biosynthetic pathway. Cell-free extracts of all cell lines studied contained the enzyme systems which catalyze the synthesis of phosphoribosyl-1-amine, the first intermediate unique to the purine biosynthetic pathway and of phosphoribosyl glycinamide, the second intermediate of this pathway. Phosphoribosyl-1-amine could be synthesized in cell-free extracts from α-5-phosphoribosyl-1-pyrophosphate (PRPP) and glutamine, from PRPP and ammonia, and by an alternative pathway, directly from ribose-5-phosphate and ammonia. These findings suggest that extrahepatic tissues may be an important source for the de novo synthesis of purine ribonucleotide in man. They also indicate that ammonia may play an important role in purine biosynthesis. The alternative pathway for the synthesis of phosphoribosyl-1-amine from ribose-5-phosphate and ammonia was found to be subject to inhibition by the end products of the purine synthetic pathway, particularly by adenylic acid and to a lesser degree by guanylic acid. The alternative pathway for phosphoribosyl-1-amine synthesis from ribose-5-phosphate and ammonia may contribute significantly towards the regulation of the rate of de novo purine biosynthesis […] Find the latest version: https://jci.me/106897/pdf De Novo Purine Biosynthesis by Two Pathways in Burkitt Lymphoma Cells and in Human Spleen GABIFLTL F.H. -
Immunometabolism Research Focus: Cell Metabolism & NAD+ Metabolism
www.adipogen.com Immunometabolism Research Focus: Cell Metabolism & NAD+ Metabolism Immunometabolism is a research field that provides new insights into the dynamic cross-talk between the immune system (immunity) and metabolic processes of an organism (metabolism). Immunometabolism tries to understand how metabolism controls the function of immune cells. It can be studied at a macroscopic level (e.g. in adipose tissues (see Figure 1) or in a tumor microenvironment) and at a microscopic level, the cellular bioenergetics of immune cells (see Figure 2). The activation, growth and proliferation, function and homeostasis of immune cells are intimately linked to dynamic changes in cellular metabolism configurations. The utilization of particular metabolic pathways is controlled by growth factors and nutrient availability (dictated by competition between other interacting cells) and by the balance of internal metabolites, reactive oxygen species (ROS) and reducing/oxidizing substrates. Major metabolic pathways (see Figure 2) that shape the immune cell response include glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway (PPP), fatty acid oxidation (FAO), fatty acid synthesis (FAS) and amino acid (AA) metabolism (e.g. Glutamine, Arginine, Tryptophan). The various immune cell subsets use distinct metabolic pathways to promote cell survival, lineage generation and function. For example, inflammatory M1 macrophages or rapidly proliferating effector T cells, including T helper 1 (TH1), TH17 and cytotoxic CD8+ T cells, use metabolic pathways that support cell proliferation and the production of cytokines, such as glycolysis or fatty acid synthesis. M2 macrophages or immunosuppressive regulatory T (Treg) cells use metabolic pathways which inhibit inflammatory signals and are associated with suppressive functions, such as TCA cycle and fatty acid oxidation. -
De Novo DNA Synthesis Using Polymerase- Nucleotide Conjugates
De novo DNA synthesis using polymerase- nucleotide conjugates Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des Grades Doktor rerum naturalium (Dr. rer. nat) Dissertation von Sebastian Palluk Erstgutachterin: Prof. Dr. Beatrix Süß Zweitgutachter: Prof. Dr. Johannes Kabisch Darmstadt 2018 Palluk, Sebastian: De novo DNA synthesis using polymerase-nucleotide conjugates Darmstadt, Technische Universität Darmstadt Jahr der Veröffentlichung der Dissertation: 2019 Tag der mündlichen Prüfung: 17.12.2018 Veröffentlicht unter CC BY-NC-SA 4.0 International https://creativecommons.org/licenses/ 2 Summary The terminal deoxynucleotidyl transferase (TdT) is the key enzyme proposed for enzy- matic DNA synthesis, based on its ability to extend single stranded DNA rapidly using all four different deoxynucleoside triphosphates (dNTPs). Proposals to employ TdT for the de novo synthesis of defined DNA sequences date back to at least 1962, and typically involve using the polymerase together with 3’-modified reversible terminator dNTPS (RTdNTPs), analogous to Sequencing by Synthesis (SBS) schemes. However, polymerases usually show a low tolerance for 3’-modified RTdNTPs, and the catalytic site of TdT seems particularly difficult to engineer in order to enable fast incorporation kinetics for such modified dNTPs. Until today, no practical enzymatic DNA synthesis method based on this strategy has been published. Here, we developed a novel approach to achieve single nucleotide extension of a DNA molecule by a polymerase. By tethering a single dNTP to the polymerase in a way that it can be incorporated by the polymerase moiety, we generate so called polymerase-nucleotide conjugates. Once a polymerase-nucleotide conjugate extends a DNA molecule by its tethered dNTP, the polymerase moiety stays covalently attached to the extended DNA via the linkage to the incorporated nucleotide, and blocks other polymerase-nucleotide conjugates from accessing the 3’-end of the DNA molecule.