Extra-Solar Planets

Total Page:16

File Type:pdf, Size:1020Kb

Extra-Solar Planets ClassificationClassification ofof thethe knownknown multimulti-- planetaryplanetary systemssystems (S.Ferraz(S.Ferraz--Mello,Mello, 2005)2005) ClassClass IaIa ––>> PlanetsPlanets inin meanmean motionmotion resonanceresonance (HD82943, Gliese876,HD128311,55Cnc,HD202206) ClassClass IbIb ÆÆ LowLow--eccentricityeccentricity nearnear--resonantresonant planetplanet pairspairs (47Uma) ClassClass IIIIÆÆ NonNon--resonantresonant planetsplanets withwith significantsignificant secularsecular dynamicsdynamics (55 Cnc, Ups And, HD12661, HD169830,HD37124, HD160691) ClassClass IIIIIIÆÆ HierarchicalHierarchical planetplanet pairspairs (HD168443, HD74156,HD11964,HD38529,55Cnc) Class II -- Non-resonant planets with significant secular dynamics Planet pairs of this class can have strong gravitational interactions, where long-term variations are ascribed to secular perturbations, large variations of the eccentricities and dynamical effects like the alignment and anti-alignment for the apsidal lines. For the long-term stability of such a system, it is not necessary hat the planets are in MMR. Star Planet mass_P a_P e_P Period [M_Sun] [M_Jup] [AU] [days] 55 Cnc e 0.045 0.038 0.17 2.808 (1.03) b 0.784 0.115 0.02 14.67 HD169830 b 2.88 0.81 0.31 225.62 (1.4) c 4.04 3.6 0.33 2102 HD37124 b 0.72 0.54 0.1 153 (0.91) c ? 1.3 2.5 0.7 1595 (Ups And, HD12661, HD160691) (in collaboration with Erdi and Sandor) HD 169830 Mstar = 1.4 MSun HD 169830 b m = 3.03 MJup a = 0.82 AU e = 0.327 HD 169830 c m = 2.51 MJup a = 2.85 AU e = 0.0 HD160691 b HD160691 c A [AU]: 1.5 2.3 e: 0.31 0.8 M .sin i: 1.7 1.0 [M_jup] MEGNO – Stability map Stability condition: 2:1 mean motion resonance (exact location: a_c=2.381 AU) Bois, E., Kiseleva-Eggleton, L., Rambaux, N., Pilat-Lohinger, E., 2003, ApJ 598, 1312 0.9 0.8 Due to high eccentricities 0.7 of the orbits and despite 0.6 relatively small semi-major ec 0.5 axis, the relative distances 0.4 between the two planets 0.3 may remain sufficiently 0.2 large over the whole 0.1 evolutionary time scale of 0.0 The system. thethe orbitsorbits areare lockedlocked inin thethe soso--calledcalled Apsidal Synchronous Precession (ASP) meaning that the two orbital planes precess at the same rate Æ θθ3 of two planetary orbits librateslibrates aboutabout 00(aligned)(aligned) oror ππ (anti(anti--alignedaligned ).). where AA suitablesuitable mechanismmechanism forfor compactcompact multimulti-- planetaryplanetary systemssystems ¾ Low order Mean Motion Resonance + ¾ Favorable relative initial orbital phases of planets + ¾ High planetary eccentricities, especially of the outer planet + ¾ Anti-aligned Apsidal Synchronous Precession = NO close approaches between planets => NO strong dynamical interactionsinteractions =>=> STABILITY over long evolutionary timescale PlanetPlanet mm sinsin ii aa ee ωω PP HD160691b 1.67 +/- 0.11 1.50 +/- 0.02 0.2 +/- 0.03 294 +/- 9 645.5 +/- 3 c 3.1+/- 0.71 4.17+/- 0.07 0.57+/- 0.1 161 +/- 8 2986+/-30 d 0.04405 0.09 0 (+0.02) 4+/- 2 9.55+/0.03 5:1 9:2 0.9 <Y> 50 0.8 40 0.7 30 0.6 20 StabilityStability ofof thethe 10 0.5 11 0 e e 0.4 4 3.5 newnew systemsystem 0.3 3 2.5 0.2 2 1.5 0.1 1 0.5 HD160691HD160691 0 0 1.35 1.4 1.45 1.5 1.55 1.6 1.65 a1 (UA) HD160691 e2=0.21 5:1 9:2 4:1 5:1 9:2 0.9 0.9 <Y> <Y> 50 50 0.8 0.8 40 40 0.7 0.7 30 30 20 0.6 20 0.6 10 10 0.5 0.5 0 11 11 0 e e e e 0.4 0.4 2.4 2.4 0.3 0.3 2.2 2.2 2 0.2 2 0.2 1.8 1.8 0.1 0.1 1.6 1.6 0 0 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.35 1.4 1.45 1.5 1.55 1.6 1.65 a1 (UA) a1 (UA) ClassificationClassification ofof thethe knownknown multimulti-- planetaryplanetary systemssystems (S.Ferraz(S.Ferraz--Mello,Mello, 2005)2005) ClassClass IaIa ––>> PlanetsPlanets inin meanmean motionmotion resonanceresonance (HD82943, Gliese876,HD128311,55Cnc,HD202206) ClassClass IbIb ÆÆ LowLow--eccentricityeccentricity nearnear--resonantresonant planetplanet pairspairs (47Uma) ClassClass IIIIÆÆ NonNon--resonantresonant planetsplanets withwith significantsignificant secularsecular dynamicsdynamics (55 Cnc, Ups And, HD12661, HD169830,HD37124, HD160691) ClassClass IIIIIIÆÆ HierarchicalHierarchical planetplanet pairspairs (HD168443, HD74156,HD11964,HD38529,55Cnc) Class III -- Hierarchical planet pairs Roughly speaking this class is for all planet pairs with a large ratio of their orbital periods -- P1/P2 > 10. Due to the large ratio of periods the gravitational interaction are not so strong like in class II and the probability of a capture in a MMR is negligible. The weaker interactions lead to stable motion in the numerical simulations, even if the orbits of the planet are not so good determined. HD 74156 • The orbital parameters were taken from the Mstar = 1.05 MSun Geneva group of observers • Masses are Minimum Masses HD 74156 b m sini = 1.6 Mjup a = 0.28 AU e = 0.647 HD 74156 c m sin i= 8.2 Mjup a = 3.82 AU e = 0.354 The resonant region and the habitable zone e= 0.30 e=0.35 e=0.40 e=0.45 • Initial Conditions • Inner Resonances with the outer planet • Outer Resonances with the inner planet • Mean Anomaly: 0°, 30°,..., 330° • Different mean anomalies of the known planets • Inclinations: i = 0°, 10°,..., 50° • Integration Time: 105 years Inner Resonances with the outer planet: i = 0° Outer Resonances with the inner planet: i = 0° New Data HD 74156 b m = 1.86 MJup a = 0.294 AU e = 0.635 HD 74156 c m = 6.42 MJup a = 3.44 AU e = 0.561 (in collaboration with Erdi and Sandor) M = 1.39 M HD 38529 star Sun HD 168443 HD 38529 b m = 0.78 MJup a = 0.129 AU e = 0.29 HD 38529 c m = 12.7 MJup a = 3.68 AU e = 0.36 Mstar = 1.01 MSun HD 168443 b m = 7.73 MJup a = 0.295 AU e = 0.53 HD 168443 c m = 17.23 MJup a = 2.9 AU e = 0.2.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • AMD-Stability and the Classification of Planetary Systems
    A&A 605, A72 (2017) DOI: 10.1051/0004-6361/201630022 Astronomy c ESO 2017 Astrophysics& AMD-stability and the classification of planetary systems? J. Laskar and A. C. Petit ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 7 November 2016 / Accepted 23 January 2017 ABSTRACT We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general 1. Introduction motion resonances (MMR, Wisdom 1980; Deck et al. 2013; Ramos et al. 2015) could justify the Hill-type criteria, but the The increasing number of planetary systems has made it nec- results on the overlap of the MMR island are valid only for close essary to search for a possible classification of these planetary orbits and for short-term stability.
    [Show full text]
  • (Seti) with the Murchison Widefield Array S
    The Astrophysical Journal Letters, 827:L22 (5pp), 2016 August 20 doi:10.3847/2041-8205/827/2/L22 © 2016. The American Astronomical Society. All rights reserved. AN OPPORTUNISTIC SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE (SETI) WITH THE MURCHISON WIDEFIELD ARRAY S. J. Tingay1,2, C. Tremblay1, A. Walsh1, and R. Urquhart1 1 International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102, Australia 2 Istituto di Radioastronomia, Istituto Nazionale di Astrofisica, I-40129 Bologna, Italy Received 2016 July 14; revised 2016 July 28; accepted 2016 July 29; published 2016 August 12 ABSTRACT A spectral line image cube generated from 115 minutes of MWA data that covers a field of view of 400 sq, deg. around the Galactic Center is used to perform the first Search for ExtraTerrestrial Intelligence (SETI) with the Murchison Widefield Array (MWA). Our work constitutes the first modern SETI experiment at low radio frequencies, here between 103 and 133 MHz, paving the way for large-scale searches with the MWA and, in the − future, the low-frequency Square Kilometre Array. Limits of a few hundred mJy beam 1 for narrowband emission (10 kHz) are derived from our data, across our 400 sq. deg. field of view. Within this field, 45 exoplanets in 38 planetary systems are known. We extract spectra at the locations of these systems from our image cube to place limits on the presence of narrow line emission from these systems. We then derive minimum isotropic transmitter powers for these exoplanets; a small handful of the closest objects (10 s of pc) yield our best limits of order 1014 W (Equivalent Isotropic Radiated Power).
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Density Estimation for Projected Exoplanet Quantities
    Density Estimation for Projected Exoplanet Quantities Robert A. Brown Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 [email protected] ABSTRACT Exoplanet searches using radial velocity (RV) and microlensing (ML) produce samples of “projected” mass and orbital radius, respectively. We present a new method for estimating the probability density distribution (density) of the un- projected quantity from such samples. For a sample of n data values, the method involves solving n simultaneous linear equations to determine the weights of delta functions for the raw, unsmoothed density of the unprojected quantity that cause the associated cumulative distribution function (CDF) of the projected quantity to exactly reproduce the empirical CDF of the sample at the locations of the n data values. We smooth the raw density using nonparametric kernel density estimation with a normal kernel of bandwidth σ. We calibrate the dependence of σ on n by Monte Carlo experiments performed on samples drawn from a the- oretical density, in which the integrated square error is minimized. We scale this calibration to the ranges of real RV samples using the Normal Reference Rule. The resolution and amplitude accuracy of the estimated density improve with n. For typical RV and ML samples, we expect the fractional noise at the PDF peak to be approximately 80 n− log 2. For illustrations, we apply the new method to 67 RV values given a similar treatment by Jorissen et al. in 2001, and to the 308 RV values listed at exoplanets.org on 20 October 2010. In addition to an- alyzing observational results, our methods can be used to develop measurement arXiv:1011.3991v3 [astro-ph.IM] 21 Mar 2011 requirements—particularly on the minimum sample size n—for future programs, such as the microlensing survey of Earth-like exoplanets recommended by the Astro 2010 committee.
    [Show full text]
  • May 2016 BRAS Newsletter
    May 2016 Issue th Next Meeting: Monday, May 9 at 7PM at HRPO (2nd Mondays, Highland Road Park Observatory) What's In This Issue? President’s Message Secretary's Summary of April Meeting Outreach Report Past Events Summary with Photos of” Rockin’ At The Swamp, Zippety Zoo Fest, Louisiana Earth Day Recent BRAS Forum Entries 20/20 Vision Campaign Geaux Green Committee Meeting Report Message from the HRPO International Astronomy Day Observing Notes: Hydra, the Water Snake, by John Nagle Newsletter of the Baton Rouge Astronomical Society May 2016 President’s Message We had a busy month with outreaches last month, and we have some major outreaches this month: The Transit of Mercury on Monday May 9th, from 6AM to 2PM at HRPO; International Astronomy Day (the 10th consecutive for us) on Saturday May 14th, 3PM to 11PM at HRPO; and Mars Closest Approach (to Earth) on Monday May 30th, 8PM to 12AM at HRPO. Volunteers are welcome. There was a good turnout at the April BRAS meeting with Dr. Giaime, Observatory Head of LIGO Livingston, as our guest speaker. His talk was very informative about the history of the search for gravity waves, Einstein’s theory on gravity waves, and what gravity waves are. The May BRAS meeting’s guest speaker will be Chris Johnson, of the LSU Astronomy Department, giving a presentation titled “Variability of Optical Counterparts to Selected X-ray Sources in the Galactic Bulge”. This is part of his Ph.D. research and has something to do with variable stars and what we can learn from space and ground based telescopes.
    [Show full text]
  • A Search for Multi-Planet Systems Using the Hobby-Eberly Telescope
    A Search for Multi-Planet Systems Using the Hobby-Eberly Telescope1 Robert A. Wittenmyer2,3, Michael Endl2, William D. Cochran2, Harold F. Levison4, Gregory W. Henry5 [email protected] ABSTRACT Extrasolar multiple-planet systems provide valuable opportunities for testing the- ories of planet formation and evolution. The architectures of the known multiple- planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investiga- tion of 22 planetary systems in an effort to answer three questions: 1) Are there additional planets? 2) Where could additional planets reside in stable orbits? and 3) What limits can these observations place on such objects? We find no evidence for additional bodies in any of these systems; indeed, these new data do not support three previously announced planets (HD 20367b: Udry et al. 2003, HD 74156d: Bean et al. 2008, and 47 UMa c: Fischer et al. 2002). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these non-detections. arXiv:0903.0652v1 [astro-ph.EP] 3 Mar 2009 Subject headings: stars: planetary systems – extrasolar planets 1Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the Uni- versity of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians- Universit¨at M¨unchen, and Georg-August-Universit¨at G¨ottingen.
    [Show full text]
  • The ELODIE Survey for Northern Extra-Solar Planets
    A&A 414, 351–359 (2004) Astronomy DOI: 10.1051/0004-6361:20034091 & c ESO 2004 Astrophysics The ELODIE survey for northern extra-solar planets III. Three planetary candidates detected with ELODIE, D. Naef1, M. Mayor1,J.L.Beuzit2, C. Perrier2,D.Queloz1,J.P.Sivan3,andS.Udry1 1 Observatoire de Gen`eve, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland 2 Laboratoire d’Astrophysique, Observatoire de Grenoble, Universit´e J. Fourier, BP 53, 38041 Grenoble, France 3 Observatoire de Haute-Provence, 04870 St-Michel L’Observatoire, France Received 18 July 2003 / Accepted 10 October 2003 Abstract. We present our ELODIE radial-velocity measurements of HD 74156 and 14 Her (HD 145675). These stars ex- hibit low-amplitude radial-velocity variations induced by the presence of low-mass companions. The radial-velocity data of HD 74156 reveal the presence of two planetary companions: a 1.86 MJup planet on a 51.64–d orbit and a 6.2 MJup planet on a long-period (5.5 yr) orbit. Both orbits are fairly eccentric (e = 0.64 and 0.58). The 4.7 MJup companion to 14 Her has a long period (4.9 yr) and a moderately eccentric orbit (e = 0.34). We detect an additional linear radial-velocity trend superimposed on the periodic signal for this star. We also compute updated orbital solutions for HD 209458 and 51 Peg (HD 217014). Finally, we present our ELODIE radial-velocity data and orbital solutions for 5 stars known to host planetary companions: Ups And (HD 9826), 55 Cnc (HD 75732), 47 UMa (HD 95128), 70 Vir (HD 117176) and HD 187123.
    [Show full text]