Performance of a Pilot Scale Biomass Gasification and Producer

Total Page:16

File Type:pdf, Size:1020Kb

Performance of a Pilot Scale Biomass Gasification and Producer Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Performance of a pilot scale biomass gasification and producer gas combustion system using feedstock with controlled nitrogen content Sharan Sethuraman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Sethuraman, Sharan, "Performance of a pilot scale biomass gasification and producer gas combustion system using feedstock with controlled nitrogen content" (2010). Graduate Theses and Dissertations. 11725. https://lib.dr.iastate.edu/etd/11725 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Performance of a pilot scale biomass gasification and producer gas combustion system using feedstock with controlled nitrogen content by Sharan Sethuraman A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mechanical Engineering Program of Study Committee: Song-Charng Kong, Major Professor Terrence Meyer Gap Yong Kim Iowa State University Ames, Iowa 2010 ii TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................................... iv LIST OF TABLES ..................................................................................................................................... vi ACKNOWLEDGEMENT ......................................................................................................................... vii ABSTRACT ............................................................................................................................................viii CHAPTER 1. INTRODUCTION ................................................................................................................. 1 1.1 Motivation ................................................................................................................................... 1 1.2 Objective ..................................................................................................................................... 3 CHAPTER 2. LITERATURE REVIEW ......................................................................................................... 4 2.1 Introduction ................................................................................................................................ 4 2.2 Gasification process .................................................................................................................... 5 2.3 Coal gasification .......................................................................................................................... 6 2.3.1 Introduction ......................................................................................................................... 6 2.3.2 Process ................................................................................................................................. 6 2.3.3 Lurgi slagging gasifier ........................................................................................................... 8 2.4 Biomass Gasification ................................................................................................................... 9 2.4.1 Introduction ......................................................................................................................... 9 2.4.2 Types of biomass gasifiers .................................................................................................. 11 2.5 Effect of biomass feedstock on the gas composition................................................................ 13 2.6 Gas clean-up technologies ........................................................................................................ 19 2.7 Fate of nitrogen in biomass feedstock ...................................................................................... 22 2.7.1 Introduction ....................................................................................................................... 22 2.7.2 Fuel NOx chemistry ............................................................................................................ 24 2.7.3 Comparison of thermal NOx and fuel NOx ........................................................................ 26 2.8 Producer gas combustion.......................................................................................................... 29 2.8.1 Differences between syngas and producer gas ................................................................. 29 2.8.2 Status of producer gas combustion research .................................................................... 30 2.8.3 Low BTU Burner ................................................................................................................. 33 CHAPTER 3: METHODS AND PROCEDURES ......................................................................................... 36 3.1 Introduction .............................................................................................................................. 36 3.2 BECON gasification system ........................................................................................................ 36 iii 3.3 COMBUSTION SYSTEM .............................................................................................................. 40 3.4 Producer gas analysis ................................................................................................................ 43 3.4.1 Micro gas chromatograph (GC) .......................................................................................... 43 3.4.2 International Energy Agency (IEA) tar protocol ................................................................. 44 3.4.3 Moisture analysis ............................................................................................................... 50 3.4.4 Tar and ammonia separation ............................................................................................. 50 3.4.5 Ammonia analysis .............................................................................................................. 53 CHAPTER 4: RESULTS AND DISCUSSIONS ............................................................................................ 56 4.1 Test matrix ................................................................................................................................ 56 4.2 Producer gas compositions ....................................................................................................... 58 4.3 Emissions using natural gas ....................................................................................................... 59 4.4 Emissions using wood ............................................................................................................... 63 4.5 Emissions using wood with 7% DDGS ....................................................................................... 65 4.6 Emissions using wood with 13% DDGS ..................................................................................... 67 4.7 Emissions using wood with 20% DDGS ..................................................................................... 69 4.8 Emissions using wood with 40% DDGS ............................................................................... 71 4.9 Emissions using wood with 70% DDGS ..................................................................................... 73 4.9 Emissions using yellow corn ...................................................................................................... 75 4.11 Discussions .............................................................................................................................. 77 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS ..................................................................... 86 5.1 Conclusions ............................................................................................................................... 86 5.2 Future recommendations ......................................................................................................... 87 APPENDIX A1. ENGINEERING EQUATION SOLVER (EES) CODE ........................................................... 89 BIBLIOGRAPHY .................................................................................................................................... 91 iv LIST OF FIGURES Fig 2.1 - Schematic of coal gasification process .................................................................................... 8 Fig 2.2 - Schematic of OLGA technique ............................................................................................... 20 Fig 2.3 - Conversion of fuel bound nitrogen in biomass ..................................................................... 24 Fig 2.4 - Ammonia formation at different gasification temperatures for cane trash ......................... 27 Fig 2.5 - Laminar flame speed for CO/H 2 mixtures at different pressures .......................................... 30 Fig 2.6 - Effect of adiabatic flame temperature on CO and NOx emissions .......................................
Recommended publications
  • Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier
    Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405 Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier Robert C. Brown, Glenn Norton, Andy Suby, Jerod Smeenk, Keith Cummer, and Josh Nunez Center for Sustainable Environmental Technologies Iowa State University Ames, IA 50011-3020 INTRODUCTION The goal of this project is to optimize performance of an indirectly heated gasification system that converts switchgrass into hydrogen-rich gas suitable for powering fuel cells. We have developed a thermally ballasted gasifier that uses a single reactor for both combustion and pyrolysis. Instead of spatially separating these processes, they are temporally isolated. The producer gas is neither diluted with nitrogen or the products of combustion. The heat released during combustion at 850°C is stored as latent heat in the form of molten salt sealed in tubes immersed in the fluidized bed. During the pyrolysis phase, which occurs at temperatures between 600 and 850°C, the reactor is fluidized with steam or recycled producer gas rather than air. Heat stored in the phase change material is released during this phase of the cycle to support the endothermic reactions of the pyrolysis stage. Because air is not used during the gas-producing phase of the cycle, nitrogen does not dilute the product gas, resulting in relatively high concentrations of hydrogen and carbon monoxide in the producer gas compared to conventional gasifiers. The carbon monoxide, along with steam used to fluidize the reactor, can be shifted to additional hydrogen by the water-gas shift reaction. Objectives in the first year include: • Determine whether switchgrass is a suitable fuel for the ballasted gasifier.
    [Show full text]
  • Lng Flow Calibration Facilities
    LNG FLOW CALIBRATION FACILITIES Oswin Kerkhof, VSL Mijndert van der Beek, VSL Peter Lucas, VSL Maria Mirzaei, VSL Gerard Blom, VSL Gertjan Kok, VSL Keywords: calibration, flow, flowmeter, custody transfer, measurement, uncertainty, accuracy, transport fuel, quality measurement, 1. Introduction Reliable, accurate and commonly agreed measurement methods are a first requirement for the trade of goods. For the large scale LNG distribution chain there is a commonly agreed measurement practice as described in various ISO standards and in the GIIGNL “Custody transfer handbook”. In comparison with other commodities like natural gas or gasoline the total uncertainty on measured energy is very high for LNG. The LNG industry is therefore committed to improve their measurement accuracies to reduce their financial risks and to optimize their mass and energy balances. As an extension of the traditional distribution chain for LNG a new market of professional consumers is developing with LNG as transport fuel. In this case there is no commonly agreed measurement practice and the metrological framework is not yet in place. This will be a showstopper for the roll-out of the LNG as transport fuel because laws will be enforcing protection of (professional) consumers. For small scale LNG the legal metrology framework will lay down requirements on traceability to national standards and will define maximum permissible measurement errors. This is not the case for large scale LNG where the industrial players are assumed to take care of their own business interests. For this reason the development of an LNG calibration facility is a crucial step and urgently required for the development of the small scale LNG distribution chain.
    [Show full text]
  • Prediction of Producer Gas Composition for Small Scale Commercial Downdraft Gasifiers
    PREDICTION OF PRODUCER GAS COMPOSITION FOR SMALL SCALE COMMERCIAL DOWNDRAFT GASIFIERS H Roesch*, J Dascomb, B Greska, A Krothapalli *Corresponding Author email: [email protected] *Corresponding Author phone: +18504967682 Energy and Sustainability Center, Florida State University 2525 Pottsdamer St, #229A, Tallahassee, Fl 32310 ABSTRACT: The goal of this study was to produce a model predicting the composition and heating value of producer gas made from a small scale (20-250 kWth), down-draft gasifier. Due the non-ideal conditions in this type of gasifier, classical thermodynamic equilibrium models are inaccurate. A more reliable prediction model for gas produced in a system of this size and type is needed. Eight biomass feedstocks were gasified and analyzed for this study. The pelletized feedstocks chosen were; alfalfa, algae, field grass, hemp, miscanthus, peanut shells, pine, and municipal solid waste. The feedstocks were chosen for their wide ranging availability and low costs. The commercial downdraft gasifier used was an Ankur Scientific WBG-20. This air-fed gasifier is capable of producing synthesis gas at a rate of up to 60 Nm3/hr (50 kWth). Each feedstock was first characterized by proximate and ultimate analysis, and then the synthesis gas was analyzed by gas chromatography. The large variation of reaction temperatures and equivalence ratios occurring in the economic downdraft gasifier reduced the accuracy of the conventional thermodynamic equilibrium simulation. The synthesis gas produced in these tests was used to create a more applicable model for estimating composition and heating value for this type of system. The model developed from these tests estimates the heating value of the synthesis gas produced from the ultimate and proximate analysis of the feedstock with an average error of 5% over all feedstocks tested.
    [Show full text]
  • Cleaning Ucg Synthesis
    Underground Coal Gasification (UCG), its Potential Prospects and its Challenges Dr. Duncan Seddon, FRACI, CChem, MSPE, Duncan Seddon & Associates Pty Ltd Email: [email protected] Dr. Mike Clarke, FIEAust, CPEng, FAusIMM, RPEQ, M.E.T.T.S. Pty Ltd Email: [email protected] Abstract: Coal is widely available in most parts of the world. Underground Coal Gasification (UCG) gives the promise of turning many poor quality coal resources into exploitable reserves by delivering energy in the form of synthesis gas, potentially at very low cost. The synthesis gas can be used for generation of electricity and the production of fuels and chemicals by commercially proven technology. Furthermore, any carbon present in the synthesis gas not used for downstream products could be easily separated and geo-sequestrated. This could extend the Fossil Fuel Age by providing low cost energy for developing and developed countries alike. Unfortunately, as Australian experience has shown, UCG also comes with technical and environmental challenges that are still not fully resolved. The paper outlines key developments in UCG and issues raised by Australian experience, particularly in regard to the contamination of acquifers. The paper discusses the quality of UCG synthesis gas and its potential use in downstream applications. The clean-up steps required for various downstream applications are described. A key hurdle to up-take of UCG is the overall cost of clean-up which has to be added to the cost of UCG production. This cost is discussed and the potential of UCG as a major new feedstock described. 1.0 Introduction Underground Coal Gasification (UCG) as a source of synthesis gas (syn-gas) for power generation, liquid fuels production and/or chemicals and fertiliser manufacture has been made to look beguilingly simple and straightforward by many of it proponents.
    [Show full text]
  • Field Reference Manual, 2015
    CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE DIVISION OF MEASUREMENT STANDARDS FIELD REFERENCE MANUAL 2015 California Code of Regulation Title 4, Division 9 Chapter 1 Tolerances and Specifications for Commercial Weighing and Measuring Devices NIST Handbook 44 Sections 3.30. Liquid-Measuring Devices through 3.39 Hydrogen Gas-Measuring Devices DISCLAIMER This document represents the Division of Measurement Standards’ field manual for enforcing regulations pertaining to weights and measures in California. This field manual is not to be considered as the official Code of Regulations, as published by Barclays Law Publishers. NOTE: Language in Handbook 44 that is not adopted is annotated “[NOT ADOPTED]” in this document. NOTE: Requirements are different than, or in addition to, the requirements of Handbook 44 are included in the appropriate section this document. They are shaded, bordered, and numbered in the 4002 series to differentiate them from the Handbook 44 requirements. To find the latest online version of the California Code of Regulations (CCR) Title 4, Division 9, visit the California Office of Administration Law (OAL) at: http://ccr.oal.ca.gov/linkedslice/default.asp?SP=CCR-1000&Action=Welcome The CCR may also be accessed at http://oal.ca.gov/ by selecting the link Titled “California Code of Regulations” under the list of “Sponsored Links” in the left column on the OAL Home page. For information concerning the contents of this document, please contact the Division of Measurement Standards by e-mail at [email protected]. NIST Handbook 44 (2015 Edition) - Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices as adopted by the 98th National Conference on Weights and Measures July 2014 is available at: www.nist.gov/pml/wmd/pubs/hb44.cfm 3.30.
    [Show full text]
  • Challenges and Opportunities of Biomethane for Pipeline Injection In
    CHALLENGES & OPPORTUNITIES OF BIOMETHANE FOR PIPELINE INJECTION IN CALIFORNIA Valentino Tiangco, Ph.D. ER&D Department 15th Annual LMOP Conference and Project Expo Hilton Baltimore Hotel Baltimore, MD January 17-19, 2012 Powering forward. Together. Overview: • SMUD • Benefits • Challenges • Overcoming Challenges • SMUD’s Renewable Energy Mix • Strategic Approach www.smud.org • Opportunities • Summary SMUD – Owned By Customers • Not for Profit, Publicly Owned Utility • Sacramento County (small part of Placer County) • Almost 600,000 Customers; 1.4 Million Population • 6th Largest in U.S. • 7 Member Board of Directors • Elected by Ratepayers • Not a Part of City or County • Manage Balancing Authority in Northern California (BANC) • Low Rates, Innovative & Green! 3 Benefits of Biomethane • Unlike wind and solar, generation from biomethane is not intermittent and can be dispatched to fill-in the gaps and promote system reliability. • Reduces GHG emissions by displacing natural gas and reducing release of methane to the atmosphere. • Increases productive development and use of renewable resources from organic wastes. • Biomethane from renewable sources like dairy digesters and landfills can be a reliable source of renewable fuel that can power the cleanest and most efficient electricity generation facilities in the California. • Biomethane flexibility of use because of transportation and storage capabilities, • The opportunity to use a low cost renewable fuel (biomethane) when firing combined cycle generators thus producing renewable electrons at highest efficiencies, and • Biogas has very low carbon footprint, rated as the lowest carbon producing fuel through the CEC’s proceedings for the Low Carbon Fuel Standard. • Creates local jobs by keeping local power plants operating and keeping electricity costs lower, which helps local businesses to prosper and add jobs.
    [Show full text]
  • Producer Gas
    Scholars' Mine Bachelors Theses Student Theses and Dissertations 1895 Producer gas Edward P. Dwyer Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses Part of the Chemistry Commons, and the Metallurgy Commons Department: Chemistry; Materials Science and Engineering Recommended Citation Dwyer, Edward P., "Producer gas" (1895). Bachelors Theses. 344. https://scholarsmine.mst.edu/bachelors_theses/344 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Thesis FOR DEGREE OF BACHELOR OF SCIENCE CHEMISTRY AND METALLURGY 1895 E. P. Dwyer - Producer Gas Here in I have discussed but, the principle producers on the market and they are respectively upon the following pages. Siemens Gas Producer 14-19. Wellmans “ “ 19-21 Daubers “ “ 21-22 Langdons “ “ 22-25 Loomises “ 25-29 Sweets “ “ 29-32 Taylors. “ “ 32-39. Goetzs. No. 4. - Producer Gas Producer gas, so named owing to being produced in special forms of apparatus known as Producers. The fuel is decomposed into combustible gases, whereby most of the C is burnt to CO, whilst the H. either remains free, or is converted into carburretted Hydrogen. Directly above the grate carbonic anhydride is formed but thus is rapidly converted into carbonic oxide; reaction as follows: C 02 + C = 2CO. Amongst these heavy carburetted hydrogen (C2H4) is that which principally increases the value of the gas as fuel and the drier the fuel used the more of the gas is produced.
    [Show full text]
  • Guidelines for Gas Meters & Manifolds
    Guidelines for Gas Meters & Manifolds * By carefully following attached suggestions, you will help us get your meters set on the first trip and avoid costly delays related to return trips (for which you are being charged $65 per trip). CoServ Gas Engineering (940) 270-7585 For Gas Emergencies or Leaks call: (844) 330-0763 CoServ Gas Meters and Manifolds Builder & Customer Requirements 1) Gas Meter Planning Guidelines a. The size of gas metering and regulating facilities varies widely depending upon the gas-load needs of each residence, business or commercial building. Due to the parameters associated with meter and regulator selection, it is imperative that the Customer, or the Customer’s agent, contact the assigned CoServ Gas representative prior to construction to determine the exact requirements for specific installations, including location and space requirements. Consulting with us early in the process may eliminate the need for changes to the gas metering facilities or gas Main Extensions or relocation of gas risers at a later date with additional delays and expense to Builder or Customer. 2) Meter Selection Criteria a. To assure proper operation, each gas meter must be the proper size and type for the maximum gas demand and required pressure. The maximum gas demand is determined by adding the Btu input ratings of all gas burning devices that may possibly be operating simultaneously. Furnaces, space heaters, water heaters, boilers, pool heaters, fireplace logs, gas clothes dryers, gas lights, and gas generators should be included at their maximum input ratings. b. The type of meter installed can also vary depending upon the Customer’s usage factors, e.g., what type of business, hours of operation, critical operations, etc.
    [Show full text]
  • The Potential of Sustainable Biomass Producer Gas As a Waste-To-Energy Alternative in Malaysia
    sustainability Review The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia Jun Sheng Teh 1, Yew Heng Teoh 1,* , Heoy Geok How 2, Thanh Danh Le 3,*, Yeoh Jun Jie Jason 2, Huu Tho Nguyen 4 and Dong Lin Loo 1 1 Engineering Campus, School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia; [email protected] (J.S.T.); [email protected] (D.L.L.) 2 Department of Engineering, School of Engineering, Computing and Built Environment, UOW Malaysia KDU Penang University College, 32 Jalan Anson, Georgetown 10400, Penang, Malaysia; [email protected] (H.G.H.); [email protected] (Y.J.J.J.) 3 Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City 71408, Vietnam 4 Department of Mechatronics Engineering Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 760310, Vietnam; tho.nh@hufi.edu.vn * Correspondence: [email protected] or [email protected] (Y.H.T.); [email protected] (T.D.L.) Abstract: It has been widely accepted worldwide, that the greenhouse effect is by far the most challenging threat in the new century. Renewable energy has been adopted to prevent excessive greenhouse effects, and to enhance sustainable development. Malaysia has a large amount of biomass residue, which provides the country with the much needed support the foreseeable future. This investigation aims to analyze potentials biomass gases from major biomass residues in Malaysia.
    [Show full text]
  • Combustion of Coal Combustion Is a Rapid Chemical Reaction Between Fuel and Oxygen
    Combustion of Coal Combustion is a rapid chemical reaction between fuel and oxygen. When combustible elements of fuel combine with O2, heat energy comes out. During combustion combustible elements like Carbon, Sulfur, Hydrogen etc combine with oxygen and produce respective oxides. The source of oxygen in fuel combustion is air. By volume there is 21% of Oxygen presents in air and by weight it is 23.2%. Although there is 79% (by volume) nitrogen in air but it plays no role in combustion. Actually Nitrogen carries heat produced during combustion to steam boiler stack. As per combustion theory the quantity of air required for combustion is that which provides sufficient O2 to completely oxidize combustible elements of fuel. This quantity of air is normally known as STOICHIOMETRIC AIR requirement. Different types of coal combustion techniques Combustion of Coal Combustion may be defined as the rapid high temperature complicated chemical reaction of oxygen with carbon, hydrogen and sulphur of coal. These reactions follow mainly four steps 1. Formation of coal-oxygen complexes with evolution of heat. 2. Decomposition of these complexes with the generation of CO2 and H2O molecules and formation of carboxyl (COOH), carbonyl (C=O) and phenolic -OH groups along with more heat generation. 3. Decomposition of these groups to produce CO, CO2, H2, H2O and hydrocarbons such as ethane, ethylene, propylene etc. 4. Decomposition of aliphatic structure (relating to or denoting organic compounds in which carbon atoms form open chains (as in the alkanes), not aromatic rings.) with the formation of CO, CO2 and H2O. In low temperatures, the first step is developed faster than others.
    [Show full text]
  • Sub-Metering of Natural Gas Flexible Flow Measurement Delivers Improved Accuracy and Substantial Savings
    WHITEPAPER Sub-Metering of Natural Gas Flexible Flow Measurement Delivers Improved Accuracy and Substantial Savings by: Scott Rouse, VP Product Management, Sierra Instruments, Inc fter a decade of remarkable growth, This natural gas boom highlights the importance A the United States has become the for utility companies to provide homes, world’s number one producer of natural gas, businesses, and mid-to-large size facilities and its largest consumer, with consumption in with accurate natural gas billing. Traditionally, 2019 at 31 trillion cubic feet. This high growth utility companies have used diaphragm meters rate is expected to continue. For example, to measure natural gas usage, which is then electricity generation using natural gas has charged to customers on their monthly energy increased from 17% to 35% of total electrical bill. Although diaphragm meters are a trusted consumption, and is likely to increase to 50% billing mechanism by utility companies, they by mid-century. may not provide customers with the most accurate natural gas bill. Diaphragm meters have SUB-METERING OF NATURAL GAS WHITEPAPER limitations in natural gas measurement. If the WHAT IS NATURAL GAS? diaphragm meter does not ac curately measure Natural gas is the cleanest burning fossil the natural gas, this can result in utility companies fuel, producing by-products of mostly carbon overcharging customers. dioxide and water vapor. It is used extensively To avoid this problem, many mid-to-large-size in power generation, industrial and commercial facilities use flow meters to sub-meter their applications, and for home utility and heating. natural gas usage to validate the diaphragm Natural gas is primarily a mixture of methane, meters’ readings and more efficiently allocate ethane and propane, but those components energy.
    [Show full text]
  • Dissertation Investigation Into Producer Gas
    DISSERTATION INVESTIGATION INTO PRODUCER GAS UTILIZATION IN HIGH PERFORMANCE NATURAL GAS ENGINES Submitted by Daniel M. Wise Department of Mechanical Engineering In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2013 Doctoral Committee: Advisor: Daniel B. Olsen Gary Caille Anthony Marchese Sybil Sharvelle ABSTRACT INVESTIGATION INTO PRODUCER GAS UTILIZATION IN HIGH PERFOMANCE NATURAL GAS ENGINES A wide range of fuels are used in industrial gas fueled engines including well-head gas, pipeline natural gas, producer gas, coal gas, digester gas, landfill gas, and liquefied petroleum gas. Many industrial gas fueled engines operate both at high power density for increased efficiency and at ultra-lean air-fuel ratios for low NOx emissions. These two conditions require that engine operation occurs in a narrow air-fuel ratio band between the limits of misfire and the initiation of knock. The ability to characterize these limits for a given fuel is essential for efficient and effective engine operation. This work pursues two primary research objectives: (1) to characterize producer gas blends by developing prognostic tools with respect to a given blend’s resistance to knock and (2) to develop a process to determine knock onset for a given fuel gas through direct indication from pressure transducer data at varied air-fuel ratios (ranging from stoichiometric to ultra-lean) as well as varied intake conditions (ranging from naturally aspirated to boosted intake pressures replicating turbocharged engines) and to quantitatively characterize the knock event using discreet and repeatable metrics derived from the analysis of the data.
    [Show full text]