The Practice of Internal Dosimetry in Nuclear Medicine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of Cardiac Amyloidosis with 99MTC- Pyrophosphate (PYP) Quantitative Spect
Assessment of Cardiac Amyloidosis With 99MTC- pyrophosphate (PYP) Quantitative Spect Chao Ren Peking Union Medical College Hospital Jingyun Ren Peking Union Medical College Hospital Zhuang Tian Peking Union Medical College Hospital Yanrong Du Peking Union Medical College Hospital Zhixin Hao Peking Union Medical College Hospital Zongyao Zhang Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital Wei Fang Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital Fang Li Peking Union Medical College Hospital Shuyang Zhang Peking Union Medical College Hospital Bailing Hsu University of Missouri-Columbia Li Huo ( [email protected] ) Peking Union Medical College Hospital https://orcid.org/0000-0003-1216-083X Original research Keywords: ATTR cardiomyopathy, 99mTc-PYP quantitative SPECT, standardized uptake value, diagnostic feasibility, the operator reproducibility Posted Date: June 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-32649/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Version of Record: A version of this preprint was published on January 7th, 2021. See the published version at https://doi.org/10.1186/s40658-020-00342-7. Page 2/25 Abstract Background: 99mTc-PYP scintigraphy provides differential diagnosis of ATTR cardiomyopathy (ATTR-CM) from lightchain cardiac amyloidosis and other myocardial disorders without biopsy. This study was aimed to assess the diagnostic feasibility and the operator reproducibility of 99mTc-PYP quantitative SPECT. Method:Thirty-seven consecutive patients underwent a99mTc-PYP thorax planar scan followed by SPECT and CT scans to diagnose suspected ATTR-CM were enrolled. For the quantitative SPECT, phantom studies were initially performed to determine the image conversion factor (ICF) and partial volume correction (PVC) factor to recover 99mTc-PYP activity concentration in myocardium for calculating the standardized uptake value (SUV) (unit: g/ml). -
Brain Imaging
Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters. -
Vizamyl, INN-Flutemetamol (18F)
26 June 2014 EMA/546752/2014 Committee for Medicinal Products for Human Use (CHMP) Vizamyl flutemetamol (18F) Procedure No. EMEA/H/C/002553 Marketing authorisation holder: GE HEALTHCARE LIMITED Assessment report for an initial marketing authorisation application Assessment report as adopted by the CHMP with all commercially confidential information deleted 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ...................................................................................... 7 1.2. Manufacturers ...................................................................................................... 8 1.3. Steps taken for the assessment of the product ......................................................... 8 2. Scientific discussion ................................................................................ 9 2.1. Introduction......................................................................................................... 9 2.2. Quality aspects .................................................................................................. 11 2.2.1. Introduction ................................................................................................... -
NEURACEQ Safely and Effectively
HIGHLIGHTS OF PRESCRIBING INFORMATION • Obtain 15-20 minute PET images starting from 45 to 130 minutes after These highlights do not include all the information needed to use intravenous administration (2.3) NEURACEQ safely and effectively. See full prescribing information for • Image interpretation: refer to full prescribing information (2.4) NEURACEQ. • The radiation absorbed dose from a 300 MBq (8.1 mCi) dose of Neuraceq is 5.8 mSv in an adult (2.5). NEURACEQ (florbetaben F 18 injection), for intravenous use Initial U.S. Approval: 2014 --------------------- DOSAGE FORMS AND STRENGTHS ------------------- 30 mL multi-dose vials containing a clear injectable solution at a strength of --------------------------- INDICATIONS AND USAGE -------------------------- 50 to 5000 MBq/mL (1.4 to135 mCi/mL) florbetaben F18 at End Of Synthesis Neuraceq™ is a radioactive diagnostic agent indicated for Positron Emission (EOS). At time of administration 300 MBq (8.1 mCi) are contained in up to Tomography (PET) imaging of the brain to estimate β-amyloid neuritic plaque 10 mL solution for injection (3) density in adult patients with cognitive impairment who are being evaluated for Alzheimer’s Disease (AD) and other causes of cognitive decline. A ------------------------------ CONTRAINDICATIONS ---------------------------- negative Neuraceq scan indicates sparse to no neuritic plaques and is None (4) inconsistent with a neuropathological diagnosis of AD at the time of image acquisition; a negative scan result reduces the likelihood that a patient’s ----------------------- WARNINGS AND PRECAUTIONS --------------------- cognitive impairment is due to AD. A positive Neuraceq scan indicates • Image interpretation errors (especially false positives) have been observed moderate to frequent amyloid neuritic plaques; neuropathological examination (5.1). -
Northern Ireland Nuclear Medicine Equipment Survey, 2017
Northern Ireland nuclear medicine equipment survey 2017 Northern Ireland nuclear medicine equipment survey 2017 About Public Health England Public Health England exists to protect and improve the nation’s health and wellbeing and reduce health inequalities. We do this through world-leading science, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support. Public Health England Wellington House 133-155 Waterloo Road London SE1 8UG Tel: 020 7654 8000 www.gov.uk/phe Twitter: @PHE_uk Facebook: www.facebook.com/PublicHealthEngland © Crown copyright 2019 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third-party copyright information you will need to obtain permission from the copyright holders concerned. Published January 2019 PHE publications PHE supports the UN Sustainable Development Goals 2 Northern Ireland nuclear medicine equipment survey 2017 Contents Executive summary 4 Introduction 5 Methodology 6 Number of procedures performed 7 Procedures per scanner 8 Age of Scanners 9 Procedures reported for each organ or system 10 Procedures reported -
October 2019 Rates Medicare Hospital Outpatient Prospective Payment System HOPPS (APC) Medicine Procedures, Radiopharmaceuticals, and Drugs
WWW.SNMMI.ORG Final Rule 2020 Compared to October 2019 Rates Medicare Hospital Outpatient Prospective Payment System HOPPS (APC) Medicine Procedures, Radiopharmaceuticals, and Drugs October 2019 Rates CY 2020 Final Rule Updated April 2, 2020 Status Item/Code/Service OPPS Payment Status Indicator Services furnished to a hospital outpatient that are paid under a fee schedule or Not paid under OPPS. Paid by MACs under a fee schedule or payment system other than OPPS. payment system other than OPPS,* for example: A ● Separately Payable Clinical Diagnostic Laboratory Services (Not subject to Services are subject to deductible or coinsurance unless indicated otherwise. deductible or coinsurance.) D Discontinued Codes Not paid under OPPS or any other Medicare payment system. Items and Services: ● Not covered by any Medicare outpatient benefit category Not paid by Medicare when submitted on outpatient claims (any outpatient bill E1 ● Statutorily excluded by Medicare type). ● Not reasonable and necessary Items and Services: Not paid by Medicare when submitted on outpatient claims (any outpatient bill ● for which pricing information and claims data are not E2 type). available G Pass-Through Drug/ Biologicals Paid under OPPS; separate APC payment NonPass-Through Drugs and nonimplantable Biologicals, including Therapeutic Paid under OPPS; separate APC payment K Radiopharmaceuticals Paid under OPPS; payment is packaged into payment for other services. Items and Services packaged into APC rate N Therefore, there is no separate APC payment. Paid under OPPS; Addendum B displays APC assignments when services are separately payable. (1) Packaged APC payment if billed on the same claim as a HCPCS code STV-Packaged assigned status indicator “S,” “T,” or “V.” Q1 Codes (2) Composite APC payment if billed with specific combinations of services based on OPPS composite-specific payment criteria. -
Mechanisms of Radiopharmaceutical Localization
.::VOLUME 16, LESSON 4::. Mechanisms of Radiopharmaceutical Localization Continuing Education for Nuclear Pharmacists And Nuclear Medicine Professionals By James A. Ponto, MS, RPh, BCNP Chief Nuclear Pharmacists, University of Iowa Hospitals and Clinics and Professor (Clinical), University of Iowa Hospitals and Clinics The University of New Mexico Health Sciences Center, College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. Program No. 0039-000-12-164- H04-P 2.5 Contact Hours or .25 CEUs. Initial release date: 7/19/2012 -- Intentionally left blank -- Mechanisms of Radiopharmaceutical Localization By James A. Ponto, MS, RPh, BCNP Editor, CENP Jeffrey Norenberg, MS, PharmD, BCNP, FASHP, FAPhA UNM College of Pharmacy Editorial Board Stephen Dragotakes, RPh, BCNP, FAPhA Michael Mosley, RPh, BCNP Neil Petry, RPh, MS, BCNP, FAPhA James Ponto, MS, RPh, BCNP, FAPhA Tim Quinton, PharmD, BCNP, FAPhA S. Duann Vanderslice, RPh, BCNP, FAPhA John Yuen, PharmD, BCNP Advisory Board Dave Engstrom, PharmD, BCNP Vivian Loveless, PharmD, BCNP, FAPhA Brigette Nelson, MS, PharmD, BCNP Brantley Strickland, BCNP Susan Lardner, BCNP Christine Brown, BCNP Director, CENP Administrator, CE & Web Publisher Kristina Wittstrom, MS, RPh, BCNP, FAPhA Christina Muñoz, M.A. UNM College of Pharmacy UNM College of Pharmacy While the advice and information in this publication are believed to be true and accurate at the time of press, the author(s), editors, or the publisher cannot accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, expressed or implied, with respect to the material contained herein. -
FDG PET for the Diagnosis of Dementia
PET for Clinicians Christopher C. Rowe MD FRACP Austin Health University of Melbourne PET in dementia is not new but only in recent years, as PET has become more accessible, has a clinical role emerged. Austin Health, Melbourne does 1000 brain PET per year. Parieto-temporal hypometabolism in AD Clinical Diagnosis of AD • Sensitivity 80%, Specificity 70% (Knopfman, Neurology 2001- average of 13 studies with pathological confirmation) i.e. diagnosis requires dementia and only has moderate accuracy Mild Cognitive Impairment (MCI) does not equate to early AD • Only 50% of MCI will progress to AD dementia • 15-20% have other dementias. • 35-40% do not develop dementia. We need biomarkers for early diagnosis of AD and other dementias! New Research Criteria for AD (2007)* • dementia or significant functional impairment is NOT required • clear history of progressive cognitive decline • objective evidence from psychometric tests of episodic memory impairment • characteristic abnormalities in the CSF or in neuroimaging studies (MRI, FDG-PET, Aβ PET) *Dubois B, Feldman HH, Jacova C, et al. Lancet 2007. FDG PET in Alzheimer’s disease Parietotemporal hypometabolism Reiman EM et al. New Engl J Med 1996;334(12):752–758. View in AC-PC plane bottom of frontal lobe and occipital lobe on same horizontal plane in mid sagittal image Prefrontal Primary sensori-motor cortex Parietal Austin & Repatriation Medical Centre Department of Nuclear Medicine & Centre for PET Reading Brain PET Compare: • parietal vs sensori-motor and frontal • posterior cingulate vs -
SNMMI Fact Sheet Amyloid.Indd
Amyloid PET Imaging INDICATION: • Amyloid imaging radiopharmaceuticals are indicated for Positron Emission Tomography (PET) imaging of the brain to estimate β-amyloid neuritic plaque density in adult patients with cognitive impairment who are being evaluated for Alzheimer’s disease (AD) and other causes of cognitive decline. RADIOPHARMACEUTICALS (FDA APPROVED): • 18F-Florbetapir (Amyvid™, Eli Lilly) • 18F-Florbetaben (NeuraCeq™, Piramal Life Sciences) • 18F-Flutemetamol (Vizamyl™, GE Healthcare) CONTRAINDICATIONS: • Inability to cooperate with PET brain imaging. • Amyloid PET imaging should be performed on a pregnant woman only if there is a clear clinical benefi t. • Previous reaction to the radiopharmaceutical or any excipient. ADVERSE REACTIONS (SEE INDIVIDUAL PACKAGE INSERT FOR COMPLETE LISTINGS): • 18-F Florbetapir (Amyvid™) - headache (<2%), dizziness, nausea (<1%), fatigue (<1%), injection site reaction (<1%). • 18F-Florbetaben (NeuraCeq™) - injection site reactions (<2%) consisting of erythema, irritation and pain. • 18F-Flutemetamol (Vizamyl™) - fl ushing (2%), blood pressure increase (2%), headache (1%), nausea (1%), dizziness (1%) STORAGE: • Store radiopharmaceutical at room temperature. • Radiopharmaceutical is provided in unit dose syringe and must not be diluted. PATIENT PREPARATION: • It is not necessary for patients to be NPO prior to imaging. • It is not necessary to control the post injection conditions (e.g. ambient light, temperature, noise). • It is not necessary to discontinue any medications. • Patient should wear comfortable clothing, with no metal on head (hair clips, earrings, etc.) • If patient is breast feeding, recommend discontinuation of breast feeding for 24 hours after administration of radiopharmaceutical. • It is often useful to engage a family member or caregiver in the process of explaining the scan procedure and assessing the patient’s ability to follow instructions. -
Annual Report 2016 Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital
Moving Annual report 2016 Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital Department of Nuclear Medicine & PET-Centre 2016 Nørrebrogade Building 3, Nørrebrogade , Building 10 Skejby TABLE OF CONTENTS Table of contents Preface ............................................................................................................................................................................................................................................................................................................. 1 Organisation.................................................................................................................................................................................................................................................................................................. 3 Department adresses........................................................................................................................................................................................................................................................................ 3 Organisation chart .............................................................................................................................................................................................................................................................................. 3 Staff ............................................................................................................................................................................................................................................................................................................. -
Amyloid Imaging with 18F-Florbetaben in Alzheimer Disease and Other Dementias
Amyloid Imaging with 18F-Florbetaben in Alzheimer Disease and Other Dementias Victor L. Villemagne1–3, Kevin Ong1,2, Rachel S. Mulligan1, Gerhard Holl4, Svetlana Pejoska1, Gareth Jones1, Graeme O’Keefe1, Uwe Ackerman1, Henri Tochon-Danguy1, J. Gordon Chan1, Cornelia B. Reininger4, Lueder Fels4, Barbara Putz4, Beate Rohde4, Colin L. Masters3, and Christopher C. Rowe1,2 1Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia; 2Department of Medicine, University of Melbourne, Parkville, Victoria, Australia; 3The Mental Health Research Institute of Victoria, Parkville, Victoria, Australia; and 4Bayer Schering Pharma, Berlin, Germany and future treatment of dementias for which Ab may play a Amyloid imaging with 18F-labeled radiotracers will allow wide- role (1). Studies with 11C-Pittsburgh Compound B (11C- spread use, facilitating research, diagnosis, and therapeutic PiB), the most specific and most widely used PET Ab development for Alzheimer disease. The purpose of the study ligand, indicate that Ab imaging may allow earlier diag- program was to compare cortical amyloid deposition using 18F-florbetaben and PET in controls and subjects with mild cog- nosis of Alzheimer disease (AD) pathology (2–4) and ac- nitive impairment (MCI), frontotemporal lobar degeneration curate differential diagnosis of the dementias (2,5,6). (FTLD), dementia with Lewy bodies (DLB), vascular dementia 11C-PiB studies show robust cortical binding in almost all (VaD), Parkinson disease (PD), and Alzheimer disease (AD). AD patients (2,3) and correlate well with reduction in cerebro- Methods: One hundred nine subjects in 3 clinical studies at Aus- spinal fluid Ab42 (7). Binding is associated with cerebral tin Health were reviewed: 32 controls, 20 subjects with MCI, and atrophy as measured by MRI (8) and with episodic memory 30 patients with AD, 11 with FTLD, 7 with DLB, 5 with PD, and 4 with VaD underwent PET after intravenous injection of 300 MBq impairment in apparently healthy elderly individuals and in of 18F-florbetaben. -
Positron Emission Tomography (PET) and Neuroimaging in the Personalized Approach to Neurodegenerative Causes of Dementia
International Journal of Molecular Sciences Review Positron Emission Tomography (PET) and Neuroimaging in the Personalized Approach to Neurodegenerative Causes of Dementia Maria Ricci 1,* , Andrea Cimini 1 , Agostino Chiaravalloti 1,2, Luca Filippi 3 and Orazio Schillaci 1,2 1 Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] (A.C.); [email protected] (A.C.); [email protected] (O.S.) 2 Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy 3 Nuclear Medicine Section, “Santa Maria Goretti” Hospital, 04100 Latina, Italy; lucfi[email protected] * Correspondence: [email protected] Received: 17 September 2020; Accepted: 8 October 2020; Published: 11 October 2020 Abstract: Generally, dementia should be considered an acquired syndrome, with multiple possible causes, rather than a specific disease in itself. The leading causes of dementia are neurodegenerative and non-neurodegenerative alterations. Nevertheless, the neurodegenerative group of diseases that lead to cognitive impairment and dementia includes multiple possibilities or mixed pathologies with personalized treatment management for each cause, even if Alzheimer’s disease is the most common pathology. Therefore, an accurate differential diagnosis is mandatory in order to select the most appropriate therapy approach. The role of personalized assessment in the treatment of dementia is rapidly growing. Neuroimaging is an essential tool for differential diagnosis of multiple causes of dementia and allows a personalized diagnostic and therapeutic protocol based on risk factors that may improve treatment management, especially in early diagnosis during the prodromal stage. The utility of structural and functional imaging could be increased by standardization of acquisition and analysis methods and by the development of algorithms for automated assessment.