A Model Based Approach to Apraxia in Parkinson's Disease

Total Page:16

File Type:pdf, Size:1020Kb

A Model Based Approach to Apraxia in Parkinson's Disease A Model Based Approach to Apraxia in Parkinson’s Disease by Lauren King A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Kinesiology Waterloo, Ontario, Canada, 2010 © Lauren King 2010 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT This thesis provides new insight into how learned skilled movements are affected in a disease with basal ganglia damage, within what task demands these deficits can be detected, and how this detection can occur within the constraints of primary motor symptoms. Hence the purpose of this thesis was threefold. Firstly, the aim was to take a model-based approach to apraxia in PD, in order to determine the nature of the errors in reference to other populations that experience apraxia. Apraxia by definition cannot be the product of primary motor deficits, weakness, sensory loss, or lack of comprehension, therefore the second objective of the study was to detect apraxia while remaining true to these prerequisites. The third objective was to extend the examination of apraxia beyond the upper limbs, and investigate the relationship between upper limb and lower limb apraxia, as well as the relationship between freezing (which shares similarities with gait apraxia) and upper limb and lower apraxia. Overall, the most common pattern of apraxia identified in this PD group was impairment at both pantomime and imitation, suggesting issues with executive function. However, there are other results that suggest an issue with visuomotor transformation may be superimposed on this executive function deficit, including a higher frequency of participants impaired at imitation and a very pronounced impairment at meaningless gestures. To ensure that these deficits are not the product of primary motor symptoms, correlation analyses were conducted between gestural impairment and total motor impairment, cardinal symptom impairment, and degree of asymmetry of these symptoms. While there was a significant correlation of total motor severity and gestural impairment, there were no significant correlations between cardinal motor symptoms and total gestural impairment, or limb specific gestural impairment and the degree of motor asymmetry. These results indicate that the outward manifestation of primary motor symptoms does not necessarily correspond with iii gestural impairment, however the overall relationship (total UPDRS) hints to an indirect influence of the basal ganglia on healthy praxis. With regards to the third objective, the lower limb assessment turned out to be very consistent with the results yielded in the upper limb assessment. While there were similar frequencies of impairment in both pantomime and imitation, the upper limb and lower limbs assessments were found to correlate very strongly. This is a promising result, because the lower limb battery is easy to administer, there are typically less motor symptoms to deal with, and preliminary analyses show a high inter-rater reliability established. Furthermore, there was a higher proportion of freezers with apraxia compared to non-freezers, and this is the first study to reveal this. All these results taken together are evidence of similar underlying mechanisms for these impairments (upper limb apraxia, lower limb apraxia, and freezing). The model-based approach to studying apraxia in both the upper and lower limbs of PD, enables us to determine the frequencies, patterns and severities of apraxia, and better equips us to predict which systems are more susceptible to deterioration. This thesis project has hopefully created a framework for determining coping strategies and future interventions for apraxia, specifically in basal ganglia disordered populations. iv ACKNOWLEDGEMENTS For my Masters I had the privilege of having not one, but two very talented supervisors. Dr. Quincy Almeida took me under his wing when I was an undergraduate, and has taught me too many skills to mention here. I admire your passion for research and the difference you’ve made for so many people. Most importantly, I would like to say thank you for forcing me to strive for a standard far beyond ordinary, and for setting the example to do so. Dr. Eric Roy has been a great mentor since I began graduate studies at University of Waterloo. I am so grateful to be one of the many to experience the way your great mind works, but to also get to know you personally for your huge heart. Thank you for all of your insight and the opportunities you have created for me. I would also like to extend thanks to Pam Bryden and Richard Staines for sitting on my thesis committee and lending their expertise, but for also being helpful and down to earth. The team of students and researchers at the Sun Life Movement Disorders Research and Rehabilitation Centre (MDRC), including Michael Sage, Chad Lebold, Rose Johnston, Rachel van Oostveen, Matt Brown, Trish Knobl, and Rachel Boehm deserve a hefty thank you for their assistance in a number of areas, but especially moral support. A sincere thank you goes to Mark Gravely, and Vessela Stamenova for their knowledge and training. Also thank you to the wonderful friends, students and faculty at University of Waterloo for their contributions to the project, as well as my numerous student volunteers (too many to name here). Thank you to Rhiannon Rose and Christian de Milleville for their help establishing inter-rater reliability for the lower limb apraxia battery. I am also greatly indebted to Craig MacDonald for dealing with all my computer problems, and always doing so with a smile. A very special thank you to all the participants involved in project, for not only your participation but your enthusiasm and determination in better understanding Parkinson’s disease. You are a warm and constant reminder for why I am here. I would not be who and where I am without my parents, David and Patricia, who support me morally, financially, and with their physical presence in just about everything I do. Finally my greatest reserve of gratitude goes to my husband and best friend Dave, as this thesis would not have seen completion without your encouragement and your faith in me when my motivation dwindled at times. Thank you for your unwavering support and love throughout the many ups and downs of this project. This project is dedicated to Kay Onazuk and her ongoing battle with PD that has now spanned over two decades. I love you with all my heart. There is not enough space to personally thank everyone that has positively impacted this project, so for those unnamed, I am truly grateful for the contribution you have made, big or small. v TABLE OF CONTENTS AUTHOR'S DECLARATION ................................................................................................................... ii ABSTRACT ................................................................................................................................................ iii ACKNOWLEDGEMENTS ....................................................................................................................... v TABLE OF CONTENTS .......................................................................................................................... vi LIST OF TABLES ................................................................................................................................... viii LIST OF FIGURES ................................................................................................................................... ix CHAPTER 1: THESIS INTRODUCTION & OBJECTIVES ................................................................ 1 1.1 AN OVERVIEW OF LIMB APRAXIA ................................................................................................. 2 1.2 MODELS OF APRAXIA ..................................................................................................................... 4 1.3 AN OVERVIEW OF PARKINSON’S DISEASE ................................................................................ 11 1.4 THE ROLE OF THE BASAL GANGLIA IN PRAXIS ........................................................................ 14 1.5 APRAXIA IN DISEASE OF THE BASAL GANGLIA ........................................................................ 17 1.6 PROPOSED RESEARCH ................................................................................................................. 18 CHAPTER 2: A MODEL-BASED APPROACH TO APRAXIA IN PARKINSON’S DISEASE .... 20 2.1 INTRODUCTION ............................................................................................................................. 20 2.2 METHODS ........................................................................................................................................ 26 2.3 RESULTS .......................................................................................................................................... 31 2.4 DISCUSSION .................................................................................................................................... 41 CHAPTER 3: A NOVEL APPROACH FOR DISCERNING APRAXIA FROM PRIMARY MOTOR DEFICITS IN PARKINSON’S DISEASE ............................................................................. 49 3.1 INTRODUCTION ............................................................................................................................
Recommended publications
  • The Alien Hand Syndrome: Classification of Forms Reported and Discussion of a New Condition
    Neurol Sci (2003) 24:252–257 DOI 10.1007/s10072-003-0149-4 ORIGINAL F. Aboitiz • X. Carrasco • C. Schröter • D. Zaidel • E. Zaidel • M. Lavados The alien hand syndrome: classification of forms reported and discussion of a new condition Received: 24 February 2003 / Accepted in revised form: 14 June 2003 Abstract The term “alien hand” refers to a variety of clini- gories: (i) diagonistic dyspraxia and related syndromes, (ii) cal conditions whose common characteristic is the uncon- alien hand, (iii) way-ward hand and related syndromes, (iv) trolled behavior or the feeling of strangeness of one extremity, supernumerary hands and (v) agonistic dyspraxia. most commonly the left hand. A common classification distin- guishes between the posterior or sensory form of the alien Key words Alien hand • Agonistic dyspraxia • Corpus callo- hand, and the anterior or motor form of this condition. sum • Diagonistic dyspraxia • Frontal lobe • Parietal lobe • However, there are inconsistencies, such as the phenomenon Split brain of diagonistic dyspraxia, which is largely a motor syndrome despite being more frequently associated with posterior cal- losal lesions. We discuss critically the existing nomenclature and we also describe a case recently reported by us which does Introduction not fit any previously reported condition, termed agonistic dyspraxia. We propose that the cases of alien hand described A large variety of complex, abnormal, involuntary motor in the literature can be classified into at least five broad cate- behaviors have been described following callosal lesions which may or may not be accompained by hemispheric dam- age, especially in the frontal medial region. Although the dif- ferent terminologies used to describe these movements attempt to address their clinical specificity, there is a notice- F.
    [Show full text]
  • THE CLINICAL ASSESSMENT of the PATIENT with EARLY DEMENTIA S Cooper, J D W Greene V15
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.081133 on 16 November 2005. Downloaded from THE CLINICAL ASSESSMENT OF THE PATIENT WITH EARLY DEMENTIA S Cooper, J D W Greene v15 J Neurol Neurosurg Psychiatry 2005;76(Suppl V):v15–v24. doi: 10.1136/jnnp.2005.081133 ementia is a clinical state characterised by a loss of function in at least two cognitive domains. When making a diagnosis of dementia, features to look for include memory Dimpairment and at least one of the following: aphasia, apraxia, agnosia and/or disturbances in executive functioning. To be significant the impairments should be severe enough to cause problems with social and occupational functioning and the decline must have occurred from a previously higher level. It is important to exclude delirium when considering such a diagnosis. When approaching the patient with a possible dementia, taking a careful history is paramount. Clues to the nature and aetiology of the disorder are often found following careful consultation with the patient and carer. A focused cognitive and physical examination is useful and the presence of specific features may aid in diagnosis. Certain investigations are mandatory and additional tests are recommended if the history and examination indicate particular aetiologies. It is useful when assessing a patient with cognitive impairment in the clinic to consider the following straightforward questions: c Is the patient demented? c If so, does the loss of function conform to a characteristic pattern? c Does the pattern of dementia conform to a particular pattern? c What is the likely disease process responsible for the dementia? An understanding of cognitive function and its anatomical correlates is necessary in order to ascertain which brain areas are affected.
    [Show full text]
  • Association of Ideomotor Apraxia with Frontal Gray Matter Volume Loss in Corticobasal Syndrome
    ORIGINAL CONTRIBUTION Association of Ideomotor Apraxia With Frontal Gray Matter Volume Loss in Corticobasal Syndrome Edward D. Huey, MD; Matteo Pardini, MD; Alyson Cavanagh, BS; Eric M. Wassermann, MD; Dimitrios Kapogiannis, MD; Salvatore Spina, MD; Bernardino Ghetti, MD; Jordan Grafman, PhD Objective: To determine the brain areas associated with matter volume in the left supplemental motor area, pre- specific components of ideomotor apraxia (IMA) in cor- motor cortex, and caudate nucleus of patients with CBS. ticobasal syndrome (CBS). The overall degree of apraxia was independent of the side of motor impairment. Praxis to imitation (vs command) Design: Case-control and cross-sectional study. was particularly impaired in the patients with CBS. Pa- tients demonstrated equal impairment in transitive and Participants: Forty-eight patients with CBS and 14 con- intransitive praxis. trol subjects. Conclusions: In patients with CBS, IMA is associated with Intervention: Administration of the Test of Oral and left posterior frontal cortical and subcortical volume loss. Limb Apraxia. Despite showing left frontal volume loss associated with IMA, patients with CBS have particularly impaired imita- Main Outcome Measures: Differences between pa- tion of gestures. These findings suggest either that the IMA tients with CBS and healthy controls and associations be- of CBS affects a route of praxis that bypasses motor en- tween areas of gray matter volume and IMA determined grams or that motor engrams are affected but that they ex- by voxel-based morphometry
    [Show full text]
  • Apraxia Neurology, Neuropsychology and Rehabilitation
    Apraxia Neurology, Neuropsychology and Rehabilitation Jon Marsden Professor of Rehabilitation School of Health Professions Tool Use D. Stout, T. Chaminade / Neuropsychologia 45 (2007) 1091–1100 http://www.bradshawfoundation.com/origins/oldowan_stone_tools.php Action Steams in the Brain Apraxia Definitions, Prevalence and Impact Ideomotor Ideational Apraxia Apraxia Rehabilitation and Recovery of Apraxia Action Streams in the Brain What and How in the Visual System Posterior Parietal Cortex Dorsal stream Primary /Secondary Retina LGNd Visual Cortex Ventral stream Inferotemporal cortex Goodale et al (1996) In Hand and Brain. Visuomotor Control REACHING GRASPING PE-F2 AIP-F5 Directional Transforming visual Coding to objects intrinsic In extra-personal Object attributes into Space Motor commands Superior Longitudinal Fasciculus Rizzolatti and Luppino TOOL MANPULATION (2001), Neuron 31 889-901 VIP-F4 Bimodal receptive fields Sensorimotor Transformation RF altered by tool use in Parieto-Frontal Circuits Modification of Body Schema by Tools Visual receptive Field Somatosensory Receptive Field Inter-parietal Neurons Maravita and Iriki 204 TICS 79-86 Action Streams in the brain Bilateral Dorso-dorsal system “Grasp” (actions to visual targets) X2 action systems Vs ventral and Left lateralised Ventrodorsal dorsal stream system Interaction “Use” devoted to skilled functional Adapted from Liepmann 1920 Binkofski et al 2013 Brain and Language 127 22-229 object use What Is Apraxia Definitions, Prevalence and Impact What is Apraxia? A disorder of skilled
    [Show full text]
  • Functional Brain Imaging in Apraxia
    OBSERVATION Functional Brain Imaging in Apraxia David A. Kareken, PhD; Frederick Unverzagt, PhD; Karen Caldemeyer, MD; Martin R. Farlow, MD; Gary D. Hutchins, PhD Background: An extensive literature describes struc- sults of the neurological examination were normal. There tural lesions in apraxia, but few studies have used func- was ideomotor apraxia of both hands (command, imita- tional neuroimaging. We used positron emission tomog- tion, and object) and buccofacial apraxia. The patient raphy (PET) to characterize relative cerebral glucose could recognize meaningful gestures performed by the metabolism in a 65-year-old, right-handed woman with examiner and discriminate between his accurate and awk- progressive decline in ability to manipulate objects, write, ward pantomime. The magnetic resonance image showed and articulate speech. moderate generalized atrophy and mild ischemic changes. Positron emission tomographic scans showed abnormal Objective: To characterize functional brain organiza- fludeoxyglucose F 18 uptake in the posterior frontal, tion in apraxia. supplementary motor, and parietal regions, the left af- fected more than the right. Focal metabolic deficit was Design and Methods: The patient underwent a neu- present in the angular gyrus, an area hypothesized to store rological examination, neuropsychological testing, mag- conceptual knowledge of skilled movement. netic resonance imaging, and fludeoxyglucose F 18 PET. The patient’s magnetic resonance image was coregis- Conclusions: Greater parietal than frontal physiologi- tered to her PET image, which was compared with the cal dysfunction and preserved gesture recognition are not PET images of 7 right-handed, healthy controls. Hemi- consistent with the theory that knowledge of limb praxis spheric regions of interest were normalized by calcrine is stored in the dominant parietal cortex.
    [Show full text]
  • The Nature of Apraxia in Corticobasal Degeneration
    Journal ofNeurology, Neurosurgery, and Psychiatry 1994;57:455-459 455 The nature of apraxia in corticobasal J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.4.455 on 1 April 1994. Downloaded from degeneration R Leiguarda, A J Lees, M Merello, S Starkstein, C D Marsden Abstract shows a combination of parietal and frontal Although apraxia is one of the most fre- hypometabolism and an asymmetrical quent signs in corticobasal degeneration, decrease of fluorodopa uptake in the striatum the phenomenology of this disorder has and medial frontal cortex.378 not been formally examined. Hence 10 When fully developed, the disorder has a patients with corticobasal degeneration distinctive clinical picture, but the initial were studied with a standardised evalua- manifestations of basal ganglia dysfunction tion for different types of apraxia. To may be confused with other akinetic-rigid minimise the confounding effects of the syndromes. Therefore, findings such as primary motor disorder, apraxia was apraxia are essential for the clinical assessed in the least affected limb. diagnosis.' 57 Whereas none of the patients showed The pathological process in corticobasal buccofacial apraxia, seven showed degeneration affects many brain structures deficits on tests ofideomotor apraxia and involved in praxic functions (parietal and movement imitation, four on tests of non-primary motor cortex). Apraxia has been sequential arm movements (all of whom described in about 80% of patients, but the had ideomotor apraxia), and three on nature of this deficit has not been systemati- tests of ideational apraxia (all of whom cally examined.'- We have tested 10 patients had ideomotor apraxia). Ideomotor with corticobasal degeneration for the pres- apraxia significantly correlated with ence of buccofacial apraxia, ideomotor deficit in both the mini mental state apraxia, and ideational apraxia, and have cor- examination and in a task sensitive to related these phenomena with other cardinal frontal lobe dysfunction (picture features of the disorder.
    [Show full text]
  • A Dictionary of Neurological Signs.Pdf
    A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A.J. LARNER MA, MD, MRCP (UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. 123 Andrew J. Larner MA MD MRCP (UK) DHMSA Walton Centre for Neurology & Neurosurgery Lower Lane L9 7LJ Liverpool, UK ISBN 978-1-4419-7094-7 e-ISBN 978-1-4419-7095-4 DOI 10.1007/978-1-4419-7095-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010937226 © Springer Science+Business Media, LLC 2001, 2006, 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
    [Show full text]
  • Deconstructing Apraxia: Understanding Disorders of Intentional Movement After Stroke Lisa Koskia,B, Marco Iacobonia,C and John C
    Deconstructing apraxia: understanding disorders of intentional movement after stroke Lisa Koskia,b, Marco Iacobonia,c and John C. Mazziottaa,b,d,e Impairments in praxic functioning are common after stroke, most Introduction frequently when the left hemisphere is affected. Several recent Apraxia is de®ned as a de®cit in the ability to understand studies of apraxia after stroke have made advances in an action or to perform an action in response to verbal understanding the right hemisphere contribution to praxis, command or in imitation (e.g. wave goodbye, pantomime particularly for the performance of novel actions. Moreover, use of a hammer), in the absence of basic sensory or quantitative lesion analysis in stroke patients indicates the motor impairments. This de®cit may be conceptualized importance of cortical regions such as the intraparietal sulcus as a de®cit in the mental representation of speci®c and the middle frontal gyrus for subserving praxic function. aspects of an action. We will use the term apraxia here, Complex neuropsychological models have been developed to although most patients show only partial effects and account for the many dissociations observed in the types of might therefore be considered dyspraxic, rather than errors observed in stroke patients. Relatively lacking, however, apraxic. Although apraxia is most commonly associated are models that attempt to relate the neurological data to what is with strokes affecting the left parietal lobe, it may also known about praxis from functional neuroimaging in normal occur in lesions to the right parietal lobe, the temporal or subjects and from physiological studies in the monkey.
    [Show full text]
  • A Model Based Approach to Apraxia in Parkinson's Disease
    A Model Based Approach to Apraxia in Parkinson’s Disease by Lauren King A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Kinesiology Waterloo, Ontario, Canada, 2010 © Lauren King 2010 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT This thesis provides new insight into how learned skilled movements are affected in a disease with basal ganglia damage, within what task demands these deficits can be detected, and how this detection can occur within the constraints of primary motor symptoms. Hence the purpose of this thesis was threefold. Firstly, the aim was to take a model-based approach to apraxia in PD, in order to determine the nature of the errors in reference to other populations that experience apraxia. Apraxia by definition cannot be the product of primary motor deficits, weakness, sensory loss, or lack of comprehension, therefore the second objective of the study was to detect apraxia while remaining true to these prerequisites. The third objective was to extend the examination of apraxia beyond the upper limbs, and investigate the relationship between upper limb and lower limb apraxia, as well as the relationship between freezing (which shares similarities with gait apraxia) and upper limb and lower apraxia. Overall, the most common pattern of apraxia identified in this PD group was impairment at both pantomime and imitation, suggesting issues with executive function.
    [Show full text]
  • Correlation Between Assessments of Arm and Leg Ideomotor Apraxia in Hemiplegic Stroke Patients
    J. Phys. Ther. Sci. 24: 187–190, 2012 Correlation between Assessments of Arm and Leg Ideomotor Apraxia in Hemiplegic Stroke Patients JUNG WON KWON, PT, MS1), SANG YOUNG PARK, PT, MS1), SUNG MIN SON, PT, MS1), CHUNG SUN KIM, PT, PhD2) 1) Department of Rehabilitation Science, Graduate School, Daegu University 2) Department of Physical Therapy, College of Rehabilitation Science, Daegu University: 15 Jilyang, Gyeongsan-si, Kyeongbuk, 712-714, Republic of Korea. TEL: +82 53-850-4668, FAX: +82 53-850-4359, E-mail: [email protected] Abstract. [Purpose] Ideomotor apraxia (IMA) is a disorder characterized by spatial or temporal errors in cor- rectly performing intentional movements and making meaningful gestures. This study was performed to determine whether the arm IMA scores can be used to predict the leg IMA scores using the IMA test for the upper and lower limbs. [Subjects and Methods] Thirty stroke patients that showed complete paralysis of a hemiplegic limb were recruited for this study. All patients were right-handed with no unilateral spatial neglect or severe cognitive impair- ment. IMA of the upper and lower limbs was assessed by the arm and leg IMA test. Each test has 12 items, which require patients to reproduce movements by imitation immediately after presentation using the limb ipsilateral to the lesion. [Results] The arm IMA test showed a significant correlation with the leg IMA test. The leg IMA score was predicted by the arm IMA score according to a simple regression model that showed a significant coefficient of simple determination. [Conclusion] We found that the score of the arm IMA test is similar to the score of the leg IMA test in hemiplegic stroke patients.
    [Show full text]
  • Neuropsychiatric Features of Corticobasal Degeneration
    J Neurol Neurosurg Psychiatry 1998;65:717–721 717 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.65.5.717 on 1 November 1998. Downloaded from Neuropsychiatric features of corticobasal degeneration Irene Litvan, JeVrey L Cummings, Michael Mega Abstract Corticobasal degeneration (CBD) is a neuro- Objective—To characterise the neuropsy- degenerative disorder characterised clinically chiatric symptoms of patients with corti- by steadily progressive motor (for example, cobasal degeneration (CBD). dystonia, asymmetric parkinsonism not ben- Methods—The neuropsychiatric inven- efitting from levodopa therapy, myoclonus, tory (NPI), a tool with established validity balance disturbances, and pyramidal signs) and and reliability, was administered to 15 cognitive (for example, ideomotor apraxia, patients with CBD (mean (SEM), age 67.9 alien hand syndrome, aphasia, visual and (2) years); 34 patients with progressive sensory neglect) disturbances presenting after supranuclear palsy (PSP) (66.6 (1.2) the age of 40.12Neuropathologically, it features years); and 25 controls (70 (0.8) years), circumscribed parietal or frontoparietal atro- matched for age and education. Both phy, severe cortical neuronal loss, and intense patient groups had similar duration of astrogliosis, spongiosis, swollen and achro- symptoms and mini mental state exam- matic neurons (ballooned cells), neuropil ination scores. Semantic fluency and threads, and occasionally, neurofibrillary tan- motor impairment were also assessed. gles. In addition, basophilic argyrophilic and Results—Patients with CBD exhibited tau protein positive inclusions are found in the depression (73%), apathy (40%), irritabil- neurons of the substantia nigra and basal gan- ity (20%), and agitation (20%) but less glia (subthalamic nucleus, striatum, and palli- often had anxiety, disinhibition, delusions, dum), and also may be present along the den- or aberrant motor behaviour (for exam- tatorubrothalamic tracts.
    [Show full text]
  • Natural History and Survival of 14 Patients with Corticobasal Degeneration Confirmed at Postmortem Examination
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.64.2.184 on 1 February 1998. Downloaded from 184 J Neurol Neurosurg Psychiatry 1998;64:184–189 Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination G K Wenning, I Litvan, J Jankovic, R Granata, C A Mangone, A McKee, W Poewe, K Jellinger, K Ray Chaudhuri, L D’Olhaberriague, RKBPearce Abstract Keywords: corticobasal degeneration; atypical parkin- Objective—To analyse the natural history sonism; survival; natural history; clinicopathological and survival of corticobasal degeneration study by investigating the clinical features of 14 cases confirmed by postmortem examin- Department of Corticobasal degeneration is increasingly rec- Neurology, University ation. ognised as a distinctive neuronal multisystem Hospital, Innsbruck, Methods—Patients with definite cortico- degeneration presenting as an atypical parkin- Austria basal degeneration were selected from the 12 G K Wenning sonian syndrome. Although several charac- research and clinical files of seven tertiary teristic clinical features have been proposed, R Granata medical centres in Austria, the United W Poewe such as unilateral levodopa unreponsive aki- Kingdom, and the United States. Clinical nesia and rigidity, dystonia, or myoclonus, as Neuroepidemiology features were analysed in detail. well as cortical signs such as ideomotor apraxia Branch, National Results—The sample consisted of eight and cortical sensory loss,13 many patients are Institute of female and six male patients; mean age at misdiagnosed during life as having Parkinson’s Neurological Disorders symptom onset was 63 (SD 7.7) years, and and Stroke, National disease, progressive supranuclear palsy, multi- Institute of Health, mean disease duration was 7.9 (SD 2.6) ple system atrophy, or some other neurodegen- Bethesda, Maryland, years.
    [Show full text]