Breeding and Genetic Resources of Five-Needle Pines: Growth, Adaptability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ethno Botanical Polypharmacy of Traditional Healers in Wayanad (Kerala) to Treat Type 2 Diabetes
Indian Journal of Traditional Knowledge Vol. 11(4), October 2012, pp. 667-673 Ethno Botanical Polypharmacy of Traditional Healers in Wayanad (Kerala) to treat type 2 diabetes Dilip Kumar EK & Janardhana GR* Phytopharmacology Laboratory, Department of Studies in Botany University of Mysore, Manasagangothri, Mysore-570006, Karnataka, India E-mail: [email protected] Received 30.06.10, revised 15.05.12 The aboriginal medical system prevalent among traditional healers of Wayanad has demonstrated a good practice, so bright future in the therapy of type 2 diabetes. Therefore, present study focused on identification validation and documentation such Ethno botanical polypharmacy prevalent in the district. A total of 47 species belonging to 44 genera comes under 29 families were identified being utilized in 23 different compound medicinal recipes for diabetic healthcare in Wayanad. These preparations and the herbal ingredients need scientific evaluation about their mechanism of action in living organism in heath as well as disease condition to confirm their activity against type 2 diabetes. Keywords: Type 2 diabetes, Traditional medicine, Polypharmacy, Wayanad district IPC Int. Cl.8: A61K, A61K 36/00, A01D 16/02, A01D 16/03 Local herbal healers of Wayanad (Kerala), India have communities that directly depend on it. The present numerous prescriptions aims directly to treat and study documented some of the ethno botanical manage type 2 diabetes (old age diabetes). This remedies for the management of diabetes so as includes over 150 herbal preparations including to protect it within the aboriginal repository of simple and compound folk recipes and diets. This knowledge (ARK) programme and also shed light traditional medical knowledge has demonstrated a on a traditional culture that believes that a healthy potent therapeutic system for the management of lifestyle is found only at a healthy environment 1. -
Cytospora Canker
report on RPD No. 604 PLANT April 1996 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CYTOSPORA OR LEUCOSTOMA CANKER OF SPRUCE Cytospora or Leucostoma canker, the most common and damaging disease of spruce, is caused by the fungus Leucocytospora kunzei, synonym Cytospora kunzei (teleomorph or sexual state Leucostoma kunzei, synonym Valsa kunzei). This canker occurs on several conifers from New England to the western United States. Colo- rado or Colorado blue (Picea pungens) and Norway spruce (Picea abies), used for ornament and in wind- breaks, are the species most commonly affected in Illinois. The disease has reached epidemic proportions on Engelmann spruce (Picea engelmannii) and Douglas- fir (Pseudotsuga menziesii) in the eastern Rocky Mountains due to a succession of dry years in the area. Other trees reported as susceptible to the disease are given in Table 1. Spruce trees less than 10 to 15 years old usually do not have Cytospora canker. In landscape nurseries, how- ever, small branches of young Colorado blue and oc- casionally white spruces may be killed. Three varieties of Leucostoma kunzei are recognized by some spec- ialists: var. piceae on spruces, var. superficialis on pines, and var. kunzei on other conifers. Figure 1. Colorado spruce affected by Cytospora Dead and dying branches call attention to Cytospora or canker. Leucostoma canker with older branches more suscep- tible than young ones. The fungus kills areas of bark, usually at the bases of small twigs and branches, creating elliptical to diamond-shaped lesions. If the lesions enlarge faster than the stem and girdle it, the portion beyond the canker also dies. -
EVERGREEN TREES for NEBRASKA Justin Evertson & Bob Henrickson
THE NEBRASKA STATEWIDE ARBORETUM PRESENTS EVERGREEN TREES FOR NEBRASKA Justin Evertson & Bob Henrickson. For more plant information, visit plantnebraska.org or retreenbraska.unl.edu Throughout much of the Great Plains, just a handful of species make up the majority of evergreens being planted. This makes them extremely vulnerable to challenges brought on by insects, extremes of weather, and diseases. Utilizing a variety of evergreen species results in a more diverse and resilient landscape that is more likely to survive whatever challenges come along. Geographic Adaptability: An E indicates plants suitable primarily to the Eastern half of the state while a W indicates plants that prefer the more arid environment of western Nebraska. All others are considered to be adaptable to most of Nebraska. Size Range: Expected average mature height x spread for Nebraska. Common & Proven Evergreen Trees 1. Arborvitae, Eastern ‐ Thuja occidentalis (E; narrow habit; vertically layered foliage; can be prone to ice storm damage; 20‐25’x 5‐15’; cultivars include ‘Techny’ and ‘Hetz Wintergreen’) 2. Arborvitae, Western ‐ Thuja plicata (E; similar to eastern Arborvitae but not as hardy; 25‐40’x 10‐20; ‘Green Giant’ is a common, fast growing hybrid growing to 60’ tall) 3. Douglasfir (Rocky Mountain) ‐ Pseudotsuga menziesii var. glauca (soft blue‐green needles; cones have distinctive turkey‐foot bract; graceful habit; avoid open sites; 50’x 30’) 4. Fir, Balsam ‐ Abies balsamea (E; narrow habit; balsam fragrance; avoid open, windswept sites; 45’x 20’) 5. Fir, Canaan ‐ Abies balsamea var. phanerolepis (E; similar to balsam fir; common Christmas tree; becoming popular as a landscape tree; very graceful; 45’x 20’) 6. -
Improvement of Seed Germination in Three Important Conifer Species by Gibberellic Acid (GA3)
Volume 11(2) Improvement of seed germination in three important conifer species by Gibberellic acid (GA3). Improvement of seed germination in three important conifer species by Gibberellic acid (GA3). B. S. Rawat1, C. M. Sharma2 and S. K. Ghildiyal3 Department of Forestry, Post Box # 76, HNB Garhwal University, Srinagar Garhwal-246 174 (Uttaranchal) 1. [email protected] 2. [email protected] [email protected] December 2006 Download at: http://www.lyonia.org/downloadPDF.php?pdfID=283.486.1 Improvement of seed germination in three important conifer species by Gibberellic acid (GA3). Abstract Results pertaining to the germination percentage of pre-soaked seeds in a series of temperature regimes viz., 100C, 150C, 200C and 250C have revealed significant increase among seed sources in each of the three conifer species of Garhwal Himalaya. Soaking of the seeds for 24 hours in GA3 solution had shown maximum germination in A. pindrow (45.0±4.19%), C. torulosa (57.0±3.40%) and P. smithiana (56±6.01%) as compared to untreated (control) seeds. It has also been observed that GA3 treatment caused an appreciable shortening of the germination period by 10 days. Therefore, seeds of these commercially important tree species should be pre-treated particularly with GA3 for 24 hours for getting enhanced germination. It is important to point out here that the seeds of each of the three species reflect poor germination in nature due to snow cover, seed decay, prevalence of excess water and lack of maintenance, however, because of increasing demand for large quantities of tree seeds for reforestation programmes, pre-sowing treatments are useful to improve the rate and percentage of germination. -
Variation in Soil CO2 Efflux in Pinus Wallichiana and Abies Pindrow
rch: O ea pe es n A R t c s c e e Sundarapandian and Dar, Forest Res 2013, 3:1 r s o s Forest Research F DOI: 10.4172/2168-9776.1000116 Open Access ISSN: 2168-9776 Research Article Open Access Variation in Soil CO2 Efflux in Pinus Wallichiana and Abies Pindrow Temperate Forests of Western Himalayas, India SM Sundarapandian* and Javid Ahmad Dar Department of Ecology and Environmental Sciences, School of life Sciences, Pondicherry University, Puducherry, India Abstract Soil CO2 efflux was measured by alkali absorption method from April to December 2012 in two different forest types, i.e., Pinus wallichiana and Abies pindrow, with three replicate plots in each forest type. Soil CO2 efflux was found maximum in July and minimum in December in both the forest types. Significantly (P<0.001) greater soil CO2 efflux was measured inPinus wallichiana forest compared to Abies pindrow forest throughout the study period. The -2 -1 range of soil CO2 efflux (mg CO2 m hr ) from the soil was 126-427 in Abies pindrow forest and 182-646 in Pinus wallichiana forest. Soil CO2 efflux showed greater values in Pinus wallichiana forest than Abies pindrow forest, which could be attributed to greater tree density, tree biomass, shrub density, shrub biomass, forest floor litter and moisture. Soil CO2 efflux also showed significant positive relationship with air temperature. In addition to that the altitudinal difference may be one of the reasons for variation in soil CO2 efflux between the two forest types. This result also indicates that at higher altitude even a small difference in elevation (100 m) alter the functional attributes of the ecosystem. -
IUCN Red List of Threatened Species™ to Identify the Level of Threat to Plants
Ex-Situ Conservation at Scott Arboretum Public gardens and arboreta are more than just pretty places. They serve as an insurance policy for the future through their well managed ex situ collections. Ex situ conservation focuses on safeguarding species by keeping them in places such as seed banks or living collections. In situ means "on site", so in situ conservation is the conservation of species diversity within normal and natural habitats and ecosystems. The Scott Arboretum is a member of Botanical Gardens Conservation International (BGCI), which works with botanic gardens around the world and other conservation partners to secure plant diversity for the benefit of people and the planet. The aim of BGCI is to ensure that threatened species are secure in botanic garden collections as an insurance policy against loss in the wild. Their work encompasses supporting botanic garden development where this is needed and addressing capacity building needs. They support ex situ conservation for priority species, with a focus on linking ex situ conservation with species conservation in natural habitats and they work with botanic gardens on the development and implementation of habitat restoration and education projects. BGCI uses the IUCN Red List of Threatened Species™ to identify the level of threat to plants. In-depth analyses of the data contained in the IUCN, the International Union for Conservation of Nature, Red List are published periodically (usually at least once every four years). The results from the analysis of the data contained in the 2008 update of the IUCN Red List are published in The 2008 Review of the IUCN Red List of Threatened Species; see www.iucn.org/redlist for further details. -
<I>Pinus Wallichiana</I>
ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.225 Volume 121, pp. 225–232 July–September 2012 Suillus flavidus and its ectomycorrhizae with Pinus wallichiana in Pakistan S. Sarwar*, A.N. Khalid, M. Hanif & A.R. Niazi Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan * Correspondence to: [email protected] Abstract — Suillus flavidus (Boletales, Suillaceae) was found associated with Pinus wallichiana during a survey of macrofungi from moist coniferous forests of Pakistan. Both the fruiting body and ectomycorrhizae were characterized morpho-anatomically as well as by molecular analysis. This fungus is a new record for Pakistan and its ectomycorrhizae with Pinus wallichiana are described for the first time by molecular analysis. Key words —boletes, ITS, mantle, PCR, rDNA Introduction Coniferous forests of Pakistan are located at an elevation of 1373 to 3050 m a.s.l. and are characterized by luxuriant growth of trees such as Abies pindrow, Cedrus deodara, Picea smithiana, Pinus roxburghii, P. wallichiana, and Taxus wallichiana. Among these conifers, some deciduous trees and shrubs of different species also occur (Hussain 1995). Another important feature of these forests is the high level of rainfall during summer (July–August). High rainfall and temperature make an environment suitable for the growth of mushrooms. Most of these fungi form mutualistic symbiotic associations with forest trees in the form of ectomycorrhizae that facilitate tree growth through enhanced nutrient absorption and protection of roots from root pathogens (Marx 1991). Suillus Gray, a genus with approximately 50 species (Kirk et al. -
Climatic Influence on Radial Growth of Pinus Wallichiana in Ziro Valley
RESEARCH COMMUNICATIONS In conclusion, in the present study we have success- Climatic influence on radial growth of fully induced adventitious roots from the leaf explants of A. paniculata. The adventitious roots were cultured in flask- Pinus wallichiana in Ziro Valley, scale suspension cultures using MS medium supplemented Northeast Himalaya with 2.7 μM NAA and 30 g/l sucrose. Adventitious root cultures showed higher biomass as well as andrographolide Santosh K. Shah1, Amalava Bhattacharyya1,* and accumulation capabilities. Our study demonstrates the Vandana Chaudhary2 possibilities of production of andrographolides for com- 1 mercial purposes in a large scale using bioreactor cultures. Birbal Sahni Institute of Palaeobotany, 53, University Road, Lucknow 226 007, India 2 1. Sharma, A., Singh, R. T., Sehgal, V. and Handa, S. S., Antihepato- Department of Science and Technology, New Mehrauli Road, toxic activity of some plants used in herbal formulation. New Delhi 110 016, India Fitoterapia, 1991, 62, 131–138. 2. Tang, W. and Eisenbrand, G., Chinese Drugs of Plant Origin, An attempt has been made here to study the climatic Springer-Verlag, Berlin, 1992, pp. 97–103. influence on variation of tree-ring width (radial growth) 3. Mishra, P., Pal, N. L., Guru, P. Y., Katiyar, J. C. and Srivastava of Blue Pine (Pinus wallichiana A.B. Jackson) growing Tandon, J. S., Antimalarial activity of Andrographis paniculata in five different sites in and around Ziro Valley, Arun- (Kalmegh) against Plasmodium berghei NK 65 in Mastomys achal Pradesh, Northeast Himalaya. The site chrono- natalensis. Int. J. Pharmacogn., 1992, 30, 263–274. logies have been evaluated to assess inter-site differences 4. -
Characteristics and Growing Stocks Volume of Forest Stand in Dry Temperate Forest of Chilas Gilgit-Baltistan
Open Journal of Forestry, 2014, 4, 231-238 Published Online April 2014 in SciRes. http://www.scirp.org/journal/ojf http://dx.doi.org/10.4236/ojf.2014.43030 Characteristics and Growing Stocks Volume of Forest Stand in Dry Temperate Forest of Chilas Gilgit-Baltistan Abdul Raqeeb1, Syed Moazzam Nizami1, Amir Saleem1, Muhammad Hanif2 1Department of Forestry and Range Management, Arid Agriculture University, Rawalpindi, Pakistan 2Department of Mathematics & Statistics, Arid Agriculture University, Rawalpindi, Pakistan Email: [email protected] Received 21 February 2014; revised 23 March 2014; accepted 3 April 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Chilas forest sub division in Diamer district, of Gilgit-Baltistan is located at northern regions of Pakistan. We estimated tree density, diameter, height and volume of the dominant tree species in four blocks (Thore, Chilas, Thak Niat and Gunar) of Chilas forest sub division. The tree density of deodar was maximum with average 26 tree∙ha−1 and minimum was of Chalgoza 4 trees∙ha−1. The maximum average height showed by the dominant species (Fir, Kail, Deodar, and Chilgoza) of the study area to be 20.40, 16.06, 12.24 and 12.12 m respectively. Moreover the average maximum volume attained by the Kail, Fir, Deodar and Chalgoza trees was 1.92, 1.57, 0.46 and 0.291 m3∙tree−1 respectively. Regression analysis was carried out to determine the relationship between diameter (cm), height (m), tree density (trees∙ha−1) and volume (m3∙ha−1). -
PEOPLES' INSTITUTIONS for FOREST and FUELWOOD DEVELOPMENT a Report on Participatory Fuelwood Evaluations in India and Thailand
PEOPLES' INSTITUTIONS FOR FOREST AND FUELWOOD DEVELOPMENT A Report on Participatory Fuelwood Evaluations in India and Thailand by Richard Morse Charit Tingsabadh Napoleon Vergara Varun Vidyarthi et al. A Project Conducted by East-West Center Appropriate Technology Reawuce Systems Institute Development Association East-West Center Chulaiongkorn University Environment and Policy Institute Social Research Institute PEOPLES' INSTITUTIONS FOR FOREST AND FUELWOOD DEVELOPMENT A REPORT ON PARTICIPATORY FUELWOOD EVALUATIONS IN I2DIA AND THAILAND Richard Morse Charit Tingsabadh Napoleon Vergara Varun Vidyarthi Principal Authors Sushil C. Agrawalf Marcia Gowen, Neera Kool, Supan Koon-Ya, B. N. Mishra, Kobkul Phutaraporn, G. K. Shukla, Kamlesh Chandra Tripathi Contributing Authors East-West Center Resource Systems Institute East-West Center Environment and Policy Institute Chulalongkorn University Social Research Institute Appropriate Technology Development Association March 1987 CONTENTS PREFACE PART I PARTICIPATORY EVALUATION OF FUELWOOD PROGRAMS: SYNOPSES AND WORKSHOP RECONMENDATIONS Audience and Authors ......................... .... .... 3 Objectives and Impetus for Participatory Evaluations... 5 Village Forest InstiLutions in a North India Hill Regi on ............................................... 7 Village Fuelwood Development and Farm Forestry in a Rainfed Thailand Plateau........................ 11 Central Evaluation Findings ............................ 16 Summary of Recommendations for Policy and Action....... 21 PART II PARTICIPATORY -
Tree-Ring Chronologies of Picea Smithiana (Wall.) Boiss., and Its Quantitative Vegetational Description from Himalayan Range of Pakistan
Pak. J. Bot., 37(3): 697-707, 2005. TREE-RING CHRONOLOGIES OF PICEA SMITHIANA (WALL.) BOISS., AND ITS QUANTITATIVE VEGETATIONAL DESCRIPTION FROM HIMALAYAN RANGE OF PAKISTAN MOINUDDIN AHMED AND SYED HUMAIR NAQVI Department of Botany, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, University Road, Karachi. 75270, Pakistan. Abstract Modern Dendrochronological techniques were used in 5 stands of moist temperate and dry temperate areas in Pakistan. Out of 91 cores from 60 trees of Picea smithiana (Wall.) Boiss., sampled where cross dating was possible among 48 cores. Dated chronologies from 1422 to 1987 AD were obtained. However, common period of all chronologies 1770 to 1850 A.D. is presented. Chronologies and sample statistics are described. These chronologies show from 17% to 33% variance (“Y” in ANOVA) due to climate. Dry temperate sites show low autocorrelation as compared to moist temperate sites. Due to small sample size, no statistical correlation was observed between community and dendrochronological attributes. However, community attributes gave some idea to select better sites for dendrochronological investigations. It is suggested that despite difference in climatic zones and chronologies, trees show some similar pattern of ring-width. Hence, Picea smithiana (Wall.) Boiss., could be used for dendroclimatological investigations. It is also suggested that detailed sampling is required to present strong database. Introduction Ahmed (1987, 1989) explained the scope of dendrochronology in Pakistan, and mentioned suitable sites and tree species, which could be used in tree-ring analysis. He also presented modern tree-ring chronologies of Abies pindrow Royle from Himalayan region of Pakistan. A dendrochronological approach to estimate age and growth pattern of various species and dendrochronological potential of a few tree species from the Himalayan region of Pakistan was described by Ahmed & Sarangezai (1991, 1992). -
Exotic Plant Species Documented in Pulney Hills Western Ghats of Tamil Nadu
Exotic Plant species documented in Pulney hills Western Ghats of Tamil Nadu Enlist of species collected from Flora of Palani Hills, Matthew,1981 This study encountered 337 species from 75 families. Among them Myraceae contributed more species (30) followed by Solanaceae (21 sp.), Compositae and Graminae (20 sp.) each. Family Species Name Habit Podocarpaceae Podocarpus brevifolius (stapf.) Foxw. Tree Araucariaceae Araucaria bidwillii Hook.Lond. Tree Pinaceae Cedrus deodara (Roxb.) G.Don Tree Pinus wallichiana Jacks Tree Pinus torreyana Parr. ex Torr. Tree Pinus radiata D.Don Tree Pinus canariensis Sm Tree Pinus insularis Endl. Tree Pinus roxburghii Sarg. Tree Pinus echinata Gard. Tree Pinus pinaster Ait Tree Pinus pinea Linn. Tree Taxodiaceae Cryptomeria japonica (Linn.f.) D.Don Tree Sequoia sempervirens (Lamp.) Endl. Tree Cunninghamia lanceolata (Lamp.) Hook. Tree Cupressaceae Thuja orientalis Linn. Shrub or small tree Libocedrus decurrens Torr. Tree Chamaecyparis lawsoniana (Murr.) Parl. Tree Callitris rhomboidea R.Br. ex Rich Tree Callitris oblonga Rich. Shrub or small tree Widdrngtonia juniperoides (Linn.) Endl. Tree Cupressus torulosa D.Don Tree Cupressus sempervirens Linn. Tree Cupressus macrocarpa Hart.w Tree Cupressus funebris Endl. Tree Cupressus lusitanica Mill. Gard. Tree Cupressus arizonica Greene Tree Cupressus goveniana Gord. Tree Calycanthaceae Chimonanthus praecox Linn Shrub Magnoliaceae Magnolia grandiflora Linn. Tree Magnolia campbelliii Hook.f. & Thomas Tree Magnolia liliflora Desr. Shrub Papavaraceae Romneya colteri Harv. Herb Fumariaceae Cydalis lutea (L.) DC. Herb Cruciferae Nasturtium officinale R.Br. Herb Coronopus didymus (L.) Sm. Herb Capsella bursa-pastoris (L.) Med. Herb Barbarea vulgaris R.Br. Herb Sisymbrium wolgense Marsch. Herb Flacourtiaceae Aphloia mauritiana Baker Shrub Caryophyllaceae Silene gallica L.