Heat-Cold Dialectic in the Activity of Proformica Longiseta, a Thermophilous Ant Inhabiting a High Mountain (Sierra Nevada, Spain)

Total Page:16

File Type:pdf, Size:1020Kb

Heat-Cold Dialectic in the Activity of Proformica Longiseta, a Thermophilous Ant Inhabiting a High Mountain (Sierra Nevada, Spain) Int J Biometeorol (1998) 41:175–182 © ISB 1998 ORIGINAL ARTICLE &roles:Ignacio Fernández-Escudero · Alberto Tinaut Heat-cold dialectic in the activity of Proformica longiseta, a thermophilous ant inhabiting a high mountain (Sierra Nevada, Spain) &misc:Received: 1 August 1997 / Accepted: 27 October 1997 &p.1:Abstract The activity of the thermophilous ant Profor- Cerdá and Retana 1988; Fellers 1989; North 1993) and, mica longiseta has been studied in a Mediterranean high- in other cases, temperature (Harkness 1977; Hölldobler mountain environment. An analysis has been made of the and Taylor 1983; Curtis 1984a; Cloudsley-Thompson biotic and abiotic variables involved, the location of and 1989) or light intensity (Gano and Rogers 1983; Roseng- conditions surrounding the activity, as well as the strate- ren and Fortelius 1986; Cerdá and Retana 1989). Besides gies used by the ant to remain active at high tempera- these factors, which might be the most obvious ones, bi- tures. The results of this study indicate that the maxi- otic factors may emerge, superimposed over them, which mum activity occurs during the middle hours of the day may control the rhythm of the activity. These latter fac- and that the variable which most influences daily activity tors include: fluctuation in food availability (Whittford is temperature, especially at the soil surface. With re- and Etterschank 1975; Cros et al. 1992); biological cycle spect to the biotic variables, the availability of food and and larval presence (Bosch et al. 1987; Cros et al. 1992); the demand for food by the larvae strongly correlate with competition or conflict with simultaneously foraging activity. The time outside the nest is usually spent in veg- species (Bernstein 1979; Retana et al. 1988); interfer- etation searching for food. This activity continues even ence of myrmecophagous (anteaters) species (Mehlop when the temperature of the soil surface exceeds 58°C. and Scott 1983); and compromises between predator To tolerate these temperatures, the ant not only has a pressure and heat stress (Wehner et al. 1992). high resistance to heat (critical thermal maxi- Most of these studies have focused on arid or desert mum = 51.1°C), but also increases the speed of its move- areas but not at high altitude, as in the present paper. ments and resorts to thermal refuges. The present work Mountain biotopes differ markedly from low arid or de- contributes data on the biology of this highly thermophil- sert areas, primarily because sharp decreases in atmo- ous species, which is also capable of tolerating a long, spheric pressure set in motion a series of peculiarities. hard winter and then developing within a short vegeta- The principal characteristic, the reduction in dust and tive period. haze particles, results in lower air humidity and therefore increased insulation and radiation. All of these factors &kwd:Key words High mountain · Activity · Temperature · exert considerable impact on the ecology, morphology Resistance to heat · Ants&bdy: and physiology of alpine fauna, particularly arthropods (Mani 1990; Sømme and Block 1991). The Mediterranean mountain is unique among high- Introduction altitude biotopes because its latitudinal position increas- es total radiation and decreases air humidity as well as The activity pattern of ant species arises from the inter- rainfall. This creates a cold, arid environment with spe- action of various factors (Heatwole and Muir 1989). In cial characteristics (Table 1) such as: (1) a range of daily some cases, “ambient conditions” are held to be the gen- temperature variations exceeding that of more northerly eral factors responsible for this pattern (Ayre 1958; and wetter mountains (the Alps); (2) a rainfall rate dur- ing the vegetative period (May–September) similar to I. Fernández-Escudero (✉)1 · A. Tinaut that of arid environments. Furthermore, the Sierra Neva- Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, da, although arid, differs from deserts, at least hot de- Spain serts, in having: (1) a thermal contrast between the soil Present address: surface and the air which is more extreme than in de- 1 Department of Genetics, Uppsala Genetic Center, serts; (2) low night-time temperatures, even in summer. University of Uppsala, Box 7003, S-75007 Uppsala, Sweden&/fn-block: All these characteristics make the Sierra Nevada more 176 Table 1 Climatic data for de- sert areas and high mountain&/tbl.c:&tbl.b: Place Average Average Annual average Annual temperature (°C) temperature (°C) temperature precipitation January July (°C) (mm) Turanicoa –6.9 to 4.8 27.1–32.3 11.0–17.1 82–244 Kazahjastana –13.6 to 6.0 25.1–28.6 7.5–12.1 103–184 Dzungariaa –22.0 to –15.2 23.9–25.4 4.3–6.8 96–247 Gobia –18.1 23.3 3.8 107 Pei-Shana –15.6 to –9.8 22.6–24.6 4.3–9.6 42–74 Deserts of Tibet and Pamira –20.0 8.0–12.0 – 103 Great Basina –2.0 20.4 7.8–13.2 158–419 Chihuahuab 12.2 26.6 21.1 204.3 Saharac 11.8 35.1 22.8 32.1 Sierra Nevada (2500 m)d –2.5 14.0 3.3 In summer 142 Alps (2500 m)e –9.5 5.2 –2.7 1552 Pyrenees (1714 m)f –1.6 13.4 5.2 In summer 635 Place Average diurnal Difference air temperature- Lowest temperature aWest 1983, Orlovsky 1994 range ground temperature in July b Morafka et al. 1981 (°C) (°C) (°C) c Delye 1968 d Tinaut 1979, Prieto 1983 Sierra Nevada (2500 m)d 7.7 40 5 e Mani 1968, 1990 Alps (2500 m)e 5– 6 f Font Tullot 1983 Saharag – 18 15.5 g Wehner 1989 Tunisiah –2115 h Heatwole and Muir 1979&/tbl.b: similar to a cold desert than to other European high The objective of this investigation was to study the mountains or other arid zones. activity pattern of a Mediterranean high-mountain ant Under these conditions, it might be expected that the species and its relation to abiotic and biotic factors, in an rhythms of biological activity, as well as habitat use, attempt to resolve the apparent contradiction of a ther- would contrast clearly with those in arid or hot zones; mophilic ant inhabiting a cold environment. that is, while one of the prime aims of animals in arid zones is heat loss, in the high mountain it is heat gain. Thus, in arid and hot areas, some ant species change Materials and methods their daily activity patterns over the year, becoming noc- turnal during the summer, e.g. Tapinoma nigerrimum in Natural history of Proformica longiseta the Mediterranean area (Cerdá and Retana 1988) or P. longiseta Collingwood, a small [3.3 (SEM 5) mm; n = 30) allo- Messor arenarius in the pre-Sahara steppe (Heatwole and metric and polymorphic ant (Fernández-Escudero et al. 1994), is Muir 1989). In addition, two groups of species, diurnal endemic to the Sierra Nevada and neighbouring mountains be- tween 1900 m and 2800 m in altitude. The nests are found under (heat-adapted) and nocturnal (cold-adapted), inhabit most stones which serve as an efficient heat source (Fernández-Escu- deserts, as in Anatolia (Baroni-Urbani and Aktac 1981) dero et al. 1993; Tinaut and Fernández-Escudero 1993). The P. or the Sahara (Heatwole and Muir 1989; Heatwole 1991). longiseta populations typically lodge between 155 and 1200 indi- On the other hand, Somme and Block (1991) stated viduals. This ant feeds mainly on nectar and occasionally on dead insects (Fernández-Escudero and Tinaut, in press a). It inhabits the that in alpine habitats arthropod activity can be noctur- driest areas of these mountains, where it is the most abundant ant nal, a situation that these authors assumed to represent (83.16%; Tinaut 1979). The other ant species sharing the area in- an adaptive advantage, perhaps by reducing the risk of clude Tetramorium caespitum L., Tapinoma nigerrimum Nyl., overheating in melanistic species, or by maintaining a Leptothorax tristis Bondroit, L. tuberum Fabricius and Formica lemani Bondroit. corporal water balance or avoiding predators. In a high The genus Proformica inhabits arid steppes from Central Asia Mediterranean mountain the temperature difference be- to the Iberian Peninsula and thus occupies cold as well as hot plac- tween the day and night or between the presence or ab- es. In the Iberian Peninsula, two other species, P. f e r re r i Bondroit sence of sun is higher than in an alpine mountain; there- and P. nasuta Nylander, live in a savannah-like grassland but only fore, the compromise is between the heat gain during the at altitudes of no more than 1000 m (Tinaut 1981; Cros 1986). night or sun absence and heat loss during the middle of the day. Study area However, despite the importance of the ants in these The present study was carried out at the head of the San Juan River mountainous habitats (Pisarski 1978; Gómez and Zamo- (2400 m in altitude) in the Sierra Nevada (Granada, Spain). The ra 1992), few studies have focused on how these insects study area covers the dry places in this valley, where the most rep- manage to thrive under such harsh climatic conditions resentative vegetation includes Genista versicolor Boiss., Juniperus (Heinze and Hölldobler 1994) and virtually nothing is communis subp. alpina (Suker) Celak, Hormatophylla spinosa (L.) Kupler and Thymus serpilloides Bory. Of the vegetal cover, roughly known about the activity pattern of high-mountain ants. 16% is shrub, 27% grass, while 57% is bare ground. The soil is In addition, the high mountain probably does not have very poor and siliceous. This zone belongs climatically to the At- the broad spectrum of ant species found in the hot desert.
Recommended publications
  • Redalyc.Polinización Por Hormigas
    Ecosistemas ISSN: 1132-6344 [email protected] Asociación Española de Ecología Terrestre España de Vega, C.; Gómez, J.M. Polinización por hormigas: conceptos, evidencias y futuras direcciones Ecosistemas, vol. 23, núm. 3, septiembre-diciembre, 2014, pp. 48-57 Asociación Española de Ecología Terrestre Alicante, España Disponible en: http://www.redalyc.org/articulo.oa?id=54032954007 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Ecosistemas 23(3): 48-57 [Septiembre-Diciembre 2014] Doi.: 10.7818/ECOS.2014.23-3.07 Artículo publicado en Open Access bajo los términos AEET de Creative Commons attribution Non Comercial License 3.0. eREVIScTA CoIENTÍFsICA DiEs ECOLtOGeÍA Y MmEDIO AaMBIENs TE ASOCIACIÓN ESPAÑOLA MONOGRÁFICO: ISSN 1697-2473 / Open access DE ECOLOGÍA TERRESTRE Ecología reproductiva de las plantas disponible en www.revistaecosistemas.net Polinización por hormigas: conceptos, evidencias y futuras direcciones C. de Vega 1*, J.M. Gómez 2,3 (1) Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida de Américo Vespucio s/n, 41092 Sevilla, España. (2) Estación Experimental de Zonas Áridas. CSIC. Ctra. Sacramento s/n. La Cañada de San Urbano. 04120 Almería, España. (3) Departamento de Ecología. Facultad de Ciencias. Universidad de Granada. 18071 Granada, España. * Autor de correspondencia: C. de Vega [[email protected]] > Recibido el 31 de diciembre de 2013 - Aceptado el 10 de marzo de 2014 de Vega, C., Gómez, J.M.
    [Show full text]
  • Rossomyrmex, the Slave-Maker Ants from the Arid Steppe Environments
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 541804, 7 pages http://dx.doi.org/10.1155/2013/541804 Review Article Rossomyrmex, the Slave-Maker Ants from the Arid Steppe Environments F. Ruano,1 O. Sanllorente,1,2 A. Lenoir,3 and A. Tinaut1 1 Departamento de Zoolog´ıa, Universidad de Granada, 18071 Granada, Spain 2 Departamento de Biolog´ıa Experimental, Facultad de Ciencias Experimentales, Universidad de Jaen,´ Campus Las Lagunillas s/n, 23071 Jaen,´ Spain 3 Institut de Recherche sur la Biologie de l’Insecte, IRBI-UMR CNRS 7261, Faculte´ des Sciences et Techniques, UniversiteFranc´ ¸ois Rabelais, 37200 Tours, France Correspondence should be addressed to F. Ruano; [email protected] Received 8 March 2013; Accepted 9 May 2013 Academic Editor: David P. Hughes Copyright © 2013 F. Ruano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The host-parasite genera Proformica-Rossomyrmex present four pairs of species with a very wide range of distribution from China to Southeastern Spain, from huge extended plains to the top of high mountains. Here we review (1) the published data on these pairs in comparison to other slave-makers; (2) the different dispersal ability in hosts and parasites inferred from genetics (chance of migration conditions the evolutionary potential of the species); (3) the evolutionary potential of host and parasite determining the coevolutionary process in each host-parasite system that we treat to define using cuticular chemical data. We find a lower evolutionary potential in parasites than in hosts in fragmented populations, where selective pressures give advantage to a limited female parasite migration due to uncertainty of locating a host nest.
    [Show full text]
  • Cataglyphis Desert Ants: a Good Model for Evolutionary Biology in Darwin's
    Cataglyphis desert ants: a good model for evolutionary biology in Darwin’s anniversary year—A review ALAIN LENOIR,1 SERGE ARON,2 XIM CERDÁ,3 AND ABRAHAM HEFETZ4 1IRBI, UMR CNRS 6035, Université François Rabelais, Faculté des Sciences, 37200 Tours, France. E-mail: [email protected] 2Université Libre de Bruxelles, Service Évolution Biologique & Écologie, C.P. 160/12 50, av. F.D. Roosevelt, 1050 Bruxelles, Belgique. E-mail: [email protected] 3Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio s/n, E-41092 Sevilla, Spain. E-mail: [email protected] 4Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: [email protected] ABSTRACT Cataglyphis ants comprise one of the most characteristic groups of insects in arid regions around the Mediterranean basin and have been intensively stud- ied over the last 30 years. These ants are central-place foragers and scaven- gers, single-prey loaders that have become a model for insect navigation using sophisticated visual orientation, having lost pheromone orientation. They are highly heat-tolerant ants that forage close to their critical thermal limit dur- ing the hottest hours of the day, with their long-chain cuticular hydrocarbons protecting them from desiccation. This is exemplified in two Cataglyphis species, each of which developed different mechanisms for counteracting extreme heat when foraging: polymorphism of workers vs. physiological and behavioral adaptations. Several species in this genus have also become a model for studying nestmate recognition mechanisms. The role of cuticular hydrocarbons and the postpharyngeal gland as a reservoir of hydrocarbons in nestmate recognition was initially discovered mainly in Cataglyphis, includ- ing the first experimental demonstration of the Gestalt model of nestmate recognition.
    [Show full text]
  • Supplementary Studies on Ant Larvae: Formicinae (Hymenoptera: Formicidae)
    3'? Reprinted from PSYCHE, Vol. 89, No. 1-2, 1982 SUPPLEMENTARY STUDIES ON ANT LARVAE: FORMICINAE (HYMENOPTERA: FORMICIDAE)' By George C. Wheeler^ and Jeanette Wheeler- Introduction This article describes formicine larvae received since the prepara- tion of our most recent supplement ( 1 980). The larva of Proformica has not been previously described. Also included are references to formicine larvae in the literature and a discussion of the status of Colobopsis. The terms describing body profile and mandible shape are explained in our 1976 monograph. Our own contributions are cited by year and page only. Tribe 4. Formicini Genus ACANTHOMYOPS Mayr The larvae are very active and can quickly change their posture from circular to linear or reverse. Genus FORMICA Linnaeus Alpert and Ritcher 1975:289. Adults of the scarabaeid beetle Cremastochilus armatus feed on larvae of Formica fusca and Formica obscuripes. Genus LASIUS Mayr Lasius sitkaensis Pergande Akre and Hill 1973. The pselaphid beetle Adranes taylori Wick- ham possesses trichomes (tufts of golden hairs) on the abdomen, tips of elytra and venter. These trichomes are highly attractive to half-grown or smaller ant larvae, less so to larger larvae and workers. The beetles are fed by the larvae through trophallaxis and obtain other nutrients by feeding on dead larvae and workers. Beetles are often seen walking about with larvae actively holding on to the trichomes with their mouthparts; Fig. 4 (p. 53 1) shows a larva so attached. 'Manuscript received by editor June 10. 1982. -Adjunct Research Associates. Desert Research Institute, Reno. NV; present address: .126 Laurel Ridge Road. San Antonio, TX 7825.1.
    [Show full text]
  • The Evolution of Social Parasitism in Formica Ants Revealed by a Global Phylogeny
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423324; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The evolution of social parasitism in Formica ants revealed by a global phylogeny Marek L. Borowiec*a,b,c, Stefan P. Coverd, and Christian Rabeling†a aSchool of Life Sciences, Arizona State University, Tempe, AZ 85287, U.S.A. bInstitute of Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, U.S.A. cDepartment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, U.S.A. dMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A. Abstract Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploita­ tive social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evo­ lution of social parasitism because half of its 176 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life­history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test compet­ ing hypotheses regarding the origins and evolution of social parasitism, we reconstructed the first global phylogeny of Formica ants and representative formicine outgroups.
    [Show full text]
  • Martin Pfeiffer-Habilitation
    Structuring of animal communities: Interspecific interactions and habitat selection among ants and small mammals Habilitationsschrift zur Erlangung der Venia Legendi an der Universität Ulm Fakultät für Naturwissenschaften vorgelegt von Dr. Martin Pfeiffer Ulm, Oktober 2007 Year’s end — Still in straw hat And sandals. Basho (1644 -1694) In dieser Arbeit werden die Untersuchungen zur Gemeinschaftsökologie von Ameisen und Kleinsäugern vorgestellt, die ich zwischen 1997 und 2007 durchgeführt oder betreut habe. Ich versichere, dass ich die vorliegende Arbeit ohne fremde Hilfe angefertigt und mich keiner anderen als der ausdrücklich angegebenen Hilfsmittel bedient habe. Martin Pfeiffer Ulm, 30. Oktober 2007 CONTENTS Acknowledgments 1 1. Disentangling life histories, organization, and functions in animal communities of tropical rainforests and arid areas – an overview 3 2. Internet-based ant taxonomy and biodiversity informatics 8 3. Ant diversity gradients and faunistic inventory 14 4. Null model studies of interspecific interactions: community structure of Malaysian ants 18 5. The Sarawak soil ant project: Niches, trophic levels, and community patterns in rainforest ants 21 6. Ant- plant mutualism: Myrmecochory - seed dispersal by ants 24 7. Spatial organization in Bornean small mammal assemblages 27 8. Rainforest logging in Borneo: impacts on non-volant small mammal assemblages 30 References 34 Research articles ordered Research articles belonging to Chapter 3 43 Pfeiffer M, Chimedregzen L, Ulykpan K (2003) Community organization and species richness of ants (Hymenoptera/Formicidae) in Mongolia along an ecological gradient from steppe to Gobi desert. Journal of Biogeography 30:1921-1935 Pfeiffer M, Schultz R, Radchenko A, Yamane S, Woyciechowski M, Ulykpan A, Seifert B (2006) A critical checklist of the ants of Mongolia (Hymenoptera : Formicidae).
    [Show full text]
  • The Evolution of Worker–Queen Polymorphism in Cataglyphis Ants: Interplay Between Individual- and Colony-Level Selections
    The evolution of worker–queen polymorphism in Cataglyphis ants: interplay between individual- and colony-level selections Fernando Amor & Patrocinio Ortega & Michael J. Jowers & Xim Cerdá & Johan Billen & Alain Lenoir & Raphaël R. Boulay Abstract In many ants, young queens disperse by flying the advantage for a colony to produce ergatoids instead of away from their natal nest and found new colonies alone brachypters. Furthermore, more ergatoids are produced than (independent colony founding, ICF). Alternatively, in some brachypters, but their individual survival rate is lower. species, ICF was replaced by colony fission, in which During colony fission, 96% of the cocoons containing young queens accompanied by workers found a new colony brachypters but only 31% of those containing ergatoids are at walking distance from the mother nest. We compared the transferred to the daughter nests where, after emergence, queen morphology of Cataglyphis floricola, which dis- they compete for becoming the next queen. The remaining perses by fission, with that of its most likely living ancestor, queen cocoons, which stay in the mother queen's nest, are Cataglyphis emmae, which disperses by ICF. As in other eliminated by workers upon emergence, probably to species, the transition from ICF to fission is associated with maintain monogyny. This waste of energy suggests that queen miniaturization. Interestingly, C. floricola presents producing ergatoids instead of brachypters is unlikely to two types of small queens: brachypters (with short non- increase colony efficiency. We argue that the evolution of functional wings) and ergatoids (worker-like apterous ergatoids could derive from a selfish larval strategy, develop- queens). Ergatoids are, on average, 2.8 mg lighter and have ing into worker-like queens in spite of the colony interest.
    [Show full text]
  • The Evolution of Social Parasitism in Formica Ants Revealed by a Global Phylogeny
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423324; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The evolution of social parasitism in Formica ants revealed by a global phylogeny Marek L. Borowiec*a,b,d, Stefan P. Coverc, and Christian Rabeling†a aSchool of Life Sciences, Arizona State University, Tempe, AZ 85287, U.S.A. bInstitute of Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, U.S.A. cMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A. dCurrent address: Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, U.S.A. Abstract Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploita­ tive social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evo­ lution of social parasitism because half of its 178 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life­history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test compet­ ing hypotheses regarding the origins and evolution of social parasitism, we reconstructed the first global phylogeny of Formica ants and representative formicine outgroups.
    [Show full text]
  • Ants of the Tribe Formicini (Hymenoptera, Formicidae) from Late Eocene Amber of Europe G
    ISSN 0031-0301, Paleontological Journal, 2008, Vol. 42, No. 5, pp. 500–513. © Pleiades Publishing, Ltd., 2008. Original Russian Text © G.M. Dlussky, 2008, published in Paleontologicheskii Zhurnal, 2008, No. 5, pp. 45–59. Ants of the Tribe Formicini (Hymenoptera, Formicidae) from Late Eocene Amber of Europe G. M. Dlussky Moscow State University, Moscow, 119899 Russia e-mail: [email protected] Received October 9, 2007 Abstract—The tribe Formicini (Formicinae) from the Late Eocene Baltic, Bitterfeld, Rovno, and Scandinavian ambers is revised. Ants are recorded for the first time from the Bitterfeld and Scandinavian ambers. Two new genera (Cataglyphoides gen. nov. and Conoformica gen. nov.) and six new species (Cataglyphoides interme- dius sp. nov., Conoformica bitterfeldiana sp. nov., Formica kutscheri sp. nov., F. palaeopolonica sp. nov., F. radchenkoi sp. nov., F. zherikhini sp. nov.) are described. A new combination, Cataglyphoides constrictus (Mayr, 1868), comb. nov., is established. A lectotype of Camponotus constrictus Mayr, 1868 and a neotype of Formica phaethusa Wheeler, 1915 are designated. Formica clymene Wheeler, 1915 is recognized as a new syn- onym of F. phaethusa Wheeler, 1915. An identification key for workers of Formicini species from Late Eocene European ambers is provided. DOI: 10.1134/S0031030108050055 Key words: ants, Formicini, Formicidae, Hymenoptera, Late Eocene, Europe, amber. INTRODUCTION genus Cataglyphis. When preparing the revision I had no opportunity to examine types of the previously Ants of the tribe Formicini of the subfamily Formic- described species and relied on their descriptions and a inae are the most conspicuous element of the Holarctic small collection of amber ants kept in the Paleontolog- myrmecofauna.
    [Show full text]
  • Redescription of Proformica Nasuta (Nylander, 1856
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0299 Autor(en)/Author(s): Galkowski Christophe, Lebas Claude, Wegnez Philippe, Lenoir Alain, Blatrix Rumsais Artikel/Article: Redescription of Proformica nasuta (Nylander, 1856) (Hymenoptera, Formicidae) using an integrative approach - Corrigendum 1-2 European Journal of Taxonomy 299: 1–2 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.299 www.europeanjournaloftaxonomy.eu 2017 · Galkowski C. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life Corrigendum The following corrections have been made to paper no. 290 (https://doi.org/10.5852/ejt.2017.290) Redescription of Proformica nasuta (Nylander, 1856) (Hymenoptera, Formicidae) using an integrative approach – Corrigendum Christophe GALKOWSKI 1, Claude LEBAS 2, Philippe WEGNEZ 3, Alain LENOIR 4 & Rumsaïs BLATRIX 5,* 1,2,3,4,5 AntArea (www.antarea.fr), Association for the Study and Mapping of Ants from Metropolitan France. 1 104 Route de Mounic, 33160 Saint-Aubin-de-Medoc, France. 2 2 Impasse del Ribas, 66680 Canohès, France. 3 Walbru (www.fourmiswalbru.com), Belgian Association for the Inventory of Ant Species in Wallonia and Brussels, and Rue de la Grotte 23, 4651 Herve, Belgium. 4 IRBI, Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 7261, Université François Rabelais, Faculté des Sciences, Parc Grandmont, 37200 Tours, France. 5 CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE, 1919 Route de Mende, 34293 Montpellier Cedex 5, France. * Corresponding author: [email protected] 1 E-mail: [email protected] 2 E-mail: [email protected] 3 E-mail: [email protected] 4 E-mail: [email protected] Galkowski C., Lebas C., Wegnez P., Lenoir A.
    [Show full text]
  • Redescritpion of Proformica Nasuta (Nylander, 1856)
    Redescritpion of Proformica nasuta (Nylander, 1856) (Hymenoptera, Formicidae) using an integrative approach Christophe Galkowski, Claude Lebas, Philippe Wegnez, Alain Lenoir, Rumsais Blatrix To cite this version: Christophe Galkowski, Claude Lebas, Philippe Wegnez, Alain Lenoir, Rumsais Blatrix. Redescritpion of Proformica nasuta (Nylander, 1856) (Hymenoptera, Formicidae) using an integrative approach. European Journal of Taxonomy, Consortium of European Natural History Museums, 2017, 299 (290), 10.5852/ejt.2017.290. hal-02315948 HAL Id: hal-02315948 https://hal.archives-ouvertes.fr/hal-02315948 Submitted on 15 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. European Journal of Taxonomy 299: 1–2 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.299 www.europeanjournaloftaxonomy.eu 2017 · Galkowski C. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life Corrigendum The following corrections have been made to paper no. 290 (https://doi.org/10.5852/ejt.2017.290) Redescription of Proformica nasuta (Nylander, 1856) (Hymenoptera, Formicidae) using an integrative approach – Corrigendum Christophe GALKOWSKI 1, Claude LEBAS 2, Philippe WEGNEZ 3, Alain LENOIR 4 & Rumsaïs BLATRIX 5,* 1,2,3,4,5 AntArea (www.antarea.fr), Association for the Study and Mapping of Ants from Metropolitan France.
    [Show full text]
  • Hymenoptera: Formicidae: Formicinae) from the Late Eocene European Ambers
    Invertebrate Zoology, 2020, 17(2): 154–161 © INVERTEBRATE ZOOLOGY, 2020 Ants of the extinct genus Cataglyphoides Dlussky, 2008 (Hymenoptera: Formicidae: Formicinae) from the late Eocene European ambers Alexander G. Radchenko1, Mykola R. Khomych2 1 Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, B. Khmelnitskogo str., 15, Kiev-30, 01030, Ukraine. E-mail: [email protected] 2 Vil. Voronky, Volodymerets Distr., Rivne Prov., 34330 Ukraine. ABSTRACT. A new species from the fossil ant genus Cataglyphoides Dlussky, 2008, C. dlusskyi sp.n., is described from the Rovno amber (Ukraine). A new record of C. constrictus (Mayr, 1868) from the Baltic amber (age of both ambers is late Eocene, Priabonian, 33.9–37.2 Ma) and additional diagnostic features of this species are provided. C. dlusskyi resembles C. constrictus but well differs from the latter mainly by the absence of standing hairs on the body, absence of the longitudinal carina on the clypeus, by position of the eyes and the much shorter genae and by character of the standing pilosity on the appendages (C. dlusskyi has very fine and short whitish subdecumbent to suberect hairs, but C. constrictus has coarse brownish bristles). C. dlusskyi differs from C. intermedius Dlussky, 2008 first of all by the shape of petiolar scale and mesosoma, and by the longer antennal scape. A Key for identification of all known Cataglyphoides species is compiled. How to cite this article: Radchenko A.G., Khomych M.R. 2020. Ants of the extinct genus Cataglyphoides Dlussky, 2008 (Hymenoptera: Formicidae: Formicinae) from the late Eocene European ambers // Invert. Zool.
    [Show full text]