American Journal of Biological and Pharmaceutical Research

Total Page:16

File Type:pdf, Size:1020Kb

American Journal of Biological and Pharmaceutical Research Priya Kurian, et al. / American Journal of Biological and Pharmaceutical Research. 2017; 4(2): 42-45. e-ISSN - 2348-2184 Print ISSN - 2348-2176 AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH Journal homepage: www.mcmed.us/journal/ajbpr PHARMACOGNOSTIC AND PHYSICOCHEMICAL EVALUATION OF HIPPEASTRUM PUNICEUM (LAM.) VOSS LEAVES Priya Kurian1,2*, Beena Briget Kuriakose1, B Vijayakumar3 1Department of Pharmaceutical Sciences, Cheruvandoor Campus, Mahatma Gandhi University, Kottayam, Kerala-600020, India. 2Department of Pharmacognosy, Grace College of Pharmacy, Kodunthirapully, Palakkad, Kerala-678004, India. 3Department of Pharmaceutical Chemistry, Grace College of Pharmacy, Kodunthirapully, Palakkad, Kerala-678004, India. Article Info ABSTRACT Received 29/06/2017 Hippeastrum may be a well-known ornamental Amaryllidaceae genus from South America. Revised 10/07/2017 The bulbs of the plant Hippeastrum puniceum (Lam.) Voss was historically used in curing Accepted 24/07/2017 tumours and varied inflammatory disorders. Some social group communities used the bulbs in healing wounds and in treating piles. It’s a perennial plant distributed worldwide. Key words: - Although this plant has been employed in the tribal and folkloric medicine for many Hippeastrum puniceum, decades, no make an attempts were thus far created to scientifically evaluate its therapeutic Pharmacognostic study, utility. The present study is a step towards the pharmacognostic and physicochemical physicochemical evaluation of leaves. evaluation. INTRODUCTION The world is endowed with a rich wealth of regarding the medicinal potential of these plants is not medicinal plants. Herbs have always been the principal provided with credible scientific data. For this reason, form of medicine in India and presently they are becoming several kinds of researches have been conducted to popular throughout the developed world. In India, determine the toxicity of medicinal plants [2]. There is a medicinal plants have made a good contribution to the growing tendency all over the world to shift from synthetic development of ancient Indian Materia Medica. Medicinal to natural based products including medicinal plants. It is plants have curative properties due to the presence of also timely now to consider neglected and little-known various complex chemical substances of different medicinal plants [3]. composition, which are found as secondary metabolites in The Amaryllidaceae family is one of the most one or more parts of these plants [1]. important alkaloid-containing plant families. Some of the traditional medicine involves the use Amaryllidaceae alkaloids have structural similarities to the of crude plant extracts which may contain an extensive essential amino acid phenylalanine and related metabolites diversity of molecules, often with indefinite biological of tyrosine [4]. Amaryllidaceae alkaloids have been effects. However, most of the available information motivated by their diverse and important pharmacological properties including activities such as anticancer, antiviral, immuno stimulatory, antimalarial and acetyl cholinesterase Corresponding Author inhibition [5]. The bulbs of the plant Hippeastrum puniceum Priya Kurian (Lam.) Voss was traditionally used in curing tumours and Email:- [email protected] various inflammatory disorders. Some tribal communities 42 | P a g e AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH Priya Kurian, et al. / American Journal of Biological and Pharmaceutical Research. 2017; 4(2): 42-45. used the bulbs in healing wounds and in treating piles. It is Microscopical evaluation a perennial ornamental plant; belonging to the Transverse section of the leaf Amaryllidaceae family distributed worldwide. Although The transverse section of fresh leaves was taken to this plant has been used in the tribal and folkloric medicine study anatomy. The powder of the dried leaves was studied for many decades, no attempts were so far made to for the identification of various cellular components. scientifically evaluate its therapeutic utility. Thus the Powdered leaves were cleared with NaoH and mounted in present study is a step towards the pharmacognostic, glycerin medium after staining. Different cell components physicochemical and preliminary phytochemical evaluation were studied and measured. of leaves of Hippeastrum puniceum (Lam.) Voss leaves. PHYSICOCHEMICAL EVALUATION PLANT PROFILE The determination of the various physicochemical Taxonomical representation parameters such as loss on drying, total ash, water soluble Kingdom : Plantae ash, acid insoluble ash, extractive values, crude fibre Division : Angiosperms content and total chlorophyll were calculated [6-10]. Order : Asparagales Family : Amaryllidaceae RESULTS Genus : Hippeastrum PHARMACOGNOSTIC STUDIES OF LEAVES Species : puniceum Macroscopic examination Synonym : Amaryllis puniceae Fresh leaves of Hippeastrum puniceum (Lam.) Botanical Name : Hippeastrum puniceum Voss were subjected to macroscopic evaluation. Colour : Dark Green Common Names Odour : Odourless Amaryllis, Barbados lilly, Easter lilly Taste : Bitter taste Type : Simple Vernacular Name Arrangement : Basal Malayalam Name: Kattulli Venation : Parallel Lamina : Lanceolate MATERIALS AND METHODS Apex : Acute Plant Material Margin : Entire Hippeastrum puniceum (Lam.) Voss leaves were collected from Ettumanoor, Kottayam, Kerala. The plant Microscopical Evaluation material was identified and authenticated by Dr.Rojimon Transverse section of the leaf P.Thomas, Assistant Professor, Department of Botany, Transverse section of the leaf shows two major C.M.S. College, Kottayam. A Voucher specimen of the portions – central midrib region and laminar regions on plant (CMS 278) is deposited in Department of both sides of the midrib. The presence of cuticle, Pharmacognosy, Department of Pharmaceutical Sciences, multicellular covering trichomes, bicollateral vascular Mahatma Gandhi University, Cheruvandoor Campus, bundles, starch and calcium oxalate crystals were observed. Ettumanoor, Kottayam, Kerala. Powder microscopy of H.puniceum leaves PHARMACOGNOSTIC STUDIES OF LEAVES The leaf powder shows the following inclusions: Macroscopic examination The fresh leaves of Hippeastrum puniceum (Lam.) PHYSICOCHEMICAL EVALUATION OF LEAVES Voss were subjected to macroscopic evaluation. Various physicochemical studies were carried out on leaves. Table 1. Physicochemical evaluation of leaves Parameters studied % w/w Total ash 11.76 Water soluble ash 3.94 Acid insoluble ash 0.98 Water soluble extractive value 8.86 Alcohol soluble extractive value 4.36 Loss on drying 1.63 Crude fibre content 14.59 Total chlorophyll 0.42 mg/g 43 | P a g e AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH Priya Kurian, et al. / American Journal of Biological and Pharmaceutical Research. 2017; 4(2): 42-45. Fig 1. Hippeastrum puniceum (Lam.) Voss Fig 2. T.S. of Hippeastrum puniceum (Lam.) Voss leaf Fig 3. Enlarged view of vascular bundle Fig 4. Epidermal portion showing spiral vessels and trichomes Fig 5. Leaf stomata –Lower epidermis Fig 6. Leaf stomata-Upper epidermis Fig 7. Powder microscopy of H.puniceum leaves 44 | P a g e AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH Priya Kurian, et al. / American Journal of Biological and Pharmaceutical Research. 2017; 4(2): 42-45. DISCUSSION forward however reliable standardization are going to Pharmacognostic evaluations of the Hippeastrum be helpful to a lay person in exploitation the drug because puniceum (Lam.) Voss leaves were performed. The T.S of the home remedy and conjointly with in the leaf showed the presence of multicellular covering the pharmaceutical trade for testing the staple. trichomes and anomocytic stomata. The vascular bundles are bicollateral in type and the leaves are dorsiventral (Fig ACKNOWLEDGEMENT 2-7). The powder microscopy showed the presence of This research was supported by Department of starch prisms, starch grains, stomata and fragments of Pharmaceutical Sciences, Cheruvandoor Campus, Mahatma spirally thickened xylem vessels. Physicochemical Gandhi University, Kottayam. Authors are thankful to Mrs evaluation of the drugs is an important parameter for setting Beena Briget Kuriakose for her help and also to Mr. Bijesh, standards for crude drugs. Various physicochemical studies Botanist at Sreedhariyam Ayurvedic Research and were performed. Crude fibre content showed a very good Development Institute for his assistance during field works. value of 14.59 % w/w. which indicates the presence of high amount of fibre. The water soluble extractive value was CONFLICT OF INTEREST high when compared to alcohol soluble extractive value None. (Table 1). STATEMENT OF HUMAN AND ANIMAL RIGHTS CONCLUSION The present investigation of Hippeastrum All procedures performed in human participants puniceum (Lam.) Voss can be concluded that this were in accordance with the ethical standards of the pharmacognostic study yielded a group of parameters institutional research committee and with the 1964 Helsinki that might function a crucial supply of data to as bound the declaration and its later amendments or comparable ethical identity and determination of quality and purity standards. This article does not contain any studies with of material for future studies. This straight animals performed by any of the authors. REFERENCES 1. Prajapati DN, Purohit SS and Sharma K. (2010). Agro’s color atlas of medicinal plants. Agriobios India, New Delhi, 1. 2. Olowa LF, Nunenza OM. (2013). Brine shrimp lethality
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • Invasive Weeds of the Appalachian Region
    $10 $10 PB1785 PB1785 Invasive Weeds Invasive Weeds of the of the Appalachian Appalachian Region Region i TABLE OF CONTENTS Acknowledgments……………………………………...i How to use this guide…………………………………ii IPM decision aid………………………………………..1 Invasive weeds Grasses …………………………………………..5 Broadleaves…………………………………….18 Vines………………………………………………35 Shrubs/trees……………………………………48 Parasitic plants………………………………..70 Herbicide chart………………………………………….72 Bibliography……………………………………………..73 Index………………………………………………………..76 AUTHORS Rebecca M. Koepke-Hill, Extension Assistant, The University of Tennessee Gregory R. Armel, Assistant Professor, Extension Specialist for Invasive Weeds, The University of Tennessee Robert J. Richardson, Assistant Professor and Extension Weed Specialist, North Caro- lina State University G. Neil Rhodes, Jr., Professor and Extension Weed Specialist, The University of Ten- nessee ACKNOWLEDGEMENTS The authors would like to thank all the individuals and organizations who have contributed their time, advice, financial support, and photos to the crea- tion of this guide. We would like to specifically thank the USDA, CSREES, and The Southern Region IPM Center for their extensive support of this pro- ject. COVER PHOTO CREDITS ii 1. Wavyleaf basketgrass - Geoffery Mason 2. Bamboo - Shawn Askew 3. Giant hogweed - Antonio DiTommaso 4. Japanese barberry - Leslie Merhoff 5. Mimosa - Becky Koepke-Hill 6. Periwinkle - Dan Tenaglia 7. Porcelainberry - Randy Prostak 8. Cogongrass - James Miller 9. Kudzu - Shawn Askew Photo credit note: Numbers in parenthesis following photo captions refer to the num- bered photographer list on the back cover. HOW TO USE THIS GUIDE Tabs: Blank tabs can be found at the top of each page. These can be custom- ized with pen or marker to best suit your method of organization. Examples: Infestation present On bordering land No concern Uncontrolled Treatment initiated Controlled Large infestation Medium infestation Small infestation Control Methods: Each mechanical control method is represented by an icon.
    [Show full text]
  • ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
    f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana.
    [Show full text]
  • 100 Cold Hardy Trees, Perennials, and Shrubs for Kittitas County
    100 Cold Hardy Trees, Perennials, and Shrubs for Kittitas County Prepared By Hilary Foss, Master Gardener Coordinator Patrice Andersen, Master Gardener Mary Vathauer, Master Gardener 100 Cold Hardy Trees, Perennials, and Shrubs for Kittitas County Gardeners in Kittitas County face unique challenges. Cold winters and hot, dry summers, and lots of wind create a tough gardening climate. Additionally, our county contains a wide range of eco-systems, with varying soils, soil pH, rainfall, and plant communities. At higher elevations such as Cle Elum (1,930 feet), the average growing season is 90 to 120 days with last frosts in late May (approximately May 24 th ) and first frosts in the middle of September (approximately September 11th ). Cle Elum receives about 22” of rain on average. At lower elevations such as Ellensburg, conditions are much drier and frost-free days are longer. The average growing season in Ellensburg is about 120 days with last frosts in early May (May 11 th ) and first frosts around the end of September (approximately September 25 th ). Kittitas County is rated at USDA Zone 5 (-20 °F. minimum). Our tough climate with varying conditions can be baffling to first time gardeners, who are new to the area. A frequent question at our Master Gardener plant diagnostic clinic is “What can I grow here in Kittitas County?” This brochure is designed to help answer that question, listing trees, shrubs, and perennials that are suitable for this area. Table of Contents 10 Hardy Shade Trees .............................................................................................................................................................................................................................2-3
    [Show full text]
  • Plant Perennials This Fall to Enjoy Throughout the Year Conditions Are Perfect for Planting Perenni - Esque Perennials Like Foxglove, Delphinium, Next
    Locally owned since 1958! Volume 26 , No. 3 News, Advice & Special Offers for Bay Area Gardeners FALL 2013 Ligularia Cotinus Bush Dahlias Black Leafed Dahlias Helenium Euphorbia Coreopsis Plant perennials this fall to enjoy throughout the year Conditions are perfect for planting perenni - esque perennials like Foxglove, Delphinium, next. Many perennials are deer resistant (see als in fall, since the soil is still warm from the Dianthus, Clivia, Echium and Columbine steal our list on page 7) and some, over time, summer sun and the winter rains are just the show. In the summertime, Blue-eyed need to be divided (which is nifty because around the corner. In our mild climate, Grass, Lavender, Penstemon, Marguerite and you’ll end up with more plants than you delightful perennials can thrive and bloom Shasta Daisies, Fuchsia, Begonia, Pelargonium started with). throughout the gardening year. and Salvia shout bold summer color across the garden. Whatever your perennial plans, visit Sloat Fall is when Aster, Anemone, Lantana, Garden Center this fall to get your fall, win - Gaillardia, Echinacea and Rudbeckia are hap - Perennials are herbaceous or evergreen ter, spring or summer perennial garden start - pily flowering away. Then winter brings magi - plants that live more than two years. Some ed. We carry a perennial plant, for every one, cal Hellebores, Cyclamen, Primrose and die to the ground at the end of each grow - in every season. See you in the stores! Euphorbia. Once spring rolls around, fairy- ing season, then re-appear at the start of the Inside: 18 favorite Perennials, new Amaryllis, Deer resistant plants, fall clean up and Bromeliads Visit our stores: Nine Locations in San Francisco, Marin and Contra Costa Richmond District Marina District San Rafael Kentfield Garden Design Department 3rd Avenue between 3237 Pierce Street 1580 Lincoln Ave.
    [Show full text]
  • Athyrium Niponicum 'Pictum'
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 30 Jan 2004 Athyrium niponicum ‘Pictum’ The Perennial Plant Association has named Athyrium niponicum ‘Pictum’ the 2004 Perennial Plant of the Year. This perennial low-maintenance Japanese painted fern is one of the showiest ferns for shade gardens. It is popular due to its hardiness nearly everywhere in the United States, except in the desert and northernmost areas in zone 3. ‘Pictum’ grows 18 inches tall and as it multiplies can make a clump that is more than two feet wide. ‘Pictum’ produces 12- to 18-inch fronds that are a soft shade of metallic silver-gray with hints of red and blue. This lovely fern, which prefers partial to full shade, makes an outstanding combination plant for adding color, texture, and habit to landscape beds and containers. Landscape Uses The magnifi cent texture and color of the fronds electrify shady areas of the garden and make the fern a wonderful companion for a variety of shade plants. Japanese painted fern provides a nice contrast to other shade-loving perennials such as hosta, bleeding heart, columbine, Fronds of Athyrium niponicum ‘Pictum’ astilbe and coral bells. A popular combination is Japanese painted fern with Hosta ‘Patriot’ and ‘Ginko Craig’. For something different, try Hosta sieboldiana ‘Elegans’. Another friendly companion plant for the Japanese painted fern is Tiarella (foam fl ower). One of the most unique possibilities is to use this fern with sedges. Carex (sedges) are shade-loving, easy-to-grow grasslike plants. Try Carex morrowii ‘Variegata’ or Carex siderosticha ‘Silver Sceptre’.
    [Show full text]
  • Hippeastrum X Hybridum1
    Fact Sheet FPS-255 October, 1999 Hippeastrum x hybridum1 Edward F. Gilman2 Introduction The large, bold flowers of Amaryllis are well known as pot plants, the tall flower scape projecting well above the long, evergreen, strap-like leaves (Fig. 1). Borne in clusters of two to five, the trumpet-shaped blooms appear in spring when planted in the landscape and are available in various shades and combinations of white, pink, red, or orange. Amaryllis are semi-evergreen when grown in northern Florida since the foliage lays down and rots during the winter. They can be used in a mass planting spaced about 12 inches apart or scattered among small shrubs or groundcovers for a splash of delightful spring color. General Information Scientific name: Hippeastrum x hybridum Pronunciation: hip-ee-ASS-strum HYE-brid-um Common name(s): Amaryllis Family: Amaryllidaceae Plant type: bulb/tuber; perennial; herbaceous USDA hardiness zones: 8 through 10 (Fig. 2) Figure 1. Amaryllis. Planting month for zone 8: year round Planting month for zone 9: year round Planting month for zone 10 and 11: year round Description Origin: not native to North America Height: 1 to 2 feet Uses: mass planting; container or above-ground planter; Spread: 1 to 2 feet border; naturalizing; edging Plant habit: upright Availablity: somewhat available, may have to go out of the Plant density: open region to find the plant Growth rate: slow Texture: coarse 1.This document is Fact Sheet FPS-255, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • Generic Classification of Amaryllidaceae Tribe Hippeastreae Nicolás García,1 Alan W
    TAXON 2019 García & al. • Genera of Hippeastreae SYSTEMATICS AND PHYLOGENY Generic classification of Amaryllidaceae tribe Hippeastreae Nicolás García,1 Alan W. Meerow,2 Silvia Arroyo-Leuenberger,3 Renata S. Oliveira,4 Julie H. Dutilh,4 Pamela S. Soltis5 & Walter S. Judd5 1 Herbario EIF & Laboratorio de Sistemática y Evolución de Plantas, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile 2 USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Rd., Miami, Florida 33158, U.S.A. 3 Instituto de Botánica Darwinion, Labardén 200, CC 22, B1642HYD, San Isidro, Buenos Aires, Argentina 4 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Postal Code 6109, 13083-970 Campinas, SP, Brazil 5 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. Address for correspondence: Nicolás García, [email protected] DOI https://doi.org/10.1002/tax.12062 Abstract A robust generic classification for Amaryllidaceae has remained elusive mainly due to the lack of unequivocal diagnostic characters, a consequence of highly canalized variation and a deeply reticulated evolutionary history. A consensus classification is pro- posed here, based on recent molecular phylogenetic studies, morphological and cytogenetic variation, and accounting for secondary criteria of classification, such as nomenclatural stability. Using the latest sutribal classification of Hippeastreae (Hippeastrinae and Traubiinae) as a foundation, we propose the recognition of six genera, namely Eremolirion gen. nov., Hippeastrum, Phycella s.l., Rhodolirium s.str., Traubia, and Zephyranthes s.l. A subgeneric classification is suggested for Hippeastrum and Zephyranthes to denote putative subclades.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Hippeastrum Reticulatum (Amaryllidaceae): Alkaloid Profiling, Biological Activities and Molecular Docking
    molecules Article Hippeastrum reticulatum (Amaryllidaceae): Alkaloid Profiling, Biological Activities and Molecular Docking Luciana R. Tallini 1 ID , Edison H. Osorio 2, Vanessa Dias dos Santos 3, Warley de Souza Borges 3, Marcel Kaiser 4,5, Francesc Viladomat 1, José Angelo S. Zuanazzi 6 ID and Jaume Bastida 1,* 1 Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028-Barcelona, Spain; [email protected] (L.R.T.); [email protected] (F.V.) 2 Department of Basic Sciences, Catholic University Luis Amigó, SISCO, Transversal 51 A No. 67B-90, Medellín, Colombia; [email protected] 3 Department of Chemistry, Federal University of Espírito Santo, Av. Fernando Ferrari 514, 29075-915 Vitória ES, Brazil; [email protected] (V.D.d.S.); [email protected] (W.d.S.B.) 4 Medicinal Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, 4051 Basel, Switzerland; [email protected] 5 University of Basel, Petersplatz 1, 4001 Basel, Switzerland 6 Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre RS, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +34-934-020-268 Received: 24 October 2017; Accepted: 7 December 2017; Published: 9 December 2017 Abstract: The Amaryllidaceae family has proven to be a rich source of active compounds, which are characterized by unique skeleton arrangements and a broad spectrum of biological activities. The aim of this work was to perform the first detailed study of the alkaloid constituents of Hippeastrum reticulatum (Amaryllidaceae) and to determine the anti-parasitological and cholinesterase (AChE and BuChE) inhibitory activities of the epimers (6α-hydroxymaritidine and 6β-hydroxymaritidine).
    [Show full text]
  • Aquarium Plants
    Aquarium Plants Kingdom: Plantae Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. Shipment of aquatic plants is prohibited in Puerto Rico. Shipment of Cabomba is restricted in CA, CT, MA, ME, VT, and WA. In all other cases, the USDA does not require any special permits to receive aquatic plants. However, in order to continue to protect our environment, you must house your aquatic plants in an aquarium. Under no circum- stances should you release your plants into the wild. Primary Hazard Considerations Always wash your hands thoroughly before and after you handle your aquatic plants, or anything it has touched. Availability Aquatic plants are generally available year round, and can be found in freshwater lakes and ponds. They are collected, so shortages may occur. The aquatic plants come packaged in plastic bags. Once received, open package and, using tap water, gently rinse away any debris or broken-off pieces. Some plants come in jars; remove lid and place in tank. Your plants do not need to be acclimated. Aquarium Needs Habitat: • Water from the tap in most cases contains chlorine, which can be detrimental to the health of your plants and aquatic animals. De-chlorinate your water by using a commercial chemical designed to do so, such as Ammonia/Chlorine Detoxifier, or by leaving your water out in an open container for 24–48 hours. Tropical plants need temperatures ranging from 66–77°F. For an aquarium to function well, a Filtration System 21 W 3535 is needed.
    [Show full text]
  • Smart Flower Borders to Attract Beneficial Insects Home Gardeners Can Plant a Diverse Mix of Flowers to Attract Beneficial Insects to Their Yard and Gardens
    Vol. 2, No. 1 PRESS Smart flower borders to attract beneficial insects Home gardeners can plant a diverse mix of flowers to attract beneficial insects to their yard and gardens. Rebecca Krans, Michigan State University Extension Smart gardeners use sustainable practices that are the aphids, can damage plant tissues and transmit earth friendly and save them time, effort and money. plant diseases when they eat. Lacewing larvae are One smart practice is to incorporate a variety of voracious feeders of aphids and they will eat hundreds perennial flowering plants that bloom throughout the to thousands of aphids during their lifecycle. growing season in your yard and garden. Not only do flowering plants provide food for a variety of bees Other beneficials include the parasitoids; they will which aid in pollination, they also provide food and parasitize or feed off the pest insects. Examples shelter for a myriad of other beneficial insects that include parasitic wasps that lay their eggs within the eat and parasitize destructive bugs. caterpillar or larval stage of pests; one such pest that is affected is the tomato or tobacco hornworm. Font: Noteworthy bold What are beneficial insects? If you see this big green caterpillar with many white protrusions on it, you are observing this natural Beneficials are the “good” bugs. For example, process. A parasitic wasp has laid her eggs inside pollinators such as bees are needed for pollination and they are developing on the paralyzed tomato of cherries, blueberries, cucumbers and many other hornworm, feeding off of it and eventually killing it. crops to produce fruit.
    [Show full text]