Scientific Report for 2006 ESI the Erwin Schrödinger International
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2006 Annual Report
Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson. -
Annual Report 2005-2006
CORNELL UNIVERSITY DEPARTMENT OF MATHEMATICS ANNUAL REPORT 2005–2006 The Department of Mathematics at Cornell University is known throughout the world for its distinguished faculty and stimulating mathematical atmosphere. Close to 40 tenured and tenure-track faculty represent a broad spectrum of current mathematical research, with a lively group of postdoctoral fellows and frequent research and teaching visitors. The graduate program includes over 70 graduate students from many different countries. The undergraduate program includes several math major programs, and the department offers a wide selection of courses for all types of users of mathematics. A private endowed university and the federal land-grant institution of New York State, Cornell is a member of the Ivy League and a partner of the State University of New York. There are approximately 19,500 students at Cornell’s Ithaca campus enrolled in seven undergraduate units and four graduate and professional units. Nearly 14,000 of those students are undergraduates, and most of those take at least one math course during their time at Cornell. The Mathematics Department is part of the College of Arts and Sciences, a community of 6,000 students and faculty in 50 departments and programs, encompassing the humanities, sciences, mathematics, fine arts, and social sciences. We are located in Malott Hall, in the center of the Cornell campus, atop a hill between two spectacular gorges that run down to Cayuga Lake in the beautiful Finger Lakes region of New York State. Department Chair: Prof. Kenneth Brown Director of Undergraduate Studies (DUS): Prof. Allen Hatcher Director of Graduate Studies (DGS): Prof. -
Statistical Problems Involving Permutations with Restricted Positions
STATISTICAL PROBLEMS INVOLVING PERMUTATIONS WITH RESTRICTED POSITIONS PERSI DIACONIS, RONALD GRAHAM AND SUSAN P. HOLMES Stanford University, University of California and ATT, Stanford University and INRA-Biornetrie The rich world of permutation tests can be supplemented by a variety of applications where only some permutations are permitted. We consider two examples: testing in- dependence with truncated data and testing extra-sensory perception with feedback. We review relevant literature on permanents, rook polynomials and complexity. The statistical applications call for new limit theorems. We prove a few of these and offer an approach to the rest via Stein's method. Tools from the proof of van der Waerden's permanent conjecture are applied to prove a natural monotonicity conjecture. AMS subject classiήcations: 62G09, 62G10. Keywords and phrases: Permanents, rook polynomials, complexity, statistical test, Stein's method. 1 Introduction Definitive work on permutation testing by Willem van Zwet, his students and collaborators, has given us a rich collection of tools for probability and statistics. We have come upon a series of variations where randomization naturally takes place over a subset of all permutations. The present paper gives two examples of sets of permutations defined by restricting positions. Throughout, a permutation π is represented in two-line notation 1 2 3 ... n π(l) π(2) π(3) ••• τr(n) with π(i) referred to as the label at position i. The restrictions are specified by a zero-one matrix Aij of dimension n with Aij equal to one if and only if label j is permitted in position i. Let SA be the set of all permitted permutations. -
PERSI DIACONIS (650) 725-1965 Mary V
PERSI DIACONIS (650) 725-1965 Mary V. Sunseri Professor [email protected] http://statistics.stanford.edu/persi-diaconis Professor of Statistics Sequoia Hall, 390 Jane Stanford Way, Room 131 Sloan Mathematics Center, 450 Jane Stanford Way, Room 106 Professor of Mathematics Stanford, California 94305 Professional Education College of the City of New York B.S. Mathematics 1971 Harvard University M.A. Mathematical Statistics 1972 Harvard University Ph.D. Mathematical Statistics 1974 Administrative Appointments 2006–2007 Visiting Professor, Université de Nice-Sophia Antipolis 1999–2000 Fellow, Center for Advanced Study in the Behavioral Sciences 1998– Professor of Mathematics, Stanford University 1998– Mary Sunseri Professor of Statistics, Stanford University 1996–1998 David Duncan Professor, Department of Mathematics and ORIE, Cornell University 1987–1997 George Vasmer Leverett Professor of Mathematics, Harvard University 1985–1986 Visiting Professor, Department of Mathematics, Massachusetts Institute of Technology 1985–1986 Visiting Professor, Department of Mathematics, Harvard University 1981–1987 Professor of Statistics, Stanford University 1981–1982 Visiting Professor, Department of Statistics, Harvard University 1979–1980 Associate Professor of Statistics, Stanford University 1978–1979 Research Staff Member, AT&T Bell Laboratories 1974–1979 Assistant Professor of Statistics, Stanford University Professional Activities 1972–1980 Statistical Consultant, Scientific American 1974– Statistical Consultant, Bell Telephone Laboratories -
Strength in Numbers: the Rising of Academic Statistics Departments In
Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Downloads Over 8,000)
Volume 47 • Issue 1 IMS Bulletin January/February 2018 National Academy new member The US National Academy of Medicine (NAM) has announced the election of 70 reg- CONTENTS ular members and 10 international members. Among them is Nicholas Patrick Jewell, 1 National Academy of University of California, Berkeley. Medicine elects Jewell Election to the Academy is considered one of the highest honors in the fields of 2 Members’ news: Nick Horton, health and medicine, recognizing individuals who have made major contributions to Eric Kolaczyk, Hongzhe Li, the advancement of the medical sciences, health care, and public health. A diversity Runze Li, Douglas Simpson, of talent among NAM’s membership is Greg Lawler, Mike Jordan, Mir assured by its Articles of Organization, Masoom Ali which stipulate that at least one-quarter 3 Journal news: EJP, ECP, Prob of the membership is selected from fields Surveys; OECD guidelines outside the health professions, for exam- 4 Takis Konstantopoulos: new ple, from law, engineering, social sciences, column and the humanities—and statistics. The newly elected members bring 6 Recent papers: Electronic Journal of Probability; Electronic NAM’s total membership to 2,127 and Communications in Probability the number of international members to 172. 11 Special Invited Lecturers; IMS Fellow Nicholas P. Jewell is New Textbook Professor of Biostatistics and Statistics 12 Obituary: Ron Getoor at the University of California, Berkeley. 13 IMS Awards Since arriving at Berkeley in 1981, he has held various academic and administrative 15 Student Puzzle Corner 19; New Researcher Award positions, most notably serving as Vice Provost from 1994 to 2000. -
View from the Chair
View from the Chair This past summer we initiated a major new program for John Imbrie research experiences for undergraduates (REUs), Professor of Mathematics/Chair combining Ken Ono's long-running program in number theory with a new program in geometry and topology, I write at the conclusion of an extraordinary year for our supported by the RTG grant. Despite the challenges of work- department. As 2020 began, we were gearing up to host the ing remotely, the program was very successful -- see the AMS sectional, which was to start on March 12. Early article below by Ken Ono and Tom Mark. Other indications were that large gatherings were a major highlights of this Virginia Math Bulletin include an article on contributor to the spread of the pandemic, so we hastily our new bridge program, by David Sherman (our new cancelled the event, which was to bring 700 participants to Director of Diversity, Equity, and Inclusion). Our Bridge to Charlottesville. Soon, the university cancelled classes and the Doctorate currently supports three students were abruptly sent post-baccalaureate students as they home. Faculty members and prepare for entry into a Ph.D. program. graduate students were tasked with quickly finding Sadly, it was impossible to conduct the a way to hold classes online. Gordon Keller math majors dinner. We The learning curve was had planned to host UVa graduate steep, but we came together and McShane Prize winner Adrew Booker, to reinvent our modes of who was in the news for work leading to teaching. Now we reach the the long-sought integer solutions to conclusion of a semester x3 + y3 + z3 = 33 and x3 + y3 + z3 = 42. -
The Work of Wendelin Werner
The work of Wendelin Werner Charles M. Newman∗ 1. Introduction It is my great pleasure to briefly report on some of Wendelin Werner’s research ac- complishments that have led to his being awarded a Fields Medal at this International Congress of Mathematicians of 2006. There are a number of aspects of Werner’s work that add to my pleasure in this event. One is that he was trained as a probabilist, receiving his Ph.D. in 1993 under the supervision of Jean-François Le Gall in Paris with a dissertation concerning planar Brownian Motion – which, as we shall see, plays a major role in his later work as well. Until now, Probability Theory had not been represented among Fields Medals and so I am enormously pleased to be here to witness a change in that history. I myself was originally trained, not in Probability Theory, but in Mathematical Physics. Werner’s work, together with his collaborators such as Greg Lawler, Oded Schramm and Stas Smirnov, involves applications of Probablity and Conformal Map- ping Theory to fundamental issues in Statistical Physics, as we shall discuss. A second source of pleasure is my belief that this, together with other work of recent years, represents a watershed in the interaction between Mathematics and Physics generally. Namely, mathematicians such as Werner are not only providing rigorous proofs of already existing claims in the Physics literature, but beyond that are provid- ing quite new conceptual understanding of basic phenomena – in this case, a direct geometric picture of the intrinsically random structure of physical systems at their critical points (at least in two dimensions). -
Scientific Report for 2013
Scientific Report for 2013 Impressum: Eigent¨umer,Verleger, Herausgeber: The Erwin Schr¨odingerInternational Institute for Mathematical Physics - U of Vienna (DVR 0065528), Boltzmanngasse 9, A-1090 Vienna. Redaktion: Goulnara Arzhantseva, Joachim Schwermer. Supported by the Austrian Federal Min- istry of Science and Research (BMWF) through the U of Vienna. Contents Preface 3 The Institute and its Mission in 2013 . 3 Scientific activities in 2013 . 4 The ESI in 2013 . 6 Scientific Reports 7 Main Research Programmes . 7 Teichm¨ullerTheory . 7 The Geometry of Topological D-branes, Categories, and Applications . 11 Jets and Quantum Fields for LHC and Future Colliders . 18 GEOQUANT 2013 . 25 Forcing, Large Cardinals and Descriptive Set Theory . 28 Heights in Diophantine Geometry, Group Theory and Additive Combinatorics . 31 Workshops organized independently of the Main Programmes . 36 ESI Anniversary - Two Decades at the Interface of Mathematics and Physics The [Un]reasonable Effectiveness of Mathematics in the Natural Sciences . 36 Word maps and stability of representations . 38 Complexity and dimension theory of skew products systems . 42 Advances in the theory of automorphic forms and their L-functions . 44 Research in Teams . 51 Marcella Hanzer and Goran Muic: Eisenstein Series . 51 Vladimir N. Remeslennikov et al: On the first-order theories of free pro-p groups, group extensions and free product groups . 53 Raimar Wulkenhaar et al: Exactly solvable quantum field theory in four dimensions . 57 Jan Spakula et al: Nuclear dimension and coarse geometry . 60 Alan Carey et al: Non-commutative geometry and spectral invariants . 62 Senior Research Fellows Programme . 64 Vladimir Korepin: The Algebraic Bethe Ansatz . 64 Simon Scott: Logarithmic TQFT, torsion, and trace invariants . -
Five Stories for Richard
Unspecified Book Proceedings Series Five Stories for Richard Persi Diaconis Richard Stanley writes with a clarity and originality that makes those of us in his orbit happy we can appreciate and apply his mathematics. One thing missing (for me) is the stories that gave rise to his questions, the stories that relate his discoveries to the rest of mathematics and its applications. I mostly work on problems that start in an application. Here is an example, leading to my favorite story about stories. In studying the optimal strategy in a game, I needed many random permutations of 52 cards. The usual method of choosing a permutation on the computer starts with n things in order, then one picks a random number from 1 to n | say 17 | and transposes 1 and 17. Next one picks a random number from 2 to n and transposes these, and so forth, finishing with a random number from n − 1 to n. This generates all n! permutations uniformly. When our simulations were done (comprising many hours of CPU time on a big machine), the numbers \looked funny." Something was wrong. After two days of checking thousands of lines of code, I asked \How did you choose the permutations?" The programmer said, \Oh yes, you told me that fussy thing, `random with 1, etc' but I made it more random, with 100 transpositions of (i; j); 1 ≤ i; j ≤ n." I asked for the work to be rerun. She went to her boss and to her boss' boss who each told me, essentially, \You mathematicians are crazy; 100 random transpositions has to be enough to mix up 52 cards." So, I really wanted to know the answer to the question of how many transpositions will randomize 52 cards. -
Wolf Prize for Le Gall, Lawler
Volume 48 • Issue 2 IMS Bulletin March 2019 Wolf Prize for Le Gall, Lawler The Wolf Prize for Mathematics is awarded to Gregory Lawler from Chicago CONTENTS University, for his comprehensive and pioneering research on erased loops and random 1 Wolf Prize for Greg Lawler walks and to Jean-François Le Gall from Paris Sud Orsay University, for his profound and Jean-François Le Gall and elegant works on stochastic processes. The work undertaken by these two math- 2–3 Members’ news: Susan ematicians on loops and probability, which have been recognized by multiple prizes, Murphy, Jonas Peters, Tengyao became the stepping stone for many consequent breakthroughs. Wang, Emery Brown, Grégory Jean-François Le Gall has made several deep and elegant Miermont contributions to the theory of stochastic processes. His work on Photo: F. Hullin F. Photo: 4–5 Preview articles: Krzysztof the fine properties of Brownian motions solved many difficult Burdzy, David Dunson problems, such as the characterization of sets visited multiple times and the behavior of the volume of its neighborhood—the 6 Recent papers: Electronic Journal of Statistics; Brownian sausage. Le Gall made groundbreaking advances Statistics Surveys in the theory of branching processes, which arise in many Jean-François Le Gall applications. In particular, his introduction of the Brownian 7 Project Euclid by the Numbers snake and his studies of its properties revolutionized the theory of super-processes— 8 President’s Column: The generalizations of Markov processes to an evolving cloud of dying and splitting CRediT you’ve been asking for particles. He then used some of these tools for achieving a spectacular breakthrough 10 ACM joint membership in the mathematical understanding of 2D quantum gravity. -
Professor of Magic Mathematics Author(S): DON ALBERS and Persi Diaconis Source: Math Horizons, Vol
Professor of Magic Mathematics Author(s): DON ALBERS and Persi Diaconis Source: Math Horizons, Vol. 2, No. 3 (February 1995), pp. 11-15 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/25678003 . Accessed: 30/10/2014 13:17 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to Math Horizons. http://www.jstor.org This content downloaded from 129.10.72.232 on Thu, 30 Oct 2014 13:17:17 PM All use subject to JSTOR Terms and Conditions DONALBERS Professor of-Maaie Mathematics more more Persi Diaconis, professor ofmath just gets and random. That A Magical Beginning a ematics at Harvard, has just is not the way it works at all. It is ALBERS: At theage 14, you leftyour turned 50, but the energy and theorem that this phenomenon of the of next ten intact as New York City home and spent the of the 14-year old Persi who order of cards being you go intensity on What . to years the road practicing magic. left high school to do magic full time from one, two, three shuffles.