Bos Frontalis

Total Page:16

File Type:pdf, Size:1020Kb

Bos Frontalis www.nature.com/scientificreports OPEN High-density Genotyping reveals Genomic Characterization, Population Structure and Genetic Received: 24 November 2017 Accepted: 20 June 2018 Diversity of Indian Mithun (Bos Published: xx xx xxxx frontalis) Anupama Mukherjee1,3, Sabyasachi Mukherjee1, Rajan Dhakal 2, Moonmoon Mech1, Imsusosang Longkumer1, Nazrul Haque1, Kezhavituo Vupru1, Kobu Khate1, I. Yanger Jamir1, Pursenla Pongen1, Chandan Rajkhowa1, Abhijit Mitra1, Bernt Guldbrandtsen 2 & Goutam Sahana 2 The current study aimed at genomic characterization and improved understanding of genetic diversity of two Indian mithun populations (both farm, 48 animals and feld, 24 animals) using genome wide genotype data generated with Illumina BovineHD BeadChip. Eight additional populations of taurine cattle (Holstein and NDama), indicine cattle (Gir) and other evolutionarily closely related species (Bali cattle, Yak, Bison, Gaur and wild bufalo) were also included in this analysis (N = 137) for comparative purposes. Our results show that the genetic background of mithun populations was uniform with few possible signs of indicine admixture. In general, observed and expected heterozygosities were quite similar in these two populations. We also observed increased frequencies of small-sized runs of homozygosity (ROH) in the farm population compared to feld mithuns. On the other hand, longer ROH were more frequent in feld mithuns, which suggests recent founder efects and subsequent genetic drift due to close breeding in farmer herds. This represents the frst study providing genetic evidence about the population structure and genomic diversity of Indian mithun. The information generated will be utilized for devising suitable breeding and conservation programme for mithun, an endangered bovine species in India. Mithun (Bos frontalis), also known as gayal, a unique bovine species, has a limited geographical distribution primarily restricted to the North-Eastern Hilly (NEH) region of India, Myanmar, hilly provinces of Bangladesh, Bhutan and Yunan province of China1. Tough it is difcult to ascertain the actual population of Mithun in the world, India possesses 0.30 million mithun which constitutes ~97.57% of the world population (19th Livestock Census, 2012)2. Mithun has a very special socio-cultural status among the indigenous tribal population of NEH region of India. Having the very high value in the barter system, owning mithun is considered as a sign of prosperity. Mithun are traditionally raised as a meat animal in a free-range system in the sub-tropical rain forest with almost zero input. As a part of socio-cultural practices, mithuns are sacrifced during rituals and festivals to ofer feast3. Mithun meat is one of the most preferred sources of animal protein among local tribes. Compared to the meat from local cattle and bufalo, mithun meat is preferred due to both quality (better marbling, fner texture, and tenderness) and quantity (higher dressing %)4–6. Mithun have higher feed conversion efciency than local 1Animal Genetics and Breeding Lab., ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797106, India. 2Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark. 3Present address: Dairy Cattle Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India. Anupama Mukherjee and Sabyasachi Mukherjee contributed equally to this work. Correspondence and requests for materials should be addressed to S.M. (email: sabayasachimukherje@ gmail.com) SCIENTIFIC REPORTS | (2018) 8:10316 | DOI:10.1038/s41598-018-28718-x 1 www.nature.com/scientificreports/ Sample size Location of collected Admixture PCA Sl. No. Name/Code used samples analysis analysis 1 Mithun – farm population (Bos frontalis)/Farm India 48 20 2 Mithun – feld population (Bos frontalis)/Field India 24 20 3 NDama (Bos taurus)/NDA Africa 23 20 4 Bali cattle (Bos javanicus)/BLI Indonesia (Bali) 20 20 5 Gir (Bos indicus)/ GIR Brazil 50 20 6 Holstein (Bos taurus)/HOL Denmark 20 20 7 Wild bufalo (Bubalus depressicornis)/OWB Africa 10 10 8 Yak (Bos grunniens)/OYK China 4 4 9 Bison (Bison bison)/OBB USA 4 4 10 Gaur (Bos gaurus)/OGR USA 6 6 Table 1. Species/breeds included in the ADMIXTURE and PCA analyses genotyped with Illumina BovineHD BeadChip (HD) or BovineSNP50 (50 k). cattle7. Te current population size of mithun in India is not large. However, considering its importance in wid- ening the biodiversity base and adaptation to a humid sub-tropical climate and a hilly topography, it could be exploited as an alternative means of livelihood as well as for improved food and nutrition security in its present habitat and in similar environments elsewhere. Genetic improvement of mithun, however, is impeded by the way mithun is presently reared. Under tradi- tional system of rearing, mithuns are let loose in the forest with minimal intervention. Recording of traits and pedigree information is almost non-existent. Te size of a typical mithun herds ranges from 50 to 100. Herds are generally served by a few dominant bulls. Te mithun population may therefore sufer from inbreeding. Under these circumstances, the genetic diversity of the mithun population needs to be described. Tis will assist ongoing mithun conservation and genetic improvement programme and for devising a suitable breeding policy. Among a wide range of molecular markers developed, single nucleotide polymorphisms (SNPs) are the most abundant, widely dispersed throughout genomes, and have variable distribution among species8. Te avail- ability of high-throughput SNP genotyping platforms makes it feasible to undertake high-resolution scans by using large numbers of SNP markers distributed across the whole genome. SNPs are useful in studying livestock genetic diversity and population structure8,9. Although a large number of SNPs have been identifed in bovine genome-sequencing projects, few of these have been validated outside Bos taurus, as for example in mithun10. Te Illumina BovineHD BeadChip (Illumina, San Diego, CA) with 777k SNPs was introduced and utilized for gen- otyping studies in various breeds of cattle, but has also been used in other members of the bovidae, for example, yak, gaur, bufalo and wild anoa10–16. Other bovine species including indigenous cattle, yak and gaur are also found in the North Eastern parts of India along with mithun. Forest cover and natural habitats of mithuns in the North Eastern Hill States of India have shrunk over the years. Tis raises concerns about possible introgression of local cattle with mithun, shar- ing the same habitat. Sporadic instances of crossing mithuns with cattle bulls by mithun owners in the feld to increase milk production have also been recorded17. Hence, we used the unsupervised clustering analysis (carried out with the ADMIXTURE sofware)18 to estimate individuals’ ancestries from SNP genotypes to assess the extent of admixture in mithun with other cattle species (Table 1). Terefore, the present study aimed to generate high-resolution information on the genomic diversity and pop- ulation structure of mithun using Illumina BovineHD BeadChip. To our knowledge, this is the frst study using BovineHD BeadChip in mithun. We further studied the evolutionary relationship of mithun with closely related bovine species to understand mithun phylogeny and origin. Results Population diversity parameters - Observed Ho, expected He, FIS and ROH. Observed (Ho) and expected (He) heterozygosities estimated in the Indian mithun population (farm and feld population) ranged from 0.25 to 0.17, and 0.25 to 0.18, respectively (Table 2). Te inbreeding coefcient estimates (FIS) based on the observed versus expected number of homozygous genotypes, were found to be 0.06 ± 0.02 and 0.02 ± 0.01 for the farm and feld animals (Table 2). Te mean FST estimate between farm and feld mithun populations was 0.03 ± 0.01. Runs of homozygosity. Runs of homozygosity (ROH) in the autosomes of 48 farm mithun and 24 feld mithun animals were determined using PLINK1.919 and consisted of 139,350 SNPs in each of the farm and feld data set afer quality control. Te total length of ROH per animal was averaged within population in six sized windows: 250 kb–1 Mb, 1 Mb–2 Mb, 2 Mb–4 Mb, 4 Mb–8 Mb, 8 Mb–16 Mb and >16 Mb. Te average total length of ROH per animal was 823.7, 242.1, 92.30, 47.03, 66.22 and 110.9 Mb in the farm and 735.8, 245.0, 121.3, 84.4, 86.0 and 87.4 Mb in the feld population for these six length categories. Summary statistics of ROH observed are outlined in Table 3 (farm) and 4 (feld). Average numbers of ROH per animal for these six categories were 1793.0, 182.8, 35.3, 8.9, 6.0 and 4.25 in farm and 1596.0, 181.9, 45.5 15.5, SCIENTIFIC REPORTS | (2018) 8:10316 | DOI:10.1038/s41598-018-28718-x 2 www.nature.com/scientificreports/ Population Location No. of animals Average Ho Average He Inbreeding Coefcient (FIS) Research- farm (Farm) Nagaland 48 (28 males and 20 females) 0.25 ± 0.08 0.25 ± 0.07 0.06 ± 0.02 Nagaland, Arunachal Farmers’ herds (Field) Pradesh, Manipur, 24 (11 males and 13 females) 0.17 ± 0.03 0.18 ± 0.03 0.02 ± 0.01 Mizoram Table 2. Geographic location, sample size (N), composition of mithuns and diversity parameters in mithun population. Average observed and expected heterozygosities are indicated as Ho and He, respectively. ROH length category (Mb) Statistics 250 kb-1 Mb 1–2 Mb 2–4 Mb 4–8 Mb 8–16 Mb >16 Mb Mean 823.7 242.1 92.30 47.03 66.22 110.9 SD 85.3 42.1 39.3 34.2 54.6 134.7 Length of ROH per animal (Mb) Min 610.7 137.8 25.31 4.52 8.2 16.7 Max 971.6 322.8 179.8 138.1 205.6 498.6 Mean 1793.0 182.8 35.3 8.9 6.04 4.25 SD 199.8 30.1 14.5 6.2 4.7 5.02 Number of ROH per animal Min 1313.0 108.0 10.0 1.0 1.0 1.00 Max 2125.0 240.0 69.0 26.0 18.0 19.00 Mean 0.335 0.098 0.038 0.019 0.027 0.045 SD 0.035 0.017 0.016 0.014 0.022 0.007 FROH Min 0.248 0.056 0.010 0.002 0.003 0.007 Max 0.395 0.131 0.073 0.056 0.084 0.202 Table 3.
Recommended publications
  • Bantengbanteng Populationpopulation Inin Cambodia:Cambodia: Thethe Establishedestablished Baselinebaseline Densitydensity © FA / WWF-Cambodia
    FACTSHEET 2011 BantengBanteng PopulationPopulation inin Cambodia:Cambodia: TheThe EstablishedEstablished BaselineBaseline DensityDensity © FA / WWF-Cambodia Between 2009-2011 in dry seasons, the research team of WWF-Cambodia conducted the first vigorous surveys on population abundance of large mammals which includes wild cattle, deer, and wild pig in the Eastern Plain Landscape (EPL) of Cambodia covering an area of approximately 6,000km2. Banteng: Globally Endangered Species Banteng (bos javanicus) is a species of wild cattle that historically inhabited deciduous and semi- evergreen forests from Northeast India and Southern Yunnan through mainland Southeast Asia and Peninsular Malaysia to Borneo and Java. Since 1996, banteng has been listed by IUCN as globally endangered on the basis of an inferred decline over the last 30 years of more than 50%. Banteng is most likely the ancestor of Southeast Asia’s domestic cattle and it is considered to be one of the most beautiful and graceful of all wild cattle species. In Cambodia, banteng populations have decreased dramatically since the late 1960s. Poaching to sell the meat and horns as trophies constitutes a major threat to remnant populations even though banteng is legally protected. © FA / WWF-Cambodia Monitoring Banteng Population in the Landscape Knowledge of animal populations is central to understanding their status and to planning their management and conservation. That is why WWF has several research projects in the EPL to gain more information about the biodiversity values of PPWS and MPF. Regular line transect surveys are conducted to collect data on large ungulates like banteng, gaur, and Eld’s deer--all potential prey species for large carnivores including tigers.
    [Show full text]
  • Level of Estradiol 17-Β Serum and Ovarian Folliculare Dynamics in Short Estrous Cycle of Bali Cattle
    LEVEL OF ESTRADIOL 17-β SERUM AND OVARIAN FOLLICULARE DYNAMICS IN SHORT ESTROUS CYCLE OF BALI CATTLE C.M Airin1, P. P. Putro2, P. Astuti3 and E. Baliarti4 1Faculty of Veterinary Medicine, Gadjah Mada University, Jl Fauna No. 2 Karangmalang Yogyakarta - Indonesia 2Department of Obstetric and Gynaecology, Faculty of Veterinary Medicine, Gadjah Mada University, Jl Fauna No 2 Karangmalang Yogyakarta - Indonesia 3Department of Physiology, Faculty of Veterinary Medicine, Gadjah Mada University, Jl Fauna No 2 Karangmalang Yogyakarta - Indonesia, 4Department of Animal Production, Faculty of Animal Husbandry, Gadjah Mada University,Jl Fauna No 2 Karangmalang Yogyakarta - Indonesia Corresponding E-mail : [email protected] Received December 27, 2013; Accepted February 10, 2014 ABSTRAK Penelitian ini bertujuan untuk mengetahui kadar estradiol 17-β dan gambaran dinamika folikel yang menyertai kejadian siklus estrus yang pendek Penelitian ini menggunakan 7 ekor sapi Bali yang ada di Kebun Pengembangan Penelitian Pertanian, dan Peternakan (KP4), betina, umur 2 tahun, sehat dan bersiklus estrus normal. Pengukuran diameter folikel menggunakan ultrasonografi (USG) dan darah diambil dari vena jugularus dimulai hari pertama setiap hari dalam waktu yang bersamaan selama 3 siklus. Kadar estradiol 17-β dianalisis menggunakan metode Enzyme Immuno Assay (EIA) Hasil penelitian menunjukkan 4 ekor sapi Bali mempunyai siklus estrus pendek (n=7) diantara siklus estrus normal. Sapi Bali tersebut mempunyai 1 gelombang perkembangan folikel dengan panjang siklus 7-10 hari, diameter folikel ovulasi maksimal dan kadar estradiol 17-β menyerupai siklus normal. Kadar tertinggi estradiol 17-β pada siklus tersebut 107,77 ± 55.94 pg/ml pada hari ke 7-10 saat ukuran folikel ovulasi mencapai 10.5 ± 0,38 mm.
    [Show full text]
  • Conservation Status of Asiatic Wild Buffalo (Bubalus Arnee) in Chhattisgarh
    Conservation status of Asiatic Wild Buffalo (Bubalus arnee) in Chhattisgarh revealed through genetic study A Technical Report Prepared by Laboratory for the Conservation of Wildlife Trust of India Endangered Species(LACONES) F – 13, Sector 08 CSIR-CCMB Annex I, HYDERABAD – 500048 NCR, Noida - 201301 Disclaimer: This publication is meant for authorized use by laboratories and persons involved in research on conservation of Wild buffalos. LaCONES shall not be liable for any direct, consequential or incidental damages arising out of the protocols described in this book. Reference to any specific product (commercial or non-commercial), processes or services by brand or trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation or favor by LaCONES. The information and statements contained in this document shall not be used for the purpose of advertising or to imply the endorsement or recommendation of LaCONES. Citation: Mishra R.P. and A. Gaur. 2019. Conservation status of Asiatic Wild Buffalo (Bubalus arnee) in Chhattisgarh revealed through genetic study. Technical Report of WTI and CSIR-CCMB, 17p ACKNOWLEDGEMENTS We are thankful to the Forest Department, Govt. of Chhattisgarh for giving permission to carry out the conservation and research activities on Wild buffalo in various protected areas in Chhattisgarh. We are grateful to Shri Ram Prakash, PCCF (Retd.); Shri R.N. Mishra, PCCF (Retd.); Dr. R.K. Singh, PCCF (Retd.), Shri Atul Kumar Shukla, Principal Chief Conservator of Forests & Chief Wildlife Warden and Dr. S.K. Singh, Additional Principal Chief Conservator of Forests (WL), Dr. Rakesh Mishra, Director CSIR-CCMB, Dr. Rahul Kaul, Executive Director, WTI, Dr.
    [Show full text]
  • Final Project Report English Pdf 39.39 KB
    CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT Organization Legal Name: Wildlife Conservation Society Project Title: Northern Plains of Cambodia Kouprey Survey Date of Report: 9 June 2011 Report Author and Contact Mark Gately [email protected] +855 12 807 455 Information CEPF Region: Indochina Strategic Direction: 1. Safeguard globally threatened species in Indochina by mitigating major threats. Grant Amount: US$19,888 Project Dates: March 2010 – March 2011 Implementation Partners for this Project (please explain the level of involvement for each partner): Wildlife Conservation Society implemented the project in partnership with the Cambodian government agencies of the Forestry Administration and the Ministry of Environment. The government is the legal authority managing the areas in which the project is based and WCS provides technical support to improve management. Conservation Impacts Please explain/describe how your project has contributed to the implementation of the CEPF ecosystem profile. The Northern Plains of Cambodia Kouprey Survey worked directly towards the implementation of CEPF Strategic Direction 1. We addressed the need to improve information on the status and distribution of Kouprey. The goal of this study was to investigate the populations of wild cattle in the Northern Plains of Cambodia focusing on finding signs of the survival of the Kouprey. This survey also provided valuable data on the distribution of other wild cattle species. Preah Vihear Protected Forest (PVPF) could have been one of the locations in which any remaining Kouprey would have persisted as it contains such large areas of grassland and open forest. PVPF and Kulen Promtep Wildlife Sanctuary (KPWS) are where this species had been previously seen by Wharton (1957).
    [Show full text]
  • Characterisation of the Cattle, Buffalo and Chicken Populations in the Northern Vietnamese Province of Ha Giang Cécile Berthouly
    Characterisation of the cattle, buffalo and chicken populations in the northern Vietnamese province of Ha Giang Cécile Berthouly To cite this version: Cécile Berthouly. Characterisation of the cattle, buffalo and chicken populations in the northern Vietnamese province of Ha Giang. Life Sciences [q-bio]. AgroParisTech, 2008. English. NNT : 2008AGPT0031. pastel-00003992 HAL Id: pastel-00003992 https://pastel.archives-ouvertes.fr/pastel-00003992 Submitted on 16 Jun 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agriculture, UFR Génétique, UMR 1236 Génétique Alimentation, Biologie, Biodiva project UR 22 Faune Sauvage Elevage et Reproduction et Diversité Animales Environnement, Santé Thesis to obtain the degree DOCTEUR D’AGROPARISTECH Field: Animal Genetics presented and defended by Cécile BERTHOULY on May 23rd, 2008 Characterisation of the cattle, buffalo and chicken populations in the Northern Vietnamese province of Ha Giang Supervisors: Jean-Charles MAILLARD and Etienne VERRIER Committee Steffen WEIGEND Senior scientist, Federal Agricultural
    [Show full text]
  • Microbiological and Chemical Properties of Kefir Made of Bali Cattle Milk
    Food Science and Quality Management www.iiste.org ISSN 2224-6088 (Paper) ISSN 2225-0557 (Online) Vol 6, 2012 Microbiological and Chemical Properties of Kefir Made of Bali Cattle Milk Ketut Suriasih 1,* Wayan Redi Aryanta 2 Gede Mahardika 1 Nyoman Mantik Astawa 3 1. Faculty of Animal Husbandry, Udayana University ,PO box 80237, Bali, Indonesia. 2. Faculty of Agricultural Technology, Udayana University, PO box 80237, Bali, Indonesia. 3. Faculty of Veterinary Science, Udayana University, PO box 80237, Bali, Indonesia. * E-mail of the corresponding author [email protected] Abstract Information regarding to microbiological and chemical characteristics, and incubation time is crucial in developing kefir prepared using Bali cattle milk. This study was intended to investigate microbiological and chemical properties of the kefir prepared of Bali Cattle milk and Indonesian kefir grains after 24, 48 and 72 hours incubation periods. A completely randomized design, with 3 treatments, and 9 replicates were undertaken. Kefir samples were taken at the end of incubation period for determination of total lactic acid bacterial and yeast counts, pH, titratable acidity, lactose percentage and protein content. The result of this research showed that the total lactic acid bacterial counts were 10 8 – 10 9 cfu/ml, while yeast counts were ranging from 10 5 – 10 6 cfu/ml, no coliform and Escherichia coli were detected in any kefir samples in this research. Identification of the lactic acid bacteria and yeast revealed that the Lactobacillus paracasei ssp. paracasei 1 was the predominant species found in the kefir samples, followed by Lactobacillus brevis and the yeast Candida famata .
    [Show full text]
  • The Australian Centre for International Agricultural Research (ACIAR) Was Estab­ Lished in June 1982 by an Act of the Australian Parliament
    The Australian Centre for International Agricultural Research (ACIAR) was estab­ lished in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collabora­ tive research be1\\een Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this does not constitute endorsement of nor discrimina­ tion against any product by the Centre. ACIAR PROCEEDINGS SERIES This series of publications includes the full proceedings of research work­ shops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific insti­ tutions. Previous numbers in the series are listed on the inside back cover. © Australian Centre for J nternational Agricultural Research G.P.O. Box 1571, Canberra, A.C.T. 2601 CopIand, J. W. 1985. Draught animal power for production: proceedings of an international workshop held at James Cook University, Townsville, Qld, Australia, 10-16 July 1985. AClAR Proceedings Series No. 10, 170 p. ISBN 0 949511 17 X Photos: Cover, p. 35,161, Palitha Hadunge; p. 11, 121, 147, M. Wanapat; p. 57, 99, Colin McCoo!. Draught Animal Power For Production Proceedings of an international workshop held at James Cook University, Townsville, Qld, Australia 10-16 July 1985 Editor: J. W. Copland Organising Committee: R. S. F. Campbell, Chairman, J.C.u. J. P. Hogan, Secretary, C.S.I.R.O. K. W. Entwistle, J.c.u. D. Hoffmann, Q.D.P.1. R. M. Murray, J.C.u. E. Teleni, J.C.u.
    [Show full text]
  • (Bubalus Bubalis) in NEPAL: RECOMMENDED MANAGEMENT ACTION in the FACE of UNCERTAINTY for a CRITICALLY ENDANGERED SPECIES
    Contents TIGERPAPER A Translocation Proposal for Wild Buffalo in Nepal................... 1 Eucalyptus – Bane or Boon?................................................... 8 Status and Distribution of Wild Cattle in Cambodia.................... 9 Reptile Richness and Diversity In and Around Gir Forest........... 15 A Comparison of Identification Techniques for Predators on Artificial Nests................................................................... 20 Devastating Flood in Kaziranga National Park............................ 24 Bird Damage to Guava and Papaya........................................... 27 Death of an Elephant by Sunstroke in Orissa............................. 31 Msc in Forest and Nature Conservation for Tropical Areas......... 32 FOREST NEWS Report of an International Conference on Community Involvement in Fire Management............................................ 1 ASEAN Senior Officials Endorse Code of Practice for Forest Harvesting.................................................................. 4 Asian Model Forests Develop Criteria and Indicators Guidelines............................................................................. 4 East Asian Countries Pledge Action on Illegal Forest Activities.............................................................................. 6 South Pacific Ministers Consider Forestry Issues........................ 9 Tropical Ecosystems, Structure, Diversity and Human Welfare.. 10 Draft Webpage for International Weem Network......................... 10 New FAO Forestry Publications...............................................
    [Show full text]
  • Genetic Diversity in Farm and Wild Animals: a Review
    Journal of Infection and Molecular Biology Review Article Genetic Diversity in Farm and Wild Animals: A Review SHAISTA REHMAN, SHEHAR BANO, SUMBAL AFZAL University of Veterinary and Animal Science, Lahore, Pakistan. Abstract | The diversity among domestic and wild animals are known to contribute about half of the genetic variation found among animals within species, while the other half is attributed to genetic variation within breeds. Domestication of livestock species and a long history of migrations, selection and adaptation have created an enormous variety of breeds. Mitochondrial based genetic studies allow a comparison of genetic diversity. This has been summarized for cattle, buffalo, sheep, goats, horse, came lids, dog, elephant, deer, bear, donkey and monkey. Keywords | Domestic animal, Wild animal, Mitochondrial genome, Diversity, Phylogeny. Editor | Tahir Yaqub, University of Veterinary and Animal Sciences, Lahore, Pakistan. Received | March 03, 2017; Accepted | March 27, 2017; Published | March 29, 2017 *Correspondence | Shaista Rehman, University of Veterinary and Animal Science, Lahore, Pakistan; Email: [email protected] Citation | Shaista R, Bano S, Afzal S (2017). Genetic diversity in farm and wild animals: a Review. J. Inf. Mol. Biol. 5(1): 7-26. DOI | http://dx.doi.org/10.17582/journal.jahp/2017/5.1.7.26 ISSN (Online) | 2307-5465; ISSN (Print) | 2307-5716 Copyright © 2017 Shakir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, dis- tribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION genetic diversity (Wang et al., 2007). These characteristics make use of mtDNA as a tool for control relationships he mitochondrial DNA of most animals is about 16 among individuals within species and between closely re- kb of circular, supercoiled DNA.
    [Show full text]
  • COX BRENTON, a C I Date: COX BRENTON, a C I USDA, APHIS, Animal Care 16-MAY-2018 Title: ANIMAL CARE INSPECTOR 6021 Received By
    BCOX United States Department of Agriculture Animal and Plant Health Inspection Service Insp_id Inspection Report Customer ID: ALVIN, TX Certificate: Site: 001 Type: FOCUSED INSPECTION Date: 15-MAY-2018 2.40(b)(2) DIRECT REPEAT ATTENDING VETERINARIAN AND ADEQUATE VETERINARY CARE (DEALERS AND EXHIBITORS). ***In the petting zoo, two goats continue to have excessive hoof growth One, a large white Boer goat was observed walking abnormally as if discomforted. ***Although the attending veterinarian was made aware of the Male Pere David's Deer that had a front left hoof that appeared to be twisted approximately 90 degrees outward from the other three hooves and had a long hoof on the last report, the animal has not been assessed and a treatment pan has not been created. This male maneuvers with a limp on the affect leg. ***A female goat in the nursery area had a large severely bilaterally deformed udder. The licensee stated she had mastitis last year when she kidded and he treated her. The animal also had excessive hoof length on its rear hooves causing them to curve upward and crack. The veterinarian has still not examined this animal. Mastitis is a painful and uncomfortable condition and this animal has a malformed udder likely secondary to an inappropriately treated mastitis. ***An additional newborn fallow deer laying beside an adult fallow deer inside the rhino enclosure had a large round spot (approximately 1 1/2 to 2 inches round) on its head that was hairless and grey. ***A large male Watusi was observed tilting its head at an irregular angle.
    [Show full text]
  • Species Composition and Environmental Adaptation Of
    Species composition and environmental adaptation of indigenous Chinese cattle Yahui Gao, Mathieu Gautier, Xiangdong Ding, Hao Zhang, Yachun Wang, Xi Wang, Md Omar Faruque, Junya Li, Shaohui Ye, Xiao Gou, et al. To cite this version: Yahui Gao, Mathieu Gautier, Xiangdong Ding, Hao Zhang, Yachun Wang, et al.. Species composition and environmental adaptation of indigenous Chinese cattle. Scientific Reports, Nature Publishing Group, 2017, 7, 10.1038/s41598-017-16438-7. hal-02628807 HAL Id: hal-02628807 https://hal.inrae.fr/hal-02628807 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Species composition and environmental adaptation of indigenous Chinese cattle Received: 25 May 2017 Yahui Gao1, Mathieu Gautier2,3, Xiangdong Ding1, Hao Zhang1, Yachun Wang1, Xi Wang4, Accepted: 13 November 2017 MD Omar Faruque5, Junya Li6, Shaohui Ye7, Xiao Gou7, Jianlin Han8,9, Johannes A. Lenstra 10 Published: xx xx xxxx & Yi Zhang1 Indigenous Chinese cattle combine taurine and indicine origins and occupy a broad range of diferent environments. By 50 K SNP genotyping we found a discontinuous distribution of taurine and indicine cattle ancestries with extremes of less than 10% indicine cattle in the north and more than 90% in the far south and southwest China.
    [Show full text]
  • Genetic Analysis of Reproductive Traits in Bali Cattle Maintained on Range Under Artificially and Naturally Bred
    GENETIC ANALYSIS OF REPRODUCTIVE TRAITS IN BALI CATTLE MAINTAINED ON RANGE UNDER ARTIFICIALLY AND NATURALLY BRED A. Gunawan1, R. Sari2 and Y. Parwoto3 1Faculty of Animal Science, Bogor Agricultural University, Jl. Agatis, Darmaga Campus, Bogor 16680 - Indonesia 2Agricultural Science and Resource Management in the Tropics and Subtropic, University of Bonn, Nussallee 1, Bonn 53115- Germany 3Breeding Centre of Bali Cattle, Jl. Gurita III Pegok, Denpasar,Bali - Indonesia Corresponding E-mail: [email protected] Received June 18, 2011; Accepted August 15, 2011 ABSTRACT The aim of this study was to evaluate genetic analysis including heritability and further phenotypic and genetic trends of reproductive traits in Bali cattle. Reproductive traits studied were age at first calving (AFC), calving interval (CI) and pregnancy rate (PR). Data of reproductive traits were collected from Breeding Centre of Bali Cattle, Denpasar-Bali at the year period of 2000-2007. To evaluate the genetic analysis, heritability were estimated using the Mixed Model Least Squares and Maximum Likelihood procedure. The phenotypic and genetic trends were calculated using regression equation. Estimation of heritability for AFC, CI and PR were 0.22, 0.41 and 0.40, respectively. The phenotypic trend of AFC, CI and PR decreased at an average rate of 1.70 month, 10.4 days and 0.75% per year, respectively. The same pattern was showed for genetic trends for AFC, CI and PR decreased at 0.38 month, 4.25 days and 0.30% per year respectively in the same period. The heritability of reproduction traits in Bali cattle were considered as moderate to high (0.22-0.41) which means that the selection program will be more effective and efficient in improving the genetic merits in Bali cattle.
    [Show full text]