Product Ecosystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WP 2 Report on Design Guidelines for New Concepts of Eltvs
WP 2 Report on Design Guidelines for New Concepts of ELTVs Project nº 266222 Co-financed by European Commission D2.4 – REPORT ON DESIGN GUIDELINES FOR NEW CONCEPTS OF ELTVs Project Acronym: OPTIBODY Project Full Title: “Optimized Structural Components and Add-ons to Improve Passive Safety in New Electric Light Trucks and Vans (ELTVs) " Grant Agreement No.: 266222 Responsible: UNIZAR Internal Quality Reviewer: POLITO Version: 3 (2012-11-30) Dissemination level: Public EXECUTIVE SUMMARY: This document is divided into 9 chapters. Chapter 1 is completely introductory. It explains the objectives and scope of the document. It is explained that at the end of the project, a book titled “Recommended Practices in the Design and Manufacture of Electric Light Trucks and Vans (ELTV)” will be generated. This book will collect the most relevant project technical results. Chapter 2 takes into consideration what the standards specify for the different vehicle categories in terms of total weight, nominal power, etc. OPTIBODY focuses on L7e vehicle category (unladen mass not more than 400 kg or 550 kg for vehicles intended for carrying goods, not including the mass of batteries in the case of electric Page 1 of 188 WP 2 Report on Design Guidelines for New Concepts of ELTVs Project nº 266222 Co-financed by European Commission vehicles, and whose maximum net engine power does not exceed 15 kW). Chapter 3 expresses, derived from a benchmarking analysis of ELTVs in the market, the global expected specifications for a new electric light truck: NOMINAL POWER: up to 4 kW for L6e category; up to 15 kW for L7e; no limitation for N1 category. -
Greater Philadelphia Future Forces Summary
Greater Philadelphia Technical Report CONNECTIONS The Delaware Valley Regional Planning Commission is dedicated to uniting the region’s elected officials, planning professionals, and the public with a common vision of making a great region even greater. Shaping the way we live, work, and play, DVRPC builds consensus on improving transportation, promoting smart growth, protecting the environment, and enhancing the economy. We serve a diverse region of nine counties: Bucks, Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania; and Burlington, Camden, Gloucester, and Mercer in New Jersey. DVRPC is the federally designated Metropolitan Planning Organization for the Greater Philadelphia Region — leading the way to a better future. The symbol in our logo is adapted from the official DVRPC seal and is designed as a stylized image of the Delaware Valley. The outer ring symbolizes the region as a whole while the diagonal bar signifies the Delaware River. The two adjoining crescents represent the Commonwealth of Pennsylvania and the State of New Jersey. DVRPC is funded by a variety of funding sources including federal grants from the U.S. Department of Transportation’s Federal Highway Administration (FHWA) and Federal Transit Administration (FTA), the Pennsylvania and New Jersey departments of transportation, as well as by DVRPC’s state and local member governments. The authors, however, are solely responsible for the findings and conclusions herein, which may not represent the official views or policies of the funding agencies. The Delaware Valley Regional Planning Commission (DVRPC) fully complies with Title VI of the Civil Rights Act of 1964, the Civil Rights Restoration Act of 1987, Executive Order 12898 on Environmental Justice, and related nondiscrimination statutes and regulations in all programs and activities. -
Networking Transportation
Networking Transportation April 2017 CONNECTIONS G R E A TER PHIL A D ELPHI A E N G A GE, C OLL A B O R A T E , ENV I S ION The Delaware Valley Regional Planning Commission is dedicated to uniting the region’s elected officials, planning professionals, and the public with a common vision of making a great region even greater. Shaping the way we live, work, and play, DVRPC builds consensus on improving transportation, promoting smart growth, protecting the environment, and enhancing the economy. We serve a diverse region of nine counties: Bucks, Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania; and Burlington, Camden, Gloucester, and Mercer in New Jersey. DVRPC is the federally designated Metropolitan Planning Organization for the Greater Philadelphia Region — leading the way to a better future. The symbol in our logo is adapted from the official DVRPC seal and is designed as a stylized image of the Delaware Valley. The outer ring symbolizes the region as a whole while the diagonal bar signifies the Delaware River. The two adjoining crescents represent the Commonwealth of Pennsylvania and the State of New Jersey. DVRPC is funded by a variety of funding sources including federal grants from the U.S. Department of Transportation’s Federal Highway Administration (FHWA) and Federal Transit Administration (FTA), the Pennsylvania and New Jersey departments of transportation, as well as by DVRPC’s state and local member governments. The authors, however, are solely responsible for the findings and conclusions herein, which may not represent the official views or policies of the funding agencies. -
Signature Redacted
The Price Isn't Right: Mobility Alternatives and their Plight ARCHNEB By MASSACF ISETTS ISTIT(ITE OF TECHNOLCLGY Christopher J. Van Alstyne JUN 2 9 2015 B.A. Government; History Colby College, 2009 LIBRARIES SUBMITTED TO THE DEPARTMENT OF URBAN STUDIES AND PLANNING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN CITY PLANNING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2015 @2015 Christopher J. Van Alstyne. All Rights Reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author Signature redacted V (/ Departmll o Urban Studies and Planning May 21, 2015 Signature redacted Certified by Ezra Glenn Department of Urban Studies and Planning Thesis Supervisor Accepted by Signature redacted Chair, MCP Committee Department of Urban Studies and Planning 2 The Price Isn't Right: Mobility Alternatives and their Plight By Christopher J. Van Alstyne Submitted to the Department of Urban Studies and Planning on May 2 6th, 2015 in Partial Fulfillment of the Requirements for the Degree of Master in City Planning Thesis Advisor: Ezra Glenn Title: Lecturer and Special Assistant to the Department ABSTRACT When it comes to car size, the conventional wisdom of both auto manufacturers and drivers alike would dictate that smaller cars are designed for and work best in the tight confines of the city. Small cars-and specifically for this study, sub-compact 'city cars' such as the Smart Fortwo- do indeed offer distinct advantages in terms of fuel efficiency, parking flexibility, increased visibility, as well as better maneuverability. -
2008 Advanced Vehicle Technology Analysis and Evaluation Activities
annual progress report 2008V EHICLE T ECHNOLOGIES P ROGRAM ADVANCED VEHICLE TECHNOLOGY ANALYSIS AND EVALUATION ACTIVITIES AND HEAVY VEHICLE SYSTEMS OPTIMIZATION PROGRAM A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy will mean a stronger economy, a cleaner environment, and greater energy independence for America. Working with a wide array of state, community, industry, and university partners, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invests in a diverse portfolio of energy technologies. For more information contact: EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov U.S. Department of Energy Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2008 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager FY 2008 Annual Report AVTAE Activities & HVSO Program ii AVTAE Activities & HVSO Program FY 2008 Annual Report CONTENTS I. INTRODUCTION.................................................................................................................................1 II. MODELING AND SIMULATION....................................................................................................9 A. PSAT Model Validation ...............................................................................................................9 -
Case Study of a Multidisciplinary Engineering Capstone Design Project: Elec- Tric Drive Control System
Paper ID #10350 Case study of a Multidisciplinary Engineering Capstone Design Project: Elec- tric Drive Control System Dr. Amit Shashikant Jariwala, Georgia Institute of Technology Dr. Jariwala is the Director of Design & Innovation for the School of Mechanical Engineering at Georgia Tech. He graduated with a Bachelors Degree in Production Engineering from the University of Mum- bai, India with honors in 2005 and received Masters of Technology degree in Mechanical Engineering in 2007 from IIT Bombay, India. He was awarded a Ph.D. in Mechanical Engineering from Georgia Tech in 2013, with minors in Entrepreneurship. Dr. Jariwala has more than nine years of research experi- ence in modeling, simulation, engineering design, and manufacturing process development, with research focus on design of polymer based micro additive manufacturing process. During his Ph.D. studies, he was also a participant of the innovative TI:GER R program (funded by NSF:IGERT), which prepares students to commercialize high impact scientific research results. Dr. Jariwala has participated and led several research projects from funded by NSF, the State of Georgia and Industry sponsors. At Georgia Tech, he is responsible for enhancing corporate support for design courses, managing design and fabrica- tion/prototyping facilities, coordinating the design competitions/expo and teaching design courses, with a strong focus on creating and enabling multidisciplinary educational experiences. Dr. Feng Zhou, Georgia Institute of Technology He is currently pursuing PhD in Mechanical Engineering at The George W. Woodruff School of Mechan- ical Engineering, Georgia Institute of Technology. His research interests include engineering and product design, human Factors for Product Design, and human-computer interaction. -
The Factor That Affects the City's Readiness to Adopt Electric Vehicles: a Conceptual Paper
Advances in Economics, Business and Management Research, volume 184 Proceedings of the Business Innovation and Engineering Conference 2020 (BIEC 2020) The Factor That Affects the City's Readiness to Adopt Electric Vehicles: A Conceptual Paper Ismail Nooraini1,* Nor Hasni Osman1, Siti Norhasmaedayu Mohd Zamani1 1 School of Technology Management & Logistics (STML) Universiti Utara Malaysia Kedah, Malaysia *Corresponding author. Email: [email protected] ABSTRACT Transportation is one of the highly demanded industries as a benefit to the owner at this time as rapid access to any geographical location in the world. However, some drawbacks arise when this sector contributes to worldwide environmental pollution. This paper compiled and analyzed the previous literature, which addresses the variables necessary to evaluate the readiness to adopt electric vehicles to become a low-carbon city. Keywords—Electric Vehicle, the evolution of electric vehicle, city readiness, transportation (HEV), and extended-range electric vehicles (E-REVs) are four types of EVs introduced to the market [20]. I. INTRODUCTION Presently, as awareness of environmental issues has The focus of global warming is often on energy and increased worldwide, the use of EVs has spread widely. industrial activity. Human activities cause the most Many countries are very interested in the idea of having significant global warming, contributing to increased a low-pollution city, despite the challenges of atmospheric greenhouse gas (GHG) emissions over the encouraging individuals to use and own EVs. Therefore, last 150 years [11]. Low-carbon vehicles in the it is crucial to understand the factors that influence the transportation sector may potentially bridge the gap nation's readiness to adopt electric vehicles. -
Lessons Learned About Market Deployment of Electric Vehicles
3 Electric Vehicle Waves of History: Lessons Learned about Market Deployment of Electric Vehicles D. J. Santini Argonne National Laboratory 9700 South Cass AvenueArgonne, IL, USA 1. Introduction Fundamental trade-offs between gasoline and electric vehicles. In contrast to either the internal or external combustion engine, the fundamental advantage of electric vehicles (EVs) powered by electricity stored on-board in batteries has always been quiet, efficient, emissions free operation. Although emissions do result from fossil fueled generation of electricity, these emissions are removed in both space and time from the point of operation of the EV. High low revolution per minute (rpm) torque, with excellent initial acceleration is another advantage. The fundamental disadvantage is storage capability. The fuel tank for an internal combustion engine in a “conventional” automobile (CV) can store far more energy, in a much smaller space than a battery pack, at a much lower initial cost. The gasoline vehicle can therefore refuel far more rapidly and travel much further on a single refill. Low top speed relative to gasoline vehicles is also a disadvantage. An important attribute of electric vehicles is a relatively high peak power capability for short bursts of a few seconds. However, the peak power level tends to be much higher than the sustainable power. The storage disadvantage of EVs becomes much less important when the vehicles are driven at low average speeds within urban areas. At such speeds, it can take a long time to deplete the battery pack. Further, as average speed declines, the average energy requirement per hour of operation drops off considerably more rapidly than for conventional gasoline and diesel engines, extending the hours that can be driven on a full charge. -
Electrification of the Transportation System
Electrification of the Transportation System An MIT Energy Initiative Symposium April 8, 2010 Electrification of the Transportation System An MIT Energy Initiative Symposium April 8, 2010 A B O U T T H E R E P O R T Summary for Policy Makers On April 8, 2010, the MIT Energy Initiative (MITEI) sponsored a symposium on: The electrification of the transportation system: issues and opportunities. The symposium was organized into four panels that addressed key issues: (1) Why vehicle electrification matters, (2) vehicle technologies, (3) infrastructure, and (4) policy options. Prepared and contributed papers informed panel discus- sions, and a rapporteurs’ report summarizing those discussions follows. All documents are available at http://web.mit.edu/mitei/. Symposium participants came from different backgrounds and expressed a wide range of views. Here we summarize for policy makers the key points that we drew from the lively discussions. The figures and table we have included in this summary are explained in greater detail in the subsequent sections of this report. The summary reflects our own observations and con- clusions and is not offered as a consensus view. • Why electrification matters. Currently, petroleum almost exclusively fuels the United States (US) transportation system, creating two major challenges: 1. The transportation sector represents a significant fraction of total greenhouse gas (GHG) emissions both globally and in the US — light-duty vehicles (LDVs) are responsible for 17.5% of carbon dioxide (CO2) emissions in the US. Absent a shift from internal combustion engine (ICE) vehicles, there will be a continuing increase in CO2 emissions from the transportation sector driven largely by the growth in the large, rapidly growing emerging economies such as China and India. -
Human-Scaled Personal Mobility Device Performace
HUMAN-SCALED PERSONAL MOBILITY DEVICE PERFORMACE CHARACTERISTICS A Thesis Presented to The Academic Faculty by Lance D. Ballard In Partial Fulfillment of the Requirements for the Degree Master of Science in the School of Civil and Environmental Engineering Georgia Institute of Technology December, 2012 HUMAN-SCALED PERSONAL MOBILITY DEVICE PERFORMACE CHARACTERISTICS Approved by: Dr. Michael Hunter, Advisor School of Civil and Environmental Engineering Georgia Institute of Technology Dr. Randall Guensler School of Civil and Environmental Engineering Georgia Institute of Technology Dr. Kari Watkins School of Civil and Environmental Engineering Georgia Institute of Technology Date Approved: November 9, 2012 To my wife and family. ACKNOWLEDGEMENTS This research marks a great achievement in my life and the culmination of much hard work from many people. Therefore, I am honored to give credit to those from whom I’ve already received so much. This journey is the product of great providence with help along the way from enumerable parties. However, here I mention, all too briefly, those who’ve given and meant the most to me during this time. To start, I must immediately thank Dr. Michael Hunter. You are one of the greatest reasons I chose to study at Georgia Tech. Your passion for excellence and love for the field of transportation excites me. Thank you so much for allowing me to be a part of your research and investing your time into my work and my academic development. To Dr. Randall Guensler and Dr. Kari Watkins, thank you both for your support, wisdom, insight, and encouragement in this work, and I sincerely hope that this work of mine greatly benefits you in the future. -
Critical Evaluation of the Battery Electric Vehicle for Sustainable Mobility
CRITICAL EVALUATION OF THE BATTERY ELECTRIC VEHICLE FOR SUSTAINABLE MOBILITY By ROSS MILLIGAN A thesis submitted to Edinburgh Napier University in partial fulfilment for the degree of DOCTOR of PHILOSOPHY School of Engineering and the Built Environment November 2016 Thesis Contents Chapter 1 Abstract and the Research Question .................................................................................... ii 1.0 The research question ...................................................................................................................... ii 1.1 Declaration .................................................................................................................................... ii 1.2 Abstract ........................................................................................................................................ iii 1.3 Acknowledgements ....................................................................................................................... v 1.4 Aims and objectives ..................................................................................................................... vi 1.5 The structure of the thesis .......................................................................................................... vii 1.6 List of figures .............................................................................................................................. viii 1.7 List of tables ................................................................................................................................ -
Impacts of Low-Speed Vehicles on Transportation Infrastructure and Safety
Portland State University PDXScholar Transportation Research and Education Center TREC Final Reports (TREC) 12-2010 Impacts of Low-Speed Vehicles on Transportation Infrastructure and Safety Katharine M. Hunter-Zaworski Oregon State University Linda Cornell Oregon DOT Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_reports Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons Let us know how access to this document benefits ou.y Recommended Citation Hunter-Zaworski, Kate and Linda Cornell. Impacts of Low-Speed Vehicles on Transportation Infrastructure and Safety. OTREC-RR-10-19. Portland, OR: Transportation Research and Education Center (TREC), 2010. https://doi.org/10.15760/trec.61 This Report is brought to you for free and open access. It has been accepted for inclusion in TREC Final Reports by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. OREGON TRANSPORTATION RESEARCH AND EDUCATION CONSORTIUM OTREC FINAL REPORT Impacts of Low-Speed Vehicles on Transportation Infrastructure and Safety OTREC-RR-10-19 December 2010 A National University Transportation Center sponsored by the U.S. Department of Transportation’s Research and Innovative Technology Administration IMPACTS OF LOW-SPEED VEHICLES ON TRANSPORTATION INFRASTRUCTURE AND SAFETY Final Report OTREC RR-10-19 by Dr. K.M. Hunter-Zaworski School of Civil and Construction Engineering Oregon State University for Oregon Transportation Research and Education Consortium (OTREC) P.O. Box 751 Portland, OR 97207 December 2010 Technical Report Documentation Page 1. 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.