Show That in the Catgeory Abgroups of Abelian Groups, A

Total Page:16

File Type:pdf, Size:1020Kb

Show That in the Catgeory Abgroups of Abelian Groups, A PROBLEMS SET 5 SOLUTIONS OF SOME EXERCISES 1.{ Show that in the catgeory AbGroups of abelian groups, a morphism is a monomorphism if and only if it is injective, and a morphism is an epi- morphism if and only if it is surjective (the latter needs a little more care). Show that the same holds in the category FGAbGroups of finitely generated abelian groups (the same proof should work). Solution: Since two morphisms of groups f1; f2 : G1 ! G2 are equal if and only if they are equal as maps of sets, we see immediately that a morphism of groups which is a monomorphism (resp. an epimorphism) as map of sets is a monomorphism (resp. an epimorphism) as map of groups. Since in the category of sets, injective=mono, surjective=epi, an injective morphism of group is a monomorphism, a surjective morphism of groups is an epimorphism. Let's prove the two converses. If f : G1 ! G2 is a morphism of abeian groups, which is not injective. Then consider two maps i; z : ker f ! G1, defined as follows: i is the canonical inclusion, z is the zero map. Since ker f 6= 0, one has i 6= z. Yet f ◦ i = f ◦ z since both are the zero map: ker f ! G2. Hence f is not a monomorphism If f : G1 ! G2 is a morphism of abelian groups, which is not surjective. Since G2 is abelian, imf is a normal subgroup of G2 and one can consider the factor group G2=imf, which is not the zero group since imf 6= G2. Consider two morphisms of groups G2 ! G2=imf, the canonical surjection π and the zero map z. Then π ◦ f = z ◦ f since both are the zero map: G1 ! G2=imf. Hence f is not an epimorphism 2.{ Let k be a field and let us consider the category FinDimVectk of finite dimensional vector spaces over k (morphisms are linear maps, of course). Show that this category is equivalent to its own opposed category. Solution: Consider the functor F that to a vector space V attaches its dual V ∗ (the space of linear forms l on V ), to a linear map f : V ! W its transpose tf : W ∗ ! v∗. This is a contravariant functor from the category of vector spaces over k FinDimVect. Such a functor can be seen alternatively as a opp covariant functor, say F1, from FinDimVectk to FinDimVectk or equiva- opp lently again a covariant functor F2 from FinDimVectk to FinDimVectk . Now we claim that F1 ◦F2 and F2 ◦F1 which are functors from FinDimVectk opp opp to FinDimVectk, and from FinDimVectk to FinDimVectk respec- opp tively, are isomorphic to the identity functors of FinDimVectk and FinDimVectk respectively. It suffices to do it for the first one, the second been the same functor with all arrows reversed. 1 2 PROBLEMS SET 5 SOLUTIONS OF SOME EXERCISES The functor F1 ◦ F2 sends a finite dimentional vector space V to its bidual (V ∗)∗, and a morphism f : V ! W to ttf :(V ∗)∗ ! (W ∗)∗. For every ∗ ∗ V , let θV be the canonical morphism V ! (V ) which attaches to v 2 V ∗ ∗ the linear form on V which sends an element l in V to l(v). The θV 's define a morphism of functor θ : Id ! F1 ◦ F2 because for every linear map f : V ! W , the following diagram is commutative, as can be check directly form the definition: f V / W θV θW ttf (V ∗)∗ / (W ∗)∗: Since the θV are isomorphisms (because V is a finite dimensional vector spaces), one sees easily that θ is an isomorphism of functors. 3.{ Is the category FGAbGroups of finitely generated abelian groups equivalent to its own opposed category? Solution: No. One argument for this is that in the category of FGAbGroups, every epimorphism from an object A to itself is an isomorphism. Indeed, to see that, remember that epimorphism just means surjective by exercise 1, and let f : A ! A be a surjective homomorphsim. If f is surjective but not injec- tive, then one has an ascending infinite chain of subgroups ker f ⊂ ker f 2 ⊂ ker f 3 ⊂ ::: where each inclusion is strict, and this impossible in a finitely generated abelian group (exercise). Thus, if FGAbGroups was equivalent to its own oppsed category, the opposed statement, namely that every monomorphism from A to A is an isomorphism would be true. But it is not: the morphsim Z ! Z which sends x to 2x, for instance, is injective, hence a monomorphism, but not an isomorphism. 5.{ Let C be a category where arbitrary products of two objects exist. Let f : A ! A0 and g : B ! B0 be two morphisms. Explain how to define naturally a morphism f × g : A × B ! A0 × B0. Solution: By definition, the product A × B comes with two natural map p1 : A × B ! A and p2 : A × B ! B. Consider the pair of maps f ◦ p1 : 0 0 A × B ! A and g ◦ p2 : A × B ! B . By the definition of the product A0 × B0 as a limit, this pair of map defines a unique map A × B ! A0 × B0 0 0 0 0 such that post-composed with the two projection p1 : A × B ! A and 0 0 0 0 p2 : A × B ! B gives respectively f ◦ p1 and f ◦ p2. This is the map we were looking for, and we call it f ◦ g. 6.{ Let C and C0 be two catgeories where products of two objects exist, and let F be a functor from C to C0. Lat A and B be two objects in C. Explain why there is a natural map from F (A × B) to F (A) × F (B) in C0. We say that F commute with products if this map is an isomorphism for every objects A and B in C. PROBLEMS SET 5 SOLUTIONS OF SOME EXERCISES 3 Solution: Let p1 and p2 be the two canonical projection A×B ! A and A× 0 B ! B. Then F (p1) and F (p2) are morphism in C going F (A × B) ! F (A) and F (A × B) ! F (B). Thus they defines a map F (A × B) ! F (A) × F (B) in C0. 8. Let C be a category. For A an object of C, we consider the functor FA from C to the category Sets defined by FA(X) = HomC(A; X). a.{ Complete the definition of FA by defining its action on morphisms, and check that it is a functor. Solution: If f : X ! Y is a morphism in C, we define a morphism in the category of sets Fa(f): FA(X) = HomC(A; X) ! HomC(A; Y ) by sending g 2 HomC(A; X) to f ◦ g. This cleary makes FA a functor. b.{ Show that A 7! FA define a contravariant functor from C to the cate- gory Funct(C,Sets) of functors from C to Sets. Solution: Again we have to define the image of morphisms by our would- be functor A 7! FA. If f : A ! B is a functor, we want to define a morphism FB ! FA (remember we want a contravariant functor) in the category of functors from C to Sets. Consider, for every object X in C the map θf;X : FB(X) = HomC(B; X) ! FA(X) = HomC(A; X) which sends g to g ◦f. One sees easily that the θf;X 's define a morphism of functors θf : FB ! FA. One also sees easily that θf 0◦f = θf ◦ θf 0 and that θId = Id, and this completes the definition of the functor A ! FA c.{ (Yoneda's lemma) Show that the functor defined in b.{ is fully faithful, and therefore essentially injective. 0 Solution: We need to show that if f; f are in HomC(A; B), and θf = θf 0 , 0 then f = f . The meaning of the equality θf = θf 0 between those two morphisms of functors is that for every object X in C, θf;X = θf 0;X as maps from HomC(B; X) to HomC(A; X). In particular θf;B = θf 0;B as maps from HomC(B; B) to HomC(A; B). Applying this to the element IdB we get 0 0 θf;B(IdB) = θf 0;B(IdB), that is using the defintion, IdB ◦f = IdB ◦f or f = f , QED. In particular, FA determine A up to isomorphism. A functor from C to Sets that is isomorphic to some functor FA is called representable. d.{ Show that the forgetful functor from Groups to Sets is representable. Solution: It is indeed representable by the group Z. To check this, we need to show that the functor G 7! FZ(G) = Hom(Z;G) (morphism of groups), and G 7! underlying set of G are isomorphic. For this define θG : Hom(Z;G) ! G by sending a morphism of groups f : Z ! G to f(1), As seen in class, θG is a bijection. It is clear that the θG's define a morphism of functor FZ to the functor "underlying set" which is an isomorphism. e.{ Show that the forgetful functor from Finite Groups to Sets is not representable. 4 PROBLEMS SET 5 SOLUTIONS OF SOME EXERCISES Solution: Suppose this functor is representable by a finite group H. Then in particular, for every finite group G, one has a bijection between the sets Hom(H; G) and G. Let ` be a prime number greater that the order of H. Then certainly Hom(H; Z=`Z) has just one element (the trivial morphism) but Z=`Z has ` ≥ 2 element, so they can nor be in bijection.
Recommended publications
  • Nearly Locally Presentable Categories Are Locally Presentable Is Equivalent to Vopˇenka’S Principle
    NEARLY LOCALLY PRESENTABLE CATEGORIES L. POSITSELSKI AND J. ROSICKY´ Abstract. We introduce a new class of categories generalizing locally presentable ones. The distinction does not manifest in the abelian case and, assuming Vopˇenka’s principle, the same happens in the regular case. The category of complete partial orders is the natural example of a nearly locally finitely presentable category which is not locally presentable. 1. Introduction Locally presentable categories were introduced by P. Gabriel and F. Ulmer in [6]. A category K is locally λ-presentable if it is cocomplete and has a strong generator consisting of λ-presentable objects. Here, λ is a regular cardinal and an object A is λ-presentable if its hom-functor K(A, −): K → Set preserves λ-directed colimits. A category is locally presentable if it is locally λ-presentable for some λ. This con- cept of presentability formalizes the usual practice – for instance, finitely presentable groups are precisely groups given by finitely many generators and finitely many re- lations. Locally presentable categories have many nice properties, in particular they are complete and co-wellpowered. Gabriel and Ulmer [6] also showed that one can define locally presentable categories by using just monomorphisms instead all morphisms. They defined λ-generated ob- jects as those whose hom-functor K(A, −) preserves λ-directed colimits of monomor- phisms. Again, this concept formalizes the usual practice – finitely generated groups are precisely groups admitting a finite set of generators. This leads to locally gener- ated categories, where a cocomplete category K is locally λ-generated if it has a strong arXiv:1710.10476v2 [math.CT] 2 Apr 2018 generator consisting of λ-generated objects and every object of K has only a set of strong quotients.
    [Show full text]
  • Coreflective Subcategories
    transactions of the american mathematical society Volume 157, June 1971 COREFLECTIVE SUBCATEGORIES BY HORST HERRLICH AND GEORGE E. STRECKER Abstract. General morphism factorization criteria are used to investigate categorical reflections and coreflections, and in particular epi-reflections and mono- coreflections. It is shown that for most categories with "reasonable" smallness and completeness conditions, each coreflection can be "split" into the composition of two mono-coreflections and that under these conditions mono-coreflective subcategories can be characterized as those which are closed under the formation of coproducts and extremal quotient objects. The relationship of reflectivity to closure under limits is investigated as well as coreflections in categories which have "enough" constant morphisms. 1. Introduction. The concept of reflections in categories (and likewise the dual notion—coreflections) serves the purpose of unifying various fundamental con- structions in mathematics, via "universal" properties that each possesses. His- torically, the concept seems to have its roots in the fundamental construction of E. Cech [4] whereby (using the fact that the class of compact spaces is productive and closed-hereditary) each completely regular F2 space is densely embedded in a compact F2 space with a universal extension property. In [3, Appendice III; Sur les applications universelles] Bourbaki has shown the essential underlying similarity that the Cech-Stone compactification has with other mathematical extensions, such as the completion of uniform spaces and the embedding of integral domains in their fields of fractions. In doing so, he essentially defined the notion of reflections in categories. It was not until 1964, when Freyd [5] published the first book dealing exclusively with the theory of categories, that sufficient categorical machinery and insight were developed to allow for a very simple formulation of the concept of reflections and for a basic investigation of reflections as entities themselvesi1).
    [Show full text]
  • Categories of Modules for Idempotent Rings and Morita Equivalences
    Master's Thesis Categories of Modules for Idempotent Rings and Morita Equivalences I Leandro Marm 1997 t Department of Mathematics University of Glasgow University Gardens Glasgow, G12 8QW ProQuest Number: 13834261 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13834261 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 10$ af 7 En resolucion, el se enfrasco tanto en su lectura, que se le pasaban las noches leyendo de claro en claro, y los dias de turbio en turbio; y asi, del poco dormir y del mucho leer se le seco el celebro 1 de manera, que vino a perder el juicio. M iguel de C ervantes Sa a v e d r a : El Ingenioso Hidalgo don Quijote de la Mancha. 1In modern Spanish this word is written ”cerebro” C ontents Chapter 1, Introduction 4 Chapter 2. Categories of Modules for Rings I 7 1. Noncommutative Localization 7 2. The Construction of the Categories 11 3. The Equivalence of the Categories 24 4. The Independence of the Base Ring 28 Chapter 3.
    [Show full text]
  • The Category of Sheaves Is a Topos Part 2
    The category of sheaves is a topos part 2 Patrick Elliott Recall from the last talk that for a small category C, the category PSh(C) of presheaves on C is an elementary topos. Explicitly, PSh(C) has the following structure: • Given two presheaves F and G on C, the exponential GF is the presheaf defined on objects C 2 obC by F G (C) = Hom(hC × F; G); where hC = Hom(−;C) is the representable functor associated to C, and the product × is defined object-wise. • Writing 1 for the constant presheaf of the one object set, the subobject classifier true : 1 ! Ω in PSh(C) is defined on objects by Ω(C) := fS j S is a sieve on C in Cg; and trueC : ∗ ! Ω(C) sends ∗ to the maximal sieve t(C). The goal of this talk is to refine this structure to show that the category Shτ (C) of sheaves on a site (C; τ) is also an elementary topos. To do this we must make use of the sheafification functor defined at the end of the first talk: Theorem 0.1. The inclusion functor i : Shτ (C) ! PSh(C) has a left adjoint a : PSh(C) ! Shτ (C); called sheafification, or the associated sheaf functor. Moreover, this functor commutes with finite limits. Explicitly, a(F) = (F +)+, where + F (C) := colimS2τ(C)Match(S; F); where Match(S; F) is the set of matching families for the cover S of C, and the colimit is taken over all covering sieves of C, ordered by reverse inclusion.
    [Show full text]
  • 1. Introduction
    Pré-Publicações do Departamento de Matemática Universidade de Coimbra Preprint Number 14–18 A CRITERION FOR REFLECTIVENESS OF NORMAL EXTENSIONS WITH AN APPLICATION TO MONOIDS ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN Dedicated to Manuela Sobral on the occasion of her seventieth birthday Abstract: We prove that the so-called special homogeneous surjections are reflec- tive amongst surjective homomorphisms of monoids. To do so, we use the recent result that these special homogeneous surjections are the normal (= central) extensi- ons with respect to the admissible Galois structure ΓMon determined by the Grothen- dieck group adjunction together with the classes of surjective homomorphisms. It is well known that such a reflection exists when the left adjoint functor of an admissible Galois structure preserves all pullbacks of fibrations along split epimorphic fibrati- ons, a property which we show to fail for ΓMon. We give a new sufficient condition for the normal extensions in an admissible Galois structure to be reflective, and we then show that this condition is indeed fulfilled by ΓMon. Keywords: categorical Galois theory; admissible Galois structure; central, nor- mal, trivial extension; Grothendieck group; group completion; homogeneous split epimorphism, special homogeneous surjection of monoids. AMS Subject Classification (2010): 20M32, 20M50, 11R32, 19C09, 18F30. 1. Introduction The original aim of our present work was to answer the following question: Is the category of special homogeneous surjections of monoids [3, 4] a reflective subcategory of the category of surjective monoid homomorphisms? Since we recently showed [17] that these special homogeneous surjections are the normal extensions in an admissible Galois structure [10, 11], we were at first convinced that this would be an immediate consequence of some known abstract Galois- theoretical result such as the ones in [13, 12].
    [Show full text]
  • Monomorphism - Wikipedia, the Free Encyclopedia
    Monomorphism - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Monomorphism Monomorphism From Wikipedia, the free encyclopedia In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation . In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism, that is, an arrow f : X → Y such that, for all morphisms g1, g2 : Z → X, Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below. The categorical dual of a monomorphism is an epimorphism, i.e. a monomorphism in a category C is an epimorphism in the dual category Cop. Every section is a monomorphism, and every retraction is an epimorphism. Contents 1 Relation to invertibility 2 Examples 3 Properties 4 Related concepts 5 Terminology 6 See also 7 References Relation to invertibility Left invertible morphisms are necessarily monic: if l is a left inverse for f (meaning l is a morphism and ), then f is monic, as A left invertible morphism is called a split mono. However, a monomorphism need not be left-invertible. For example, in the category Group of all groups and group morphisms among them, if H is a subgroup of G then the inclusion f : H → G is always a monomorphism; but f has a left inverse in the category if and only if H has a normal complement in G.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]
  • Representable Epimorphisms of Monoids Compositio Mathematica, Tome 29, No 3 (1974), P
    COMPOSITIO MATHEMATICA MATTHEW GOULD Representable epimorphisms of monoids Compositio Mathematica, tome 29, no 3 (1974), p. 213-222 <http://www.numdam.org/item?id=CM_1974__29_3_213_0> © Foundation Compositio Mathematica, 1974, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 29, Fasc. 3, 1974, pag. 213-222 Noordhoff International Publishing Printed in the Netherlands REPRESENTABLE EPIMORPHISMS OF MONOIDS1 Matthew Gould Introduction Given a universal algebra 8l, its endomorphism monoid E(u) induces a monoid E*(8l) of mappings of the subalgebra lattice S(çX) into itself. Specifically, for 03B1 ~ E(u) define 03B1*: S(u) ~ S(u) by setting X (1* = {x03B1|x ~ X} for all X E S(u). (Note that 03B1* is determined by its action on the singleton-generated subalgebras.) The monoid of closure endo- morphisms (cf. [1], [3], [4]) is then defined as E*(u) = {03B1*|a ~ E(u)}. Clearly E*(8l) is an epimorphic image of E(u) under the map 03B1 ~ 03B1*; this epimorphism shall be denoted 03B5(u), or simply e when there is no risk of confusion. Given an epimorphism of monoids, 03A6 : M ~ MW, let us say that W is representable if there exist an algebra 91 and isomorphisms (J : M - E(W) and r : M03A8 ~ E*(u) such that 03A803C4 = 03C303B5.
    [Show full text]
  • Toposes Are Adhesive
    Toposes are adhesive Stephen Lack1 and Pawe lSoboci´nski2? 1 School of Computing and Mathematics, University of Western Sydney, Australia 2 Computer Laboratory, University of Cambridge, United Kingdom Abstract. Adhesive categories have recently been proposed as a cate- gorical foundation for facets of the theory of graph transformation, and have also been used to study techniques from process algebra for reason- ing about concurrency. Here we continue our study of adhesive categories by showing that toposes are adhesive. The proof relies on exploiting the relationship between adhesive categories, Brown and Janelidze’s work on generalised van Kampen theorems as well as Grothendieck’s theory of descent. Introduction Adhesive categories [11,12] and their generalisations, quasiadhesive categories [11] and adhesive hlr categories [6], have recently begun to be used as a natural and relatively simple general foundation for aspects of the theory of graph transfor- mation, following on from previous work in this direction [5]. By covering several “graph-like” categories, they serve as a useful framework in which to prove struc- tural properties. They have also served as a bridge allowing the introduction of techniques from process algebra to the field of graph transformation [7, 13]. From a categorical point of view, the work follows in the footsteps of dis- tributive and extensive categories [4] in the sense that they study a particular relationship between certain finite limits and finite colimits. Indeed, whereas distributive categories are concerned with the distributivity of products over co- products and extensive categories with the relationship between coproducts and pullbacks, the various flavours of adhesive categories consider the relationship between certain pushouts and pullbacks.
    [Show full text]
  • Math 395: Category Theory Northwestern University, Lecture Notes
    Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere.
    [Show full text]
  • Protomodular Aspect of the Dual of a Topos
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE IN PRESS Advances in Mathematics 187 (2004) 240–255 http://www.elsevier.com/locate/aim Protomodular aspect of the dual of a topos Dominique Bourn Centre Universitaire de la Mi-voix, Lab. d’Analyse, Ge´ome´trie et Alge`bre, Universite´ du Littoral, 50 rue Ferdinand Buisson, BP699, 62228 Calais Cedex, France Received 3 March 2003; accepted 15 September 2003 Communicated by Ross Street Abstract The structure of the dual of a topos is investigated under its aspect of a Barr exact and protomodular category. In particular the normal monomorphisms in the fibres of the fibration of pointed objects are characterized, and the change of base functors with respect to this same fibration are shown to reflect those normal monomorphisms. r 2003 Elsevier Inc. All rights reserved. MSC: 18B25; 18D30; 08B10 Keywords: Topos; Fibrations; Mal’cev and protomodular categories 0. Introduction It is well known that, given a topos E; the subobject classifier O is endowed with an internal structure of Heyting Algebra, and that consequently the contravariant ‘‘power-set’’ functor OðÞ : Eop-E takes its values in the category HeytE of internal Heyting algebras in E: But the category Heyt of Heyting Algebras shares with the categories Gp of groups or Rg of rings the property of being protomodular. This property [3] says that the fibration of pointed objects p : PtC-C; whose fibre at X is the category PtX C of split epimorphisms with codomain X; has its change of base functors conservative (i.e.
    [Show full text]
  • A Short Introduction to Category Theory
    A SHORT INTRODUCTION TO CATEGORY THEORY September 4, 2019 Contents 1. Category theory 1 1.1. Definition of a category 1 1.2. Natural transformations 3 1.3. Epimorphisms and monomorphisms 5 1.4. Yoneda Lemma 6 1.5. Limits and colimits 7 1.6. Free objects 9 References 9 1. Category theory 1.1. Definition of a category. Definition 1.1.1. A category C is the following data (1) a class ob(C), whose elements are called objects; (2) for any pair of objects A; B of C a set HomC(A; B), called set of morphisms; (3) for any three objects A; B; C of C a function HomC(A; B) × HomC(B; C) −! HomC(A; C) (f; g) −! g ◦ f; called composition of morphisms; which satisfy the following axioms (i) the sets of morphisms are all disjoints, so any morphism f determines his domain and his target; (ii) the composition is associative; (iii) for any object A of C there exists a morphism idA 2 Hom(A; A), called identity morphism, such that for any object B of C and any morphisms f 2 Hom(A; B) and g 2 Hom(C; A) we have f ◦ idA = f and idA ◦ g = g. Remark 1.1.2. The above definition is the definition of what is called a locally small category. For a general category we should admit that the set of morphisms is not a set. If the class of object is in fact a set then the category is called small. For a general category we should admit that morphisms form a class.
    [Show full text]